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Abstract 

The aim of this paper is to recall the foundations of SIA theory and modify these slightly 
in order to clarify and reinforce them, as well as make them more adaptable to various 
scientific models. Some issues regarding one of the founding blocks of SIA, the implicative 
intensity, are discussed and detailed. This paper is composed of two mostly separable 
sections. The first half of this paper focuses on a generalization of SIA so that known 
differences between individuals, which we shall refer to as multiple behaviors, can be 
taken into account in an analysis. The second half focuses on two issues related to the 
implicative intensity, the second of which being the well-known issue raised by large 
numbers of individuals in SIA data sets. 
Keywords : Statistical implicative analysis, Foundations, Multiple behaviors, Probability 
matrix, Distributions, Implicative intensity, Relative implicative intensity. 
 
Résumé 
On souhaite ici rappeler les fondements de l'ASI et les modifier légèrement de manière à 
clarifier certains points et à les renforcer, ainsi qu'à les rendre plus adaptables à 
différentes modélisations scientifiques. Des questions soulevées concernant l'un des 
piliers de l'ASI, l'intensité d'implication, sont discutées et détaillées. L'article est articulé 
autour de deux parties relativement dissociables. La première partie concerne une 
généralisation de l'ASI permettant de prendre en compte dans les analyses des différences 
connues entre individus qui seront désignées par le terme de comportements multiples. 
La seconde partie concerne deux questions soulevées relatives à l'intensité d'implication, 
en particulier la question bien connue en ASI des difficultés d'analyse pour des données 
portant sur un grand nombre d'individus. 
Mots-clés : Analyse statistique implicative, Fondements, Comportements multiples, 
matrice de probabilités, Distributions, intensité d'implication, Intensité d'implication 
relative. 

 

We will consider in this paper only classical SIA theory, i.e. SIA on binary variables and 

a discrete set of individuals. 
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The basic idea of SIA theory works as follows. Suppose we have a classical SIA data set. 

We have n individuals and a list of p different properties that are either true or false for 

each of these individuals. In SIA we first consider each set of two properties a and b. For 

these properties we can look at the following contingency table of the number of 

individuals having properties a or b : 

 a ¬a 

b    

¬b   

 

We then try to establish a probability distribution on the bottom left-hand box of such 

tables to which we will compare  by considering random variables X and Y 

corresponding to A and B. Firstly, we believe that this methodology might be a bit too 

hasty in the construction of the probability distribution that is used. This can be confusing 

regarding the hypotheses that justify the distribution. Hypotheses are often made on the 

behavior of individuals and the transition to groups of individuals is not necessarily that 

straightforward for an end user. By making the different steps in this construction more 

explicit, we render these hypotheses more apparent and more adaptable if they are to be 

modified. For this we will define a distribution at an anterior phase, from which we can 

infer a distribution on the contingency tables. Secondly, we look at the implicative 

intensity used to compare the empirical data with the constructed probability distribution. 

We define a new relative implicative intensity that we believe is more adequate than the 

regular implicative intensity. Then we outline the reasons for the limitations to the use of 

the implicative intensity in SIAs.We also chose to modify the notational conventions from 

regular SIA to render this renewed approach easier to express mathematically and 

possibly more adapted to straightforward programming of the formulas. 

 

A distribution based on behaviors 

We will no longer start with a probability distribution on the intersection of two sets, but 

infer this probability distribution from a probability distribution on the entire data set. By 

doing this, we make apparent the hypotheses and assumptions made about the data. It will 

make it easier to change them, so they are more adapted to a given situation. If we study 
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a group of individuals, it is often possible to model the behavior of these individuals. Such 

a model can easily be incorporated in an SIA using this more general approach. We will 

consider a certain number of individuals, finite or infinite, and a finite number p of 

properties. Each property is either true (1) or false (0) for a given individual2. 

 

Finite number of individuals 

We first start looking at a probability distribution on the entire population of individuals, 

assuming this population is of finite cardinality n. 

Let ΜΜΜΜp,n be the set of p × n matrices, with all coordinates 0 or 1, and D be a probability 

distribution on ΜΜΜΜp,n. The random variables we will be considering are matricesX ∈ M p,n

. We define Xi the resulting random variable taken as the i-th row of X and Xi,j the resulting 

random variable taken as the j-th coordinate of Xi. 

Our main objective is to determine a probability distribution on contingency tables for 

any two properties (say 1 and 2) as is the case in regular SIA theory. This comes round 

to determining the value of 

P X1 ⋅ X2 = m( )  

Note that we use different conventions from regular SIA theory for simplicity. The 

intersection is now seen as a dot product between two vectors. Also, it is of no importance 

yet that we look at the intersection of individuals that have property 1 and not property 2 

rather than individuals that both share property 1 and property 2. We can infer the results 

on the prior from the latter, and doing otherwise would render reading more complicated. 

Probability matrix 

From any distribution D, we can define a p × n probability matrix P as such: 

∀i, j,Pi, j = P Xi, j = 1( ) 
 

This matrix gives us the probability that a given property is true for a given individual, 

for all properties and individuals. In many cases, this can be determined by a model. We 

                                                 
2It is not because we have used the term individual here that these must be people in an applied context, 
this can be anything from people to objects to instances. 
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would therefore like to define D from P. Generally, P does not define the probability 

distribution. One probability matrix corresponds to a great number of different probability 

distributions. However, this is no longer true if we make adequate assumptions. 

Generalized binomial distribution 

The simplest assumption we can make is that of the independence of variables between 

all the Xi,j. In this case, we easily see that P defines a probability distribution D. Indeed, 

let A be a matrix in ΜΜΜΜp,n, we have: 

 

 

P X = A( ) = Pi, j Ai, j + 1− Pi, j( ) 1− Ai, j( )( )
i, j

∏  

 

In this case, considering only properties 1 and 2, we have, for all m: 
 

 

P X1 ⋅ X2 = m( ) = P1,i
i∈I

∏
I ⊂ 0,n[ ]

I =m

∑ P2,i 1− P1,j P2,j( )
j∉I

∏  

The name generalized binomial distribution is apparent in 1.1.4. 

 

Generalized hypergeometric distribution 

Another assumption we can make, is that of a conditional independence of variables 

between the Xi,j relative to knowing all Xi · Xi. This is a reasonable assumption in certain 

cases. For example, suppose we are looking at n students taking a list of p different 

competitive exams. As these are competitive exams (as opposed to regular exams), the 

number of candidates ni that will pass a given exam i is predefined. This means

P Xi ⋅ Xi = ni( ) = 1or all i. If this is the only information we know about these exams, then 

conditional independence is a reasonable assumption. 

 

In this case, considering only properties 1 and 2, we have, for all m: 
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P X1 ⋅ X2 = m( ) =

P1,i
i∈I

∏
I CJCK CL= 0,n[ ]

I =m
I + J =n1
J + K =n2

∑ P2,i P1,j
j∈J

∏ 1− P2,j( ) 1− P1,k( )
k∈K

∏ P2,k 1− P1,l( )
l∈L

∏ 1− P2,l( )  

The name generalized hypergeometric distribution is apparent in the following paragraph. 

 

Regular SIA assumptions on P 

Regular SIA theory does not look at each individual's particularities. All individuals are 

seen as the same. This means that, for all i, there exists a probability Pi, such that for all 

j, Pi,j=Pi. The value for Pi which is taken is 
ni

n
. 

Using this matrix P under the assumptions for the generalized binomial distribution. 

We get: 

 

P X1 ⋅ X2 = m( ) =
n

m









 P1P2( )m

1− P1P2( )n−m
 

This gives us the same binomial distribution as the one used in regular SIA theory. 
 

Now, using the same matrix P under the assumptions for the generalized hypergeometric 
distribution. We get: 
 

 

P X1 ⋅ X2 = m( ) =

n1

m











n− n1

n2 − m











n

n2











 

This gives us the same hypergeometric distribution as the one used in (older) regular SIA 

theory. 

We have no pretence here to say that these formulas have been found with better 

arguments than originally (see Models 1 and 2 from Lerman et al. (1981)). The reasoning 

here is actually very much the same as the one made for this 1981 paper. However, we 

believe it is important to keep this construction apparent, so as to allow more complex 

models. 
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Limitations 

From a theoretical point of view, it is very easy to write down formulas for P X1 ⋅ X2 = m( )
. From a practical point of view, it can be very hard and even impossible to calculate them 

in a reasonable time. This is due to the extra complexity brought by considering different 

assumptions on individuals. If all assumptions on each individual are different, then the 

number of calculations that need to be done to calculate P X1 ⋅ X2 = m( )  for the 

generalized binomial distribution will be of the order 
n

m









. For a full SIA, the order can 

be up to n times the sum for all m less than n of all these orders, which is n2n. This can 

easily become huge for greater values of n. 

It is however possible to group individuals with common behavior together to make 

calculations less time consuming. 

Grouping individuals by common behavior 

We say that two individuals j, j'  have same behavior if for all i, Pi,j=Pi,j' . We can group 

all individuals who have same behavior into q classes. We define t=(t1, ..., tq) the vector 

such that tk represents the number of individuals in each class. We have1≤ tk ≤ nand 

t1+...+tq=n. Furthermore, we define a p × q matrix P̃ such that the k-th column forP̃ is 

equal to any j-th column of P, where the individual j is in the behavior class k. Under the 

assumptions of the generalized binomial or hypergeometric distribution, the couple%P,t( )
defines the probability distribution on random variables X1·X2. 

 

We will only study the formula for the general binomial distribution3. This is: 

P X1 ⋅ X2 = m( ) =
tk

sk











k=1

q

∏
s1+...+sq=m
0≤sk≤tk

∑ %P1,k
%P2,k( )sk 1− %P1,k

%P2,k( )tk−sk  

Now the number of calculations for a full SIA is of order: 

                                                 
3The formula for the general hypergeometric distribution can be written this way too, but is is quite 
complex and of little use. Indeed, as is true for the hypergeometric distribution, the general 
hypergeometric distribution gives way to symmetrical SIAs which in some sense waters down the whole 
idea behind SIA. 
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q ti +1( )
i=1

q

∏  

This is maximal when all classes have same size, so we can give an upper bound for this 

order, which is: 

q
n
q

+1










q

 

This shows that there are still limitations even when grouping individuals in a limited 

number of behavior classes. With modern home computers, if it may be possible (meaning 

doable in a reasonable time) to go up to 10 classes for one hundred individuals for a full 

SIA, the number of classes would be limited to 5 for one thousand individuals and would 

fall down to 2 for one million individuals. 

 

Infinite number of individuals 

If we suppose we have an infinite number of individuals, we cannot define any matrix P. 

Even if we can define all Pi,j, it is still much less straightforward to look at different 

behaviors between each individual. For the time being we will take all assumptions on 

individuals to be the same. Therefore, even if we cannot consider the matrix P, we can 

define Pi as the probability that any individual has property i. 

Even if the number of individuals is infinite, the data collected will always be on a finite 

number of individuals. If we can find a probability that the data collected is related to any 

given number of individuals, then we can adapt our previous distribution to this infinite 

case. 

Indeed, let us consider that X is a random variable in Mp,N where N itself is a random 

variable. Then, under the assumptions for generalized binomial distribution, we have: 

 

P X1 ⋅ X2 = m( ) =
P

k=0

∞

∑ N = k( )
k

m









 P1P2( )m

1− P1P2( )k−m

P X1 ⋅ X2 = m( ) =
P1P2( )m

P
k=m

∞

∑ N = k( ) k

m









 1− P1P2( )k−m

P X1 ⋅ X2 = m( ) =
P1P2( )m

P
k=0

∞

∑ N = k+ m( ) k+ m

m









 1− P1P2( )k
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Simple Poisson distribution 

For many research studies in social sciences, it makes sense to model the probability that 

the collected data is related to a given number of individuals using a Poisson law. Indeed, 

the data is often collected over time and the fact that an individual participates in the study 

usually does not depend on the time since the last individual participated in the study. For 

example, the number of people agreeing to respond to a questionnaire on the street during 

a given time can easily be modeled through a Poisson distribution. And this is not only 

limited to social sciences. 

In such a case, if n is the (empirical) number of collected data, we have: 

 

 

P N = k( ) =
nk

k!
e−n  

By substituting this in the previous formula, we see that: 
 

P X1 ⋅ X2 = m( ) =
P1P2( )m

e−n

k=0

∞

∑ nk+m

k+ m!

k+ m( )!
m!k!

1− P1P2( )k

P X1 ⋅ X2 = m( ) = nP1P2( )m

m!
e−ne

n 1−P1P2( )

P X1 ⋅ X2 = m( ) = nP1P2( )m

m!
e

−nP1P2

 

Therefore, X1 ·X2 follows a Poisson law of parameter nP1P2. Furthermore, if we take Pi to 

be equal to 
ni

n
for all i as in regular SIA theory, then this parameter is equal to 

n1n2

n
. This 

is the distribution that is used in most SIA. 
 

This is of course no surprise. As previously, and even more so for this case, the 

construction of the formula is basically the same as in the original version (see Model 3 

Lerman et al. (1981)). However, it is important to make apparent and adaptable the 

introduction of any new hypotheses in the model. 

On a more practical note, it is good for users of SIA to know why they can (or cannot) 

use SIA for their studies. In most SIA literature, the reader is invited to read Lerman et 

al. (1981) or more recently Saporta (2006) for proof that the Poisson distribution 

discussed here is adapted to a certain drawing process. The hypotheses for the model are 
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not made easily apparent. It seems to us that the methodology presented in this article 

allows a better understanding of these hypotheses. These are the following: 

 

1. The probability for each individual to have a given property is equal to the ratio 
of individuals having this property on the total number of individuals observed 

(i.e.Pi, j =
ni

n
). 

 

2. The fact that a given individual has a given property should not influence other 
such facts (i.e. independence of variables Xi,j). 
 

3. The number of individuals on which data was collected can be modeled by a 
Poisson law (i.e. N follows a Poisson law). 
 

In the most recent literature Gras et al. (2013), a list of three hypotheses h1, h2 and h3 are 

given for a potential SIA user. These hypotheses are based on the event [A and non B] 

and the characterization of a Poisson law in 2.4 Saporta (2006). We believe this is 

misleading as it is easy to forget that this implies that N is a random variable. In the next 

section of this article we show how this affects SIAs. Furthermore, the characterization 

for a Poisson law in Saporta (2006) is time based and though it is perfectly valid, we 

prefer to leave the possibility for a user to consider a Poisson law with space based 

hypotheses for example. 

Multiple behaviors 

We now come back to the general case where the population can be grouped into different 

behavior classes. As our population is infinite, we no longer consider a couple %P,t( ) 
where the coordinates of the vector t are integers, but a couple %P,r( ) , where the k-th 

coordinate of r is the fraction of the population that belongs to the k-th behavior class. 

 

This couple defines the distribution on variables X1 ·X2 as such: 
 

P X1 ⋅ X2 = m( ) =  

P
k=0

∞

∑ N = k( ) k

t










t1+...+tq=k

∑ ri
ti

i=1

q

∏
t j

sj











j=1

q

∏
s1+...+sq=m
0≤sj ≤t j

∑ %P1,j
%P2,j( )sj 1− %P1,j

%P2,j( )t j −sj
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Where
k

t








is the classical multinomial coefficient equal to 

k!
t1!...tq!

. 

 

This formula corresponds to a very straightforward approach towards this problem as it 

has been defined. It is possible however to look at this differently and give a formula 

which is easier to work with, particularly so in the Poisson case. Indeed, let y1,2,k be the 

random variable corresponding to the number of individuals in a given behavior class k 

having properties 1 and 2. Then we have: 

 

P y1,2,k = m( ) = P
i=0

∞

∑ N = i( ) i

m









 rk

%P1,k
%P2,k( )m

1− rk
%P1,k

%P2,k( )i−m
 

Furthermore, as the different behavior classes are disjoint, we can write that: 
 

P X1 ⋅ X2 = m( ) = P
k=1

q

∏
t1+...+tq=m

∑ y1,2,k = tk( )  

Generalized Poisson distribution 

We now consider that N follows a Poisson law of parameter n as previously. Using the 

reasoning we have used for the simple Poisson distribution, we see that y1,2,k follows a 

Poisson law of parameter λ1,2,k = nrk
%P1,k

%P2,k . Therefore: 

 

P X1 ⋅ X2 = m( ) =
λ1,2,k

tk

tk!
e

−λ1,2,k

k=1

q

∏
t1+...+tq=m

∑ =

λ1,2,k
k=1

q

∑










m

m!
e

− λ1,2,k

k=1

q

∑
 

This last equality is given quite simply by the multinomial formula. 
 

Thus, we see that in the case where there is a finite number of different behaviors, it is 

very simple to take these different behaviors into account while trying to determine the 

probability distribution on X1·X2 This probability distribution is in fact a Poisson 

distribution with parameter λ1,2 = λ1,2,k
k=1

q

∑ , where λ1,2,k = nrk
%P1,k

%P2,k  for all k. 
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Note that these simplifications are not surprising for an experienced probabilist as 

relations between multinomials and Poisson distributions are well known. 

Overview of the approach 

Generalized framework 

This new approach defines a framework for performing an SIA on data while considering 

a model for the behavior of individuals. The model for the behavior of individuals is not 

provided by the framework and this is precisely the point of defining such a framework: 

the researcher can now consider which ever model for the behavior of individuals is best 

suited to his/her research. 

It has been shown here that we can consider the model for the behavior of individuals 

used in classical SIA. In this case, the SIA obtained following the process defined by the 

multiple behavior framework would be the same as a classical SIA as shown in sections 

1.1.4 and 1.2.1 of this paper. Hence, the new framework encloses classical SIA while 

allowing further possibilities. 

As this paper focuses on the framework for considering different models for the behavior 

of individuals rather than these models, it does not present any alternative model to the 

one used in classical SIA. However, the development of this framework was motivated 

by the will to take into account a specific model for the behavior of individuals as 

explained in section 1.3.3 below. 

Linearization 

One of the other significant aspects of this new approach is the linearization of the 

problem: the variables considered are matrices rather than sets. This serves the 

mathematical clarity of the theory, which is crucial for defining a more complex 

framework than the classical one. 

It also makes the transition from theory to computer programming much more 

straightforward. This aspect must not be underestimated in regard to a dissemination of 

SIA theory to a wider audience. 

There does not seem to be any obstacles to an analogous linearization of the other current 

SIA approaches involving non-binary variables. Such a process would most certainly 

enable a grouping of all these different approaches into a single, more general framework 

and is called for by the author of this article. 



 

784 Educ. Matem. Pesq., São Paulo, v.16, n.3, pp.773-794, 2014   

Applications 

As stated previously, the framework presented here was developed to incorporate in an 

SIA a specific model for the behavior of individuals. This model, constructed in Delacroix 

and Boubekki (2012), describes how students of different level manage questions of 

different difficulty. The computation of an SIA using this model via the multiple behavior 

SIA framework is presented in Delacroix and Boubekki (2013). 

The use of this particular model in its given context helps, and the use of alternative 

models for the behavior of individuals to the classical SIA model in other contexts can 

help, reduce the number of irrelevant or parasitical quasi-implications in a SIA. This can 

be a great improvement to certain SIAs. Indeed, as it is recalled in section 2.2 of this 

present paper, SIA theory has to deal with the issue of excessive quasi-implications when 

considering large numbers of individuals. By enabling the researcher to reduce the 

number of irrelevant quasi-implications at an early stage, the multiple behavior SIA 

framework is part of the solution to this issue. 

On the notion of implicative intensity 

Comparing contingency tables 

Implicative intensity 

In the previous section, we have shown how a probability distribution for the values of 

what is usually denoted X∩Y  in the literature is defined. The next step in regular SIA 

is to look at the probability that X∩Y  is greater or equal to the empirical value A∩ B  

(this is usually denoted ϕ a,b( )and called the implicative intensity). As we are looking at 

pseudo-implications a⇒ b, the number of counter-examples to this rule is given by 

A∩ B . Which is usually the justification for defining the implicative intensity as such: 

 

ϕ a,b( ) = P X∩Y > A∩ B( ) 
Or with the conventions used in this article: 
 

ϕ a1,a2( ) = P X1 ⋅ X2 > n1∧2( )  
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Relative implicative intensity 

The implicative intensity does not, however, take into account the fact that N can be a 

random variable. Indeed, as explained in the previous section (see 1.2), the number of 

individuals observed can be considered to follow a certain probability law. This is the 

case in most SIAs today, which correspond to the simple Poisson distribution case 

presented previously. 

Let us consider the following examples for contingency tables: 

 

 a ¬a   a ¬a 

b  1 1  b  10 10 

¬b 1 1  ¬b 2 10 
 

Even though the number of counter-examples to thea⇒ b is greater for the second table, 

the ratio of counter-examples per reported data is 4 times higher in the first table than in 

the second. 

If we analyse the data using a binomial distribution or a hypergeometric distribution (or 

even the generalised forms described previously), then this problem will not arise. In such 

a case, the number of individuals on which data was collected is not to be considered a 

random variable and the sum of all elements in each possible table will always be the 

same. 

But, if we analyse the data using a Poisson distribution (or any distribution for which N 

is a random variable), this problem will arise. Actually, in the Poisson case, for any natural 

number k, the probability that the sum of the elements of a table is equal to k is non-zero. 

Therefore, it is important to take this into account. We suggest to define a new relative 

implicative intensity ψ  by using the random variable N defined in 1.2 as such: 

 

ψ a1,a2( ) = P
X1 ⋅ X2

N
>

n1∧2

n









 

This can be also written as: 
 

ψ a1,a2( ) = P
k=0

∞

∑ X1 ⋅ X2 > k
n1∧2

n
N = k









P N = k( )  
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Poisson case 

If we look at how we have obtained a Poisson distribution on the value of X1 ⋅ X2 in 1.2.1, 

we can determine an expression for ϕ a1,a2( )which can be used for the regular SIA 

Poisson case. 

 

ψ a1,a2( ) =
k

i










i>k
n1∧2

n

k
∑

n1n2

n2











i

1− n1n2

n2











k−i














k=0

∞

∑ nk

k!
e−n  

This value is to be compared to the implicative intensity used in SIA today: 
 

ϕ a1,a2( ) =
1

j!
n1n2

n











j

e
−n1n2

n

j>n1∧2

∞
∑  

These two formulas do not yield the same result. On the one hand, the formula forϕ is 

much easier to compute. But on the other hand, we believe it does not give the most 

adequate information for an SIA under the Poisson hypotheses. If n is not too large, less 

than 100 000 for example, then modern computers can easily compute ψ . And if n is 

larger, then it is of little consequence to use one rather than the other, as we will explain 

in the following paragraph. Therefore, we recommend the use of the relative implicative 

intensity ψ  for smaller samples and a different approach altogether for larger samples. 

We wish to reassure SIA users who have been using ϕ , that both the implicative intensity 

and the relative implicative intensity “behave” in a very similar fashion for the Poisson 

case. 

Limitations of the (relative) implicative intensity 

It is a known issue in the SIA community, that if n is too large (this problem is frequently 

observed with populations of thousands already), the implicative intensity tends to take 

values either 0 or 1. And using a relative implicative intensity does not help solve this 

problem in any way. This is the main motivation for introducing the entropic approach in 

SIA, for example. 

We will not deal too much with such solutions to this problem here, although we will 

share a few remarks. Mainly, we will try to make apparent the mathematical reasons that 
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are behind this issue. 

In most SIAs, the probabilities named Pi in this article, that any individual has property i, 

are determined by the ratio of the number of observed individuals that have property i on 

the number of individuals observed, which is 
ni

n
. When we do this, we usually implicitly 

consider this ratio to be a good approximation for the real value of this probability. If we 

consider a larger set of individuals, we do not expect this value to vary much, or this 

would mean that our approximation was not a good one. Therefore, when considering 

two properties 1 and 2, we expect β1,2 =
n1n2

n2
 to be an invariant for our model. 

Furthermore, if we observe a system and we wish to generalize results from it to other 

systems, to larger systems, through an SIA, then it is necessary that the ratio of the number 

of individuals having property 1 and not 2 on the number of individuals is an invariant 

for such systems, as an SIA uses this value as a benchmark. This gives a second invariant 

α1,2 =
n1∧2

n
. 

 

We can therefore define, under whichever hypotheses we choose to work with, a sequence 

of implicative intensities ϕn a1,a2( )  entirely defined by these invariants. We show that, 

under the hypotheses used for SIAs: 

 

n→∞
lim ϕn a1,a2( ) = 1 if α1,2 < β1,2                                      (1) 

and    
n→∞
lim ϕn a1,a2( ) = 1 if α1,2 > β1,2                                      (2) 

In a certain sense, we show that the cumulative distribution function for an adequately 

defined sequence of probability distributions tends towards the cumulative distribution 

function of a Dirac measure of parameterβ1,2 . 
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Binomial case 

Let 0< α < β < 1. We first show that : 
 

n

k










k=0

αn

∑ β k 1− β( )n−k

n→∞
→ 0                                          (3) 

Indeed, we see that : 
 

n

k










k=0

αn

∑ β k 1− β( )n−k
= 1− β( )n

uk
n( )

k=0

αn

∑ where uk
n( ) =

n

k










β
1− β










k

 

 

A quick study of the sequenceu n( )( )
k∈N

shows that : 

 

uk+1
n( ) − uk

n( ) ≥ 0 ⇔ k ≤ β n+1( ) −1 

Therefore, asα < β , for any large enough n : 
 

n

k










k=0

αn

∑ β k 1− β( )n−k ≤ 1− β( )n αn+1( ) n

αn











β
1− β










αn

 

Using Stirling's formula, we find that : 
 

n

αn









 ∼ 1

αα 1−α( )1−α( )n

2πα 1−α( )n
 

Therefore : 
 

 1− β( )n αn+1( ) n

αn











β
1− β










αn

∼ β
α










α
1− β
1−α










1−α









n

αn
2π 1−α( )

 

 

It suffices to show that : 
 

fβ α( )n αn
2π 1−α( ) n→∞

→ 0 where fβ α( ) =
β
α










α
1− β
1−α










1−α

                (4) 
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We study the functionfβ defined on ]0,1[ using log fβ( ) . We find that fβ  is strictly 

concave, going from 
α→0+
lim fβ α( ) = β to 

α→1−
lim fβ α( ) = 1− β  with maximum reached only at

fβ β( ) = 1. Therefore, asα < β : 

 

0< fβ α( ) < 1 

From this comes the limit in (4) and the limit in (3) follows. This is the same as the limit 

given by (1), only taken in the binomial case. 

Now, if 0< β < α < 1, an entirely symmetrical proof gives : 

 

n

k










k=αn

n

∑ β k 1− β( )n−k

n→∞
→ 0                                          (5) 

This last result (5) is the same as (2) taken in the binomial case.  

Poisson case 

Let 0< α < β < 1. The proof here is completely analogous to the binomial case. We will 
show now that : 
 

βn( )k

k!k=0

αn

∑ e−βn

n→∞
→ 0                                           (6) 

 

We see that : 
 

βn( )k

k!k=0

αn

∑ e−βn = e−βn vk
n( )

k=0

αn

∑ where vk
n( ) =

βn( )k

k!
 

And a quick study of the sequence v n( )( )
k∈N

 shows that : 

 

vk+1
n( ) − vk

n( ) ≥ 0 ⇔ k ≤ βn−1 

Therefore, as α < β , for any large enough n : 
 

βn( )k

k!k=0

αn

∑ e−βn ≤ αn+1( ) βn( )αn

αn( ) !
e−βn  
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Using Stirling's formula, we find that : 
 

αn+1( ) βn( )αn

αn( )!
e−βn ∼ β

α










α

eα−β










n

αn
2π

 

It now suffices to show that : 
 

 

gβ α( )n αn
2π n→∞

→ 0 where gβ α( ) =
β
α










α

eα−β                         (7) 

The study of the functiongβ defined on ]0,1[ using log gβ( ) gives that gβ  is strictly 

concave, going from 
α→0+
lim gβ α( ) = e−β  to 

α→1−
lim gβ α( ) = βe1−β < 1with maximum reached 

only atgβ β( ) = 1. Therefore, asα < β : 

 

0< gβ α( ) < 1 

Which gives us (7), from which follows (4), which is the same as (1) in the Poisson case. 
 

Now if 0< β < α < 1, then we can show that: 
 

βn( )k

k!k=αn

∞

∑ e−βn

n→∞
→ 0                                               (8) 

Indeed, if we separate this sum in two : 
 

βn( )k

k!k=αn

∞

∑ e−βn =
βn( )k

k!k=αn

n2−1

∑ e−βn +
βn( )k

k!
k=n2

∞
∑ e−βn  

Then, as by Taylor-Lagrange : 
 

βn( )k

k!
k=n2

∞
∑ ≤

βn( )n2

n2( ) ! eβn  

And : 
 

βn( )k

k!k=αn

n2−1
∑ ≤ n3 βn( )αn

αn( ) !
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We have : 
 

βn( )k

k!k=αn

∞

∑ e−βn ≤ n3 βn( )αn

αn( ) !
e−βn +

βn( )n2

n2( ) !
 

 
 

By Stirling's formula, we find that : 
 

n3 βn( )αn

αn( ) !
e−βn ∼ n3

2πn
β
α

eα−β









n

 

And : 
 

βn( )n2

n2( ) !
∼ 1

n 2π

β
n

e










n2

 

The first part of the sum goes to 0 by our previous result on gβ α( )  and the second part 

clearly goes to 0. Therefore, we have shown (8) which is the same as (2) in the Poisson 

case. 

Gaussian case 

Even though we have not discussed this case in this paper, a normal distribution can also 

be used in SIA (see, for example, Gras et al. (2013)). In this case, the result comes 

spontaneously. Indeed, (1) and (2) are in this case the same as : 

 

1

2π
e

− t2

2

hn α ,β( )

∞
∫ dt

n→∞
→ 1 if α < β  and 

1

2π
e

− t2

2

hn α ,β( )

∞
∫ dt

n→∞
→ 0 if α > β  

Where hn α,β( ) =
αn− βn

βn
. 

 

And the result is straightforward. 
 

Relative implicative intensity in the Poisson case 
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There is no need to look at the relative implicative intensity in the binomial case as in this 

case it is equal to the implicative intensity. We limit ourselves to the most used case in 

SIAs, i.e. the Poisson case. 

Let0< α < β < 1. We want to show that : 

 

k

i










i=0

αk

∑ β i 1− β( )k−i









k=0

∞

∑
nk

k!
e−n

n→∞
→ 0 

This is actually quite straightforward from what we have done in 2.2.1. Indeed, let 

fβ α( ) < γ < 1, for k large enough (say k > K) we have : 

 

k

i










i=0

αk

∑ β i 1− β( )k−i ≤ γ k  

Therefore : 
 

k

i










i=0

αk

∑ β i 1− β( )k−i









k=0

∞

∑ nk

k!
e−n ≤

k

i










i=0

αk

∑ β i 1− β( )k−i









k=0

K

∑ nk

k!
e−n +

γn( )k

k!
e−n

k=K+1

∞

∑  

k

i










i=0

αk

∑ β i 1− β( )k−i









k=0

∞

∑
nk

k!
e−n ≤ Me−n + e γ−1( )n

n→∞
→ 0 

 
 

If 0< β < α < 1, an entirely symmetrical proof gives : 
 

k

i










i=αk

k

∑ β i 1− β( )k−i








nk

k!
e−n

k=0

∞

∑ n→∞
→ 0  

Therefore, we have shown that the relative implicative intensity will be of no more help 

than the implicative intensity for most practical applications when the number of 

individuals is too large. 

Remarks 

We have shown that the issues raised by large numbers of individuals in SIAs are inherent 

to the method itself, if it is applied to the type of study it was precisely designed for. 

Furthermore, the calculations show that the convergence of the implicative intensity 
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towards 0 or 1 is at least geometrical. Such a convergence is quite fast so it will occur 

whenever slightly bigger populations are considered. Thus, it is an issue that SIA theory 

must deal with. The current solution to this issue is the entropic approach. It is an 

interesting approach and we believe it should be developed. However, some matters of 

clarification are necessary. It is argued that the quasi-implicative model is more concerned 

about the rule a⇒ b than the rule ¬b⇒¬a. This is false. In non-entropic SIAs, there is 

no difference between these two rules. Determining the implicative intensity of the rule 

¬b⇒¬a gives exactly the same result as determining the rule a⇒ b. And this is how 

it should be in any SIA. Therefore, the correction of this “issue” in the entropic approach 

seems a bit artificial. Indeed, a difference between these two rules is artificially created, 

so that these two “different” rules may be balanced in the new model. An entropic 

approach, without this construction, seems however entirely conceivable. One alternative 

approach is to consider that if n is large enough that the implicative intensity appears to 

be either 0 or 1 for all observed properties, then this simply shows that we have enough 

data to consider alternative implicative indices. And that we can use these indices to 

construct a hierarchical tree, rather than the implicative intensity. Even though 

implicative indices have been considered before, it seems that this approach has not been 

considered much and we believe it should not be overviewed. Another approach, which 

is currently investigated by the researcher, is to consider quasi-implications between 

crossed properties (e.g. a∧b∧c⇒ d∧e). The implicative intensities for such rules are 

mechanically less than those for simple properties. If the computational complexity of a 

systematic review of all rules on crossed properties is exponential therefore ruling it out, 

algorithmically selecting a reduced number of relevant such rules is entirely conceivable. 
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