Reflecting on glocalization in the contexts of local and global approaches through ethnomodelling
Refletindo sobre a glocalização no contexto das abordagens local e global através da etnomodelagem

Milton Rosa, Daniel Clark Orey

Resumo


The acquisition of both local (emic) and global (etic) knowledge forms an important goal for the implementation of ethnomodelling research. Local knowledge (emic) is essential for an intuitive and empathic understanding of mathematical ideas, procedures, and practices developed throughout history. Global knowledge (etic) is essential for the achievement of cross-cultural comparisons that demand standard analytical units and categories to enable communication. Glocalization (dialogic) uses both local and global knowledge through dialogue, and interaction through translation. We define ethnomodelling as the study of mathematical phenomena within a culture because it is a culturally bound social construct while ethnomodelling brings cultural aspects of mathematics into the mathematical modelling process. The main objective of this theoretical article is to share our reflections from feedback from ongoing work in ethnomodelling. In this article we discuss the local, global, and glocal approaches necessary for the development of ethnomodeling research.


A aquisição dos conhecimentos local (êmico) e global (ético) constitui um objetivo importante para a implementação de pesquisas em etnomodelagem. O conhecimento local (êmico) é essencial para uma compreensão intuitiva e empática das ideias, procedimentos e práticas matemáticas desenvolvidas no decorrer da história. O conhecimento global (ético) é essencial para a realização de comparações transculturais que exigem unidades e categorias analíticas padronizadas que possibilitam a comunicação. A glocalização (dialógico) utiliza os conhecimentos local e global através do diálogo e da interação por meio da tradução. Definimos etnomodelo como o estudo dos fenômenos matemáticos dentro de uma cultura, pois é um construto social culturalmente enraizado enquanto a etnododelagem traz os aspectos culturais da matemática para o processo de modelagem matemática. Então, o principal objetivo deste artigo teórico é compartilhar as nossas reflexões sobre os comentários relacionados com o nosso trabalho em etnomodelagem. Nesse artigo discutimos as abordagens local, global e glocal, que são necessárias para o desenvolvimento de pesquisas em etnomodelagem.


Palavras-chave


Ethnomodelling; Global Approach; Glocalization; Local Approach; Translation

Texto completo:

PDF

Referências


ANDERSON, D. Multicultural group work: a force for developing and healing. The Journal for Specialists in Group Work, v. 32, n. 3, p. 224–244, 2007.

BARBER, B. Jihad vs. me world. In: LECHNER, F. J.; BOLI, J. (Eds.). The Globalization Reader. Malden, MA: Blackwell, 2004. pp. 29-35.

BASSANEZI, R. C. Ensino-aprendizagem com modelagem matemática [Teaching and learning with mathematical modelling]. São Paulo, SP: Editora Contexto, 2002.

BOURBAKI, N. Elements of the History of Mathematics. New York, NY: Springer-Verlag, 1998.

CHENG, Y. C. New paradigm for re-engineering education. New York, NY: Springer, 2005.

D’AMBROSIO, U. Etnomatemática [Ethnomathematics]. São Paulo, SP: Editora Ática, 1990.

D’AMBROSIO, U. Etnomatemática: um programa [Ethomathematics: a program]. A Educação Matemática em Revista, v. 1, n. 1, p. 5-11, 1993.

D’Ambrosio, U. Introduction: ethnomathematics and its first international congress. ZDM, v. 31, n. 2, p, 50-53, 1998.

D’AMBROSIO, U. Etnomatemática: uma proposta para a civilização em mudança [Ethnomathematics: a proposal for a changing civilization]. In: DOMITE, M. C. (Ed.). Anais do Primeiro Congresso Brasileiro de Etnomatemática – CBEm-1. São Paulo, SP: FE-USP, 2000. Pp. 143-152.

D’AMBROSIO, U. The program ethnomathematics: a theoretical basis of the dynamics of intra-cultural encounters. The Journal of Mathematics and Culture, v. 1, n. 1, p. 1-7, 2006a.

D’AMBROSIO. U. The program ethnomathematics and the challenges of globalization. Circumscribere: International Journal for the History of Science, v. 1, p. 74-82, 2006b.

EGLASH, R., BENNETT, A., O’DONNELL, C., JENNINGS, S.; CINTORINO, M. Culturally situated designed tools: ethnocomputing from field site to classroom. American Anthropologist, v. 108, n. 2, p. 347-362, 2006.

FERNANDEZ, S. A. A theory of cultural glocality. Master Thesis. College of Arts and Science. Department of Philosophy. Jacksonville, FL: University of North Florida, 2009.

FREIRE, P. Education for critical consciousness. New York, NY: Continuum, 1997.

FREIRE, P. Pedagogy of freedom: ethics, democracy, and civic courage. New York, NY: Rowman and Litttlefield, 1998.

FRIEDMAN, T. The Lexus and the olive tree: understanding globalization. New York, NY: Random House, 2000.

HOYRUP, J. Lengths, widths, surfaces: a portrait of old Babylonian algebra and its kin. New York, NY: Springer-Verlag, 2002.

HELFRICH, H. Beyond the dilemma of cross-cultural psychology: Resolving the tension between etic and emic approaches. Culture and Psychology, v. 5, p. 131–153, 1999.

ISER, W. On translatability. Surfaces, v. 4307, 5-13, 1994.

JOSEPH, G. G. The crest of the peacock: non-European roots of mathematics. Princeton, NJ: Princeton University Press, 1991.

KHONDKER, H. H. Glocalization as globalization: evolution of a sociological concept. Bangladesh e-Journal of Sociology, v. 1, n. 2, 1-9, 2004.

KLOOS, P. The dialectics of globalization and localization. In D. Kalb, M. van der Land, R. Staring, B. van Steenbergen & N. Wilterdink (Eds.), The ends of globalization: bringing society back in (pp. 281-298). Lanham, MD: Rowman & Littlefield, 2000.

LATOUR, B. We have never been modern. Cambridge, MA: Harvard University Press, 1993.

LEVINAS, E. Alterity and transcendence. Translated by Michael B. Smith. New York, NY: Continuum International Publishing Group, 1970.

NEUGEBAUER, O.; A. SACHS. Mathematical cuneiform texts. New Haven, CT: American Oriental Society, 1945.

OREY, D. C. The ethnomathematics of the Sioux tipi and cone. In: SELIN, H. (Ed.). Mathematics across culture: the history of non-western mathematics. Dordrecht, The Netherlands: Kulwer Academic Publishers, 2000. pp. 239-252.

POLANYI, M. The tacit dimension. London, England: Routledge & Kegan Paul, 1966.

POWELL, A. B.; FRANKENSTEIN, M. (1997). Introduction. In: POWELL, A. B.; FRANKENSTEIN, M. (Eds.). Ethnomathematics: challenging eurocentrism in mathematics education. New York, NY: State University of New York Press, 1997. pp. 1-4.

ROBERTSON, R. Globalization: social theory and global culture. London, England: Sage, 1992.

ROBERTSON, R. Glocalization: time-space and homogeneity-heterogeneity. M. FEATHERSTONE et al. (Eds.). Global modernities. London, England: Sage, 1995. pp. 25-44.

ROSA, M. From reality to mathematical modelling: a proposal for using ethnomathematical knowledge. Master thesis. College of Education. Sacramento, CA: CSUS, 2000.

ROSA, M. A mixed-method study to understand the perceptions of high school leaders about English Language Learners (ELLs): the case of mathematics. College of Education. Doctorate Dissertation. Sacramento, CA: CSUS, 2010.

ROSA, M.; OREY, D. C. Vinho e queijo: etnomatemática e modelagem! [Wine and cheese: Ethnomathematics and modelling!] BOLEMA, v. 16, n. 20, p. 1-16, 2003.

ROSA, M.; OREY, D. C. Abordagens atuais do programa etnomatemática: delinenando-se um caminho para a ação pedagógica [Current approaches in the ethnomathematics as a program: delineating a path toward pedagogical action]. BOLEMA, v. 19, n. 26, p. 19-48, 2006.

ROSA, M.; OREY, D. C. Cultural assertions and challenges towards pedagogical action of an ethnomathematics program. For the Learning of Mathematics, v. 27, n. 1, p. 10-16, 2007.

ROSA, M.; OREY, D. C. Ethnomathematics and cultural representations: teaching in highly diverse contexts. Acta Scientiae, v. 10, n. 1, p. 27-46, 2008a.

ROSA, M.; OREY, D. C. A geometric solution for an ancient Babylonian problem. CMC ComMuniCator, v. 33, n. 2, p. 34-35, 2008b.

ROSA, M.; OREY, D. C. Ethnomodelling: a pedagogical action for uncovering ethnomathematical practices. Journal of Mathematical Modelling and Application, v. 1, n. 3, p. 58-67, 2010.

ROSA, M.; OREY, D. C. Ethnomodelling as a methodology for ethnomathematics. In: STILLMAN, G. A.; BROWN, J. (Orgs.). Teaching mathematical modelling: connecting to research and practice. International perspectives on the teaching and learning of mathematical modelling. Dordrecht, The Netherlands: Springer, 2013. pp. 77-88.

ROSA, M.; OREY, D. C. A trivium curriculum for mathematics based on literacy, matheracy, and technoracy: an ethnomathematics perspective. ZDM, v. 47, n. 4, p. 587-598, 2015.

ROSA, M.; OREY. D. C. Reflecting on ethnomathematics as pedagogical action in the mathematics curriculum. RIPEM, v. 6, n. 1, p. 157-177, 2016.

ROSA, M.; OREY, D. C. Influências etnomatemáticas em salas de aula: caminhando para a ação pedagógica. Curitiba, PR: Editora Appris, 2017a.

Rosa, M.; Orey, D. C. Etnomodelagem: a arte de traduzir práticas matemáticas locais. São Paulo, SP: Editora Livraria da Física, 2017b.

ROWE, W.; V. SCHELLING. Memory and modernity: popular culture in Latin America. London, England: Verso, 1991.

SHINER, L. The invention of art: a cultural history. Chicago, IL: The University of Chicago Press, 2001.

SUE, D. W.; SUE, D. Counseling the culturally diverse: theory and practice. New York, NY: John Wiley & Sons, 2003.

URTON, G. The social life of numbers: a Quechua ontology of numbers and Philosophy of arithmetic. Austin, TX: University of Texas Press, 1997.

WOLF, D. Feminist dilemmas in fieldwork. Boulder, CO: Westview Press, 1996.

YANG, E. The circulation of East Asian trendy dramas grounded on cultural proximity. Bansong Yeongu, v. 69, p. 197-220, 2003.

YIFENG, S. Cultural translation in the context of glocalization. Ariel, v. 40, n. 2-3, p. 89–110, 2009.




DOI: https://doi.org/10.23925/1983-3156.2018v20i2p171-201

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


INDEXADORES DA REVISTA