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Abstract

The aim of this paper is to recall the foundatioh$SIA theory and modify these slightly
in order to clarify and reinforce them, as well mske them more adaptable to various
scientific models. Some issues regarding one dotimeding blocks of SIA, the implicative
intensity, are discussed and detailed. This papezomposed of two mostly separable
sections. The first half of this paper focuses agereralization of SIA so that known
differences between individuals, which we shakréd as multiple behaviors, can be
taken into account in an analysis. The second foalises on two issues related to the
implicative intensity, the second of which being wmell-known issue raised by large
numbers of individuals in SIA data sets.

Keywords :Statistical implicative analysis, Foundations, lifle behaviors, Probability
matrix, Distributions, Implicative intensity, Rela implicative intensity.

Résumé

On souhaite ici rappeler les fondements de 'A% ®todifier IEgérement de maniére a
clarifier certains points et a les renforcer, aingu'a les rendre plus adaptables a
différentes modélisations scientifiques. Des qaastisoulevées concernant I'un des
piliers de I'ASI, l'intensité d'implication, sonsdutées et détaillées. L'article est articulé
autour de deux parties relativement dissociables. premiére partie concerne une
généralisation de I'ASI permettant de prendre eangi@ dans les analyses des différences
connues entre individus qui seront désignées p&erlme de comportements multiples.
La seconde partie concerne deux questions soulegkdives a l'intensité d'implication,
en particulier la question bien connue en ASI défgdltés d'analyse pour des données
portant sur un grand nombre d'individus.

Mots-clés : Analyse statistique implicative, Fondements, Cateptents multiples,
matrice de probabilités, Distributions, intensiténtplication, Intensité d'implication
relative.

We will consider in this paper only classical Sheory, i.e. SIA on binary variables and
a discrete set of individuals.
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The basic idea of SIA theory works as follows. Suggpwe have a classical SIA data set.
We haven individuals and a list gb different properties that are either true or fdtse
each of these individuals. In SIA we first considach set of two propertiesandb. For
these properties we can look at the following cuyegncy table of the number of

individuals having propertiesorb :

a -a
b |AﬂB| ‘ZﬂB‘

-b lang  [AnB

We then try to establish a probability distribution the bottom left-hand box of such

tables to which we will compar‘Aﬂl_a‘ by considering random variablés and Y

corresponding t&\ andB. Firstly, we believe that this methodology miglet & bit too
hasty in the construction of the probability distriion that is used. This can be confusing
regarding the hypotheses that justify the distrdutHypotheses are often made on the
behavior of individuals and the transition to grewqf individuals is not necessarily that
straightforward for an end user. By making theat#ht steps in this construction more
explicit, we render these hypotheses more apparehtnore adaptable if they are to be
modified. For this we will define a distribution ah anterior phase, from which we can
infer a distribution on the contingency tables. @elly, we look at the implicative
intensity used to compare the empirical data wighdonstructed probability distribution.
We define a new relative implicative intensity tiag believe is more adequate than the
regular implicative intensity. Then we outline tieasons for the limitations to the use of
the implicative intensity in SIAs.We also chosetodify the notational conventions from
regular SIA to render this renewed approach edsieexpress mathematically and

possibly more adapted to straightforward prograngnoeinthe formulas.

A distribution based on behaviors

We will no longer start with a probability distritton on the intersection of two sets, but
infer this probability distribution from a probaibyl distribution on the entire data set. By
doing this, we make apparent the hypotheses andhgi®ns made about the data. It will

make it easier to change them, so they are momgedi#o a given situation. If we study
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a group of individuals, it is often possible to rebthe behavior of these individuals. Such
a model can easily be incorporated in an SIA uigmore general approach. We will
consider a certain number of individuals, finiteiofinite, and a finite numbep of

properties. Each property is either true (1) osda0) for a given individuél

Finite number of individuals

We first start looking at a probability distributi@n the entire population of individuals,
assuming this population is of finite cardinality
Let Mpnbe the set op x n matrices, with all coordinates O or 1, ebde a probability

distribution onMp . The random variables we will be considering asgrive: XL M |

. We defineX; the resulting random variable taken asittterow ofX andX;; the resulting
random variable taken as tjxth coordinate oK.
Our main objective is to determine a probabilitgtdbution on contingency tables for
any two properties (say 1 and 2) as is the casegular SIA theory. This comes round
to determining the value of

P(X1 (X, = m)
Note that we use different conventions from reg@d theory for simplicity. The
intersection is now seen as a dot product betweewéctors. Also, it is of no importance
yet that we look at the intersection of individutidat have property 1 and not property 2
rather than individuals that both share proper@ynd property 2. We can infer the results

on the prior from the latter, and doing otherwismid render reading more complicated.

Probability matrix

From any distributio, we can define p x n probability matrixP as such:

Oi,j,R, = P(X,=1)

This matrix gives us the probability that a giveoperty is true for a given individual,

for all properties and individuals. In many cagks can be determined by a model. We

2t is not because we have used the term indivitlaed that these must be people in an applied contex
this can be anything from people to objects toainces.
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would therefore like to defin® from P. Generally,P does not define the probability
distribution. One probability matrix correspondsitgreat number of different probability

distributions. However, this is no longer true & wake adequate assumptions.

Generalized binomial distribution

The simplest assumption we can make is that ointiependence of variables between
all theX;;. In this case, we easily see tRatlefines a probability distributioD. Indeed,

let A be a matrix i, we have:

P(X=A)= |_| (Pi,jAu + (1_ Pi,i)(l_Au))

ij
In this case, considering only properties 1 andehave, for alin:

P(X, DX, =m)= D, [1R.P.[](2-P,iRy)

10[on] il jjal
[lEm

The name generalized binomial distribution is appam 1.1.4.

Generalized hypergeometric distribution

Another assumption we can make, is that of a cmmdit independence of variables
between theX; relative to knowing alX; - Xi. This is a reasonable assumption in certain
cases. For example, suppose we are looking stidents taking a list g¥ different
competitive exams. As these are competitive exam®pposed to regular exams), the

number of candidates; that will pass a given examis predefined. This means

P(Xi (X, = ni) =lor alli. If this is the only information we know about sieeexams, then

conditional independence is a reasonable assumption

In this case, considering only properties 1 and&have, for alin:
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P(X, DX, = m)=

Z |_| Pl,i P2,i |_| Pu (1_ Pz]) |_| (1_ Pl,k)PZ,k |_| (1_ P1,|)(1_ le)

ITTITIKIIL=[O,n] il jod kOK 0L
I|=m

[+

[9[#HK[=n,

The name generalized hypergeometric distributi@pgarent in the following paragraph.

Regular SIA assumptions orP

Regular SIA theory does not look at each individuparticularities. All individuals are

seen as the same. This means that, faor tilere exists a probabilifg, such that for all

i, Pij=Pi. The value foP; which is taken it .
n

Using this matrix? under the assumptions for the generalized binodigatibution.

We get:

n m n-m
P(x %= m)=| "] ()" e )
This gives us the same binomial distribution asaihe used in regular SIA theory.

Now, using the same matixunder the assumptions for the generalized hypergac

distribution. We get:
[l ! 'j[' L~ J
2

P(X, X, = m) =~

n2
This gives us the same hypergeometric distribud®the one used in (older) regular SIA
theory.
We have no pretence here to say that these fornhdes been found with better
arguments than originally (see Models 1 and 2 ftemman et al. (1981)). The reasoning
here is actually very much the same as the one fioadkis 1981 paper. However, we
believe it is important to keep this constructigparent, so as to allow more complex

models.
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Limitations

From a theoretical point of view, it is very easyirite down formulas fc P(X; X, = m)

. From a practical point of view, it can be verydand even impossible to calculate them
in a reasonable time. This is due to the extra dexity brought by considering different

assumptions on individuals. If all assumptions aaheindividual are different, then the

number of calculations that need to be done toutate P(X1 [X, = m) for the

n
j. For a full SIA, the order can

generalized binomial distribution will be of theﬁer[
m

be up ton times the sum for alh less tham of all these orders, which i2". This can
easily become huge for greater values.of
It is however possible to group individuals withnomon behavior together to make

calculations less time consuming.

Grouping individuals by common behavior

We say that two individuals j' have same behavior if for aJIP;j=Pi;j . We can group
all individuals who have same behavior igtolasses. We definte(ty, ..., t) the vector

such thattx represents the number of individuals in each cldés havil<t, <nand

t1+...+tq=n. Furthermore, we define@mx q matrix P such that thé-th column fo P is

equal to any-th column ofP, where the individuglis in the behavior clasgs Under the

assumptions of the generalized binomial or hypeargedc distribution, the coup(l5,t)

defines the probability distribution on random aaiesX:- X.

We will only study the formula for the general binial distributior. This is:

LTI [ GRS

S_L+' . ,+sq =m k=1
O<s, <ty

Now the number of calculations for a full SIA isafler:

3The formula for the general hypergeometric distitiucan be written this way too, but is is quite
complex and of little use. Indeed, as is true lier hlypergeometric distribution, the general
hypergeometric distribution gives way to symmetrigbAs which in some sense waters down the whole
idea behind SIA.
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a[(t+1

i=1

This is maximal when all classes have same siz&escan give an upper bound for this

n )
q(_+1j
q

This shows that there are still limitations evenewlgrouping individuals in a limited

order, which is:

number of behavior classes. With modern home coenpyuit it may be possible (meaning
doable in a reasonable time) to go up to 10 classeme hundred individuals for a full
SIA, the number of classes would be limited to i5diee thousand individuals and would

fall down to 2 for one million individuals.

Infinite number of individuals

If we suppose we have an infinite number of indingl$, we cannot define any matRx
Even if we can define aij, it is still much less straightforward to look different
behaviors between each individual. For the timadpave will take all assumptions on
individuals to be the same. Therefore, even if wenot consider the matriX, we can
defineP; as the probability that any individual has propeért

Even if the number of individuals is infinite, tdata collected will always be on a finite
number of individuals. If we can find a probabilihat the data collected is related to any
given number of individuals, then we can adaptmrerious distribution to this infinite
case.

Indeed, let us consider th&tis a random variable iMp N whereN itself is a random
variable. Then, under the assumptions for gen@almnomial distribution, we have:

o)
29
3
=
|
o)
)
=
3

P(X X, =m)= iP(N _ k)LkJ(

k=0

P (oS e[ fa-mr)
PO ey Sp(n e o-pe)
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Simple Poisson distribution

For many research studies in social sciences,kemsense to model the probability that
the collected data is related to a given numbé@rdividuals using a Poisson law. Indeed,
the data is often collected over time and thetfzattan individual participates in the study
usually does not depend on the time since thendstidual participated in the study. For
example, the number of people agreeing to respmadjtiestionnaire on the street during
a given time can easily be modeled through a Peidsiribution. And this is not only
limited to social sciences.

In such a case, if is the (empirical) number of collected data, weeha

_n

ki
By substituting this in the previous formula, we s$leat:

P(N=Kk) e’

P(xlD(zzm): (Pp)mm o nk+m (k+m)|
BT keml mik
P(Xi X, = m) = (nPlPZ)m e_nen(l—Ple)
m!
(5 %=m)= (8R)
m!

(1-RP.)

Therefore X1 - X follows a Poisson law of parametd?:P>. Furthermore, if we taki; to

be equal t(ﬂfor alli as in regular SIA theory, then this parameteqi:saéto%. This
n n

is the distribution that is used in most SIA.

This is of course no surprise. As previously, anveénemore so for this case, the
construction of the formula is basically the sarsenathe original version (see Model 3
Lerman et al. (1981)). However, it is importantntake apparent and adaptable the
introduction of any new hypotheses in the model.

On a more practical note, it is good for users Iéf ® know why they can (or cannot)
use SIA for their studies. In most SIA literatutiee reader is invited to read Lerman et
al. (1981) or more recently Saporta (2006) for prtwt the Poisson distribution

discussed here is adapted to a certain drawingpsod he hypotheses for the model are
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not made easily apparent. It seems to us that #tbadology presented in this article
allows a better understanding of these hypoth&3esse are the following:

1. The probability for each individual to have a giyanoperty is equal to the ratio
of individuals having this property on the totalnmoer of individuals observed

ep =0
’ n

2. The fact that a given individual has a given propshould not influence other
such facts (i.e. independence of variaiXgs

3. The number of individuals on which data was coidctan be modeled by a
Poisson law (i.elN follows a Poisson law).

In the most recent literature Gras et al. (2018ytaf three hypotheses hl, h2 and h3 are
given for a potential SIA user. These hypothesesbased on the everk pnd nonB]

and the characterization of a Poisson law in 2.4o8a (2006). We believe this is
misleading as it is easy to forget that this imglieatN is a random variable. In the next
section of this article we show how this affect&$SIFurthermore, the characterization
for a Poisson law in Saporta (2006) is time bagedltaough it is perfectly valid, we
prefer to leave the possibility for a user to cdesia Poisson law with space based

hypotheses for example.

Multiple behaviors
We now come back to the general case where thdatapucan be grouped into different

behavior classes. As our population is infinite, meelonger consider a coup(|5,t)

where the coordinates of the vectaare integers, but a coup(ls,r), where thek-th

coordinate of is the fraction of the population that belongshek-th behavior class.

This couple defines the distribution on variabfesX. as such:
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k). . . . -
Wher{t}s the classical multinomial coefficient equa\t Wik
Lty

This formula corresponds to a very straightforwapgroach towards this problem as it
has been defined. It is possible however to loothit differently and give a formula
which is easier to work with, particularly so iretRoisson case. Indeed, yeb « be the
random variable corresponding to the number ofviddials in a given behavior claks

having properties 1 and 2. Then we have:

00

P(ha=m) = 2P(N= i)[;](rkeke,k)m(1_rkakﬁ>2,k)“m

i=0

Furthermore, as the different behavior classesligjeint, we can write that:

P(Xl D<2 = m) = z ﬁ P(yl,z,k = tk)

t1+,,,+tq:m k=1

Generalized Poisson distribution

We now consider thall follows a Poisson law of parameteas previously. Using the

reasoning we have used for the simple Poissonlistsn, we see that -k follows a

Poisson law of paramet A, ,, = nr, P, P, . Therefore:

q m q
P Z/‘l,z,k _z/‘l,z,k
12k 4 M2k —

e k=1

q
P(X, X, = m)=
(X0 = m) l_!tk! m!

This last equality is given quite simply by the tmdmial formula.

Thus, we see that in the case where there is te fmimber of different behaviors, it is
very simple to take these different behaviors axtoount while trying to determine the

probability distribution onXi-X This probability distribution is in fact a Poisson

q ~ ~
distribution with paramete A, ,= >4, ,, , where Ao =i PPy, forallk
k=1
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Note that these simplifications are not surprisfog an experienced probabilist as

relations between multinomials and Poisson distidims are well known.

Overview of the approach
Generalized framework

This new approach defines a framework for perfogian SIA on data while considering
a model for the behavior of individuals. The mofdelthe behavior of individuals is not
provided by the framework and this is preciselypbet of defining such a framework:
the researcher can now consider which ever modéhé&behavior of individuals is best
suited to his/her research.

It has been shown here that we can consider theelnfiodthe behavior of individuals
used in classical SIA. In this case, the SIA ol#difollowing the process defined by the
multiple behavior framework would be the same akssical SIA as shown in sections
1.1.4 and 1.2.1 of this paper. Hence, the new fveone encloses classical SIA while
allowing further possibilities.

As this paper focuses on the framework for considetifferent models for the behavior
of individuals rather than these models, it doespmesent any alternative model to the
one used in classical SIA. However, the developroétitis framework was motivated
by the will to take into account a specific modef the behavior of individuals as

explained in section 1.3.3 below.

Linearization
One of the other significant aspects of this newragch is the linearization of the
problem: the variables considered are matriceserathan sets. This serves the
mathematical clarity of the theory, which is crucfar defining a more complex
framework than the classical one.
It also makes the transition from theory to compupgogramming much more
straightforward. This aspect must not be underedéthin regard to a dissemination of
SIA theory to a wider audience.
There does not seem to be any obstacles to anganiltinearization of the other current
SIA approaches involving non-binary variables. Sacprocess would most certainly
enable a grouping of all these different approaaftesa single, more general framework
and is called for by the author of this article.
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Applications

As stated previously, the framework presented he® developed to incorporate in an
SIA a specific model for the behavior of individsial' his model, constructed in Delacroix
and Boubekki (2012), describes how students okwhfit level manage questions of
different difficulty. The computation of an SIA agj this model via the multiple behavior

SIA framework is presented in Delacroix and BoubgRR13).

The use of this particular model in its given cahteelps, and the use of alternative
models for the behavior of individuals to the cleasSIA model in other contexts can

help, reduce the number of irrelevant or paradijoasi-implications in a SIA. This can

be a great improvement to certain SIAs. Indeedt &srecalled in section 2.2 of this

present paper, SIA theory has to deal with thesisdexcessive quasi-implications when
considering large numbers of individuals. By enalplthe researcher to reduce the
number of irrelevant quasi-implications at an eatgge, the multiple behavior SIA

framework is part of the solution to this issue.

On the notion of implicative intensity

Comparing contingency tables
Implicative intensity

In the previous section, we have shown how a pritihadistribution for the values of

what is usually denote‘x N \7‘ in the literature is defined. The next step inutag SIA
is to look at the probability thi X n Y| is greater or equal to the empirical va|An B|

(this is usually denote ¢ (a,b)and called the implicative intensity). As we arekimg at

pseudo-implicationsa=> b, the number of counter-examples to this rule isegiby

‘An E‘. Which is usually the justification for defininge implicative intensity as such:

¢(ab)= P(‘X m?\> ‘An E_SD

Or with the conventions used in this article:

#(a3,)=P(X,X,>n)
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Relative implicative intensity

The implicative intensity does not, however, tak® iaccount the fact th&t can be a
random variable. Indeed, as explained in the previection (see 1.2), the number of
individuals observed can be considered to folloeedain probability law. This is the
case in most SlAs today, which correspond to tiepks Poisson distribution case
presented previously.

Let us consider the following examples for contimgyetables:

-a a —a
b 1 1 b 10 10
-b 1 1 -b 2 10

Even though the number of counter-examples ta=> bis greater for the second table,
the ratio of counter-examples per reported dadatisies higher in the first table than in
the second.

If we analyse the data using a binomial distribuitm a hypergeometric distribution (or
even the generalised forms described previousig) this problem will not arise. In such
a case, the number of individuals on which data egdiected is not to be considered a
random variable and the sum of all elements in gadsible table will always be the
same.

But, if we analyse the data using a Poisson digiob (or any distribution for whichl

is a random variable), this problem will arise. datty, in the Poisson case, for any natural
numberk, the probability that the sum of the elements taftde is equal t& is non-zero.
Therefore, it is important to take this into accodlWe suggest to define a new relative

implicative intensity ¢ by using the random variabNedefined in 1.2 as such:

- p| KX hj
CONE S

This can be also written as:

00

)= 3P x> k2| = (=K

k=0
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Poisson case
If we look at how we have obtained a Poisson distion on the value (X, [X;in 1.2.1,
we can determine an expression ¢(a1,a2)which can be used for the regular SIA

Poisson case.

w8 3 ) o

k=0{ 5\ iz
n

This value is to be compared to the implicativemsity used in SIA today:

baa)= 3 (nﬁj o

P J!
These two formulas do not yield the same resulttf@none hand, the formula @is
much easier to compute. But on the other hand, elieve it does not give the most
adequate information for an SIA under the Poissgotheses. Ih is not too large, less
than 100 000 for example, then modern computerseaaity compute{/. And if n is
larger, then it is of little consequence to use @tker than the other, as we will explain
in the following paragraph. Therefore, we recomm#irause of the relative implicative

intensity ¢ for smaller samples and a different approach attogy for larger samples.
We wish to reassure SIA users who have been 1@ jiljat both the implicative intensity

and the relative implicative intensity “behave”anvery similar fashion for the Poisson

case.

Limitations of the (relative) implicative intensity

It is a known issue in the SIA community, that i too large (this problem is frequently
observed with populations of thousands alread),irttplicative intensity tends to take
values either 0 or 1. And using a relative impiiatintensity does not help solve this
problem in any way. This is the main motivationifaroducing the entropic approach in
SIA, for example.

We will not deal too much with such solutions testproblem here, although we will

share a few remarks. Mainly, we will try to makeapent the mathematical reasons that
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are behind this issue.
In most SIAs, the probabilities namBdin this article, that any individual has propdrty

are determined by the ratio of the number of obsmdividuals that have propeiitgn

the number of individuals observed, whiclﬁ;. When we do this, we usually implicitly
n

consider this ratio to be a good approximatiortherreal value of this probability. If we
consider a larger set of individuals, we do notetghis value to vary much, or this
would mean that our approximation was not a gooel dimerefore, when considering

: n, . :
two properties 1 and 2, we expt—:ﬁlzznl—z2 to be an invariant for our model.
’ n

Furthermore, if we observe a system and we wisietteralize results from it to other
systems, to larger systems, through an SIA, them#cessary that the ratio of the number

of individuals having property 1 and not 2 on thember of individuals is an invariant
for such systems, as an SIA uses this value aschb®ark. This gives a second invariant

o=

1.2
n

We can therefore define, under whichever hypothesashoose to work with, a sequence

of implicative intensities¢n(alya2) entirely defined by these invariants. We show,that

under the hypotheses used for SIAs:

lim ¢, (a,8,)=1 if a,<p, (1)

N-oo

and lm g, (aa,)=1 if a,>8, 2)

n-o

In a certain sense, we show that the cumulativeiloigsion function for an adequately

defined sequence of probability distributions tetmsards the cumulative distribution

function of a Dirac measure of param Bz,
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Binomial case

Let 0< a< S<1. We first show that :

f@ﬁ =A™ .0 ©

k=0

Indeed, we see that :

i{rl:jﬂk (1_,8)n_k = (1—18)'12“'(:) where u|(<n) - [Ej[%j

k=0

A quick study of the sequer(u(”)) shows that :

kON

U -y >0 < k< B(n+1)-1

Therefore, ea < [, for any large enough:

N

k=0

Using Stirling's formula, we find that :

{;nj - (a" (1- a)l_”)nl 2ma(l-a)n

Therefore :

e MR =

It suffices to show that :

f(@) =™ 0 where fﬁ(a):(ﬁja(igjl_a (@)

2rr(1—a) n-e a) \1-a
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We study the functic f, defined on ]0,1[ usin¢log(f,). We find that f, is strictly
concave, going frorlim f;(a)= Bto lim f;(a)=1- 8 with maximum reached only at

a-0 a-1

f;(B) =1 Therefore, ea < f3:

0< fy(a)<1
From this comes the limit in (4) and the limit B) follows. This is the same as the limit
given by (1), only taken in the binomial case.

Now, if 0< S< a <1, an entirely symmetrical proof gives :

i [EJE (-8 ,-.0 (5)

k=an

This last result (5) is the same as (2) takena@biihomial case.
Poisson case

Let 0< a < <1. The proof here is completely analogous to theriial case. We will
show now that :

fme—fm .0 (6)

Nn- o
- K

=

We see that :

an k m k
Z@e‘ﬁn = e_/f”gc‘;vl((n) where V|(<n) _ @

k=0

And a quick study of the sequer(v(”)) shows that :
kON

-0 < ks<pn-1

Therefore, aa < 3, for any large enough:

f“@e‘ﬁ” <(an+1) ()" e’

2 G
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Using Stirling's formula, we find that :

(a’n+1)Me-ﬁn D[{_/J’j” ea—/}}n an

(am)! a 21

It now suffices to show that :

gﬂ(a)" \/gn:mo where gﬂ(a):(gjae”‘ﬁ (7)

The study of the functicg,defined on ]0,1] usinglog(gﬁ) gives thatg, is strictly

concave, going fronlim g,(a)=€” to lim g,(a)= e <1with maximum reached

a-0 a-1

only aig, (/) =1. Therefore, ea < f3:

0<g,(a)<1

Which gives us (7), from which follows (4), whichthe same as (1) in the Poisson case.

Now if 0< < a <1, then we can show that:

> @e‘ﬂ”n:mo (8)

k=an

Indeed, if we separate this sum in two :

= (BY) o SO o (B)
i 30,

k=an k=an

Then, as by Taylor-Lagrange :

5 (B0)° _(B)" o
2 =)

And :
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We have :

3 @e‘ﬁn<n3we‘ﬁh+(ﬁn)n
kZa: k= (an)! (n?)!

By Stirling's formula, we find that :

And :

o o (2

n
The first part of the sum goes to 0 by our previmsilt ong,(a) and the second part

clearly goes to 0. Therefore, we have shown (8ckwis the same as (2) in the Poisson
case.
Gaussian case

Even though we have not discussed this case ip#psr, a normal distribution can also
be used in SIA (see, for example, Gras et al. (R018 this case, the result comes

spontaneously. Indeed, (1) and (2) are in this tassame as :

0 0 2

1 > . 1 2 .
— e dt -1 if a<pfand— e dt -0 if a>p4
277 hn({"ﬂ) n-e V er hn(-['ug) -
Whereh, (a,8)= an—pn

i

And the result is straightforward.

Relative implicative intensity in the Poisson case
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There is no need to look at the relative implicaimtensity in the binomial case as in this
case it is equal to the implicative intensity. Wil ourselves to the most used case in
SlAs, i.e. the Poisson case.

LetO< a< < 1. We want to show that :

S5

This is actually quite straightforward from what \wave done in 2.2.1. Indeed, let

f,(a)< y<1, forklarge enough (say> K) we have :

¥ u-ar sy

i=o\!

Therefore :

i[azk(k]p(l ﬁ)k']“ "<Me"+e " . 0

k=0\i=0 I

If 0< < a<l, an entirely symmetrical proof gives :

S5

Therefore, we have shown that the relative imphesaintensity will be of no more help
than the implicative intensity for most practicglpdcations when the number of

individuals is too large.

Remarks

We have shown that the issues raised by large msmebandividuals in SIAs are inherent
to the method itself, if it is applied to the typestudy it was precisely designed for.
Furthermore, the calculations show that the coreverg of the implicative intensity
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towards O or 1 is at least geometrical. Such a @e@ence is quite fast so it will occur
whenever slightly bigger populations are consideféduls, it is an issue that SIA theory
must deal with. The current solution to this isssighe entropic approach. It is an
interesting approach and we believe it should beldped. However, some matters of
clarification are necessary. It is argued thagtiesi-implicative model is more concerned
about the rulca= b than the rule-=b = -a. This is false. In non-entropic SIAs, there is
no difference between these two rules. Determitiiegimplicative intensity of the rule
-b = -a gives exactly the same result as determiningudlea = b. And this is how

it should be in any SIA. Therefore, the correcidrhis “issue” in the entropic approach
seems a bit artificial. Indeed, a difference betwieese two rules is artificially created,
so that these two “different” rules may be balanacedhe new model. An entropic
approach, without this construction, seems howenirely conceivable. One alternative
approach is to consider thatifis large enough that the implicative intensity appdo
be either O or 1 for all observed properties, tties simply shows that we have enough
data to consider alternative implicative indicesdAthat we can use these indices to
construct a hierarchical tree, rather than the iraple intensity. Even though
implicative indices have been considered beforggéims that this approach has not been
considered much and we believe it should not bevieweed. Another approach, which
is currently investigated by the researcher, icdasider quasi-implications between
crossed properties (e.aCbCc= dLCe). The implicative intensities for such rules are
mechanically less than those for simple propertfabe computational complexity of a
systematic review of all rules on crossed propgtiseexponential therefore ruling it out,

algorithmically selecting a reduced number of ralgsuch rules is entirely conceivable.
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