Analisando números, tomando decisões: inteligência artificial e estatísticas para previsão de dificuldades financeiras na Argélia e na Arábia Saudita

Autores

DOI:

https://doi.org/10.23925/cafi.62.60718

Palavras-chave:

dificuldades financeiras, previsão, rede neural artificial, regressão logística

Resumo

A previsão de dificuldades financeiras tem sido uma preocupação significativa tanto para pesquisadores quanto para profissionais há muito tempo. Este tema tem despertado um interesse substancial devido aos benefícios potenciais do uso de modelos preditivos para antecipar problemas financeiros e ajudar as empresas a evitar riscos financeiros que poderiam levar à falência e à liquidação. O objetivo principal desta pesquisa é prever dificuldades financeiras, comparando a eficácia da Rede Neural Artificial (RNA) com a Regressão Logística (RL). Esta avaliação baseia-se em dados de 12 empresas argelinas e 12 empresas sauditas durante o período de 2015 a 2019. As conclusões do estudo indicam que o modelo RL superou o modelo de Rede Neural Ampla (RNA) na previsão com precisão de dificuldades financeiras, alcançando uma precisão de classificação ideal para empresas argelinas e sauditas. Consequentemente, o modelo RL surge como a escolha preferida para prever dificuldades financeiras em ambos os países.

Referências

Altman, E. (1968). Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy . Journal of Finance, 23(4), 589-609.

Angel, M., Gámez, G. G., José, A., & Ruiz, C. (2016). Applying a probabilistic neural network to hotel bankruptcy prediction. Tourism & Management Studies, 12(1), 40-52.

Bayraci, S., & Susuz, O. (2019). A Deep Neural Network (DNN) based classification model in application to loan default prediction. Theoretical and Applied Economics, XXVI(4 (621)), 75-84.

Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111.

Bonello, J., Bredart, X., & Vella, V. (2018). Machine Learning Models For Predicting Financial Distress. Journal of Research in Economics(2), 174-185.

Callejón, A., Casado, A., Fernández, M., & Peláez, J. (2013). A System of Insolvency Prediction for industrial companies using a financial alternative model with neural networks. Int. J. Comput. Intell. Syst, 6(1), 29-37.

El-Bannany, M., Sreedharan, M., & Ahmed, M. (2020). A Robust Deep Learning Model for Financial Distress Prediction. International Journal of Advanced Computer Science and Applications, 11(2), 170-175.

Hardinata, L., & Warsito, B. S. (2018). Bankruptcy prediction based on financial ratios using Jordan Recurrent Neural Networks: a case study in Polish companies. Journal of Physics, 1025(1), 1-6.

Kapil, S., & Agarwal, S. (2019). Assessing Bankruptcy of Indian Listed Firms Using Bankruptcy Models. Decision Tree and Neural Network . International journal of business and economics, 4(1), 112-136.

Mousavi, S., Amini, M., & Raftar, M. (2012). Data mining techniques and predicting corporate financial distress. Interdisciplinary Journal of Contemporary Research in Business, 3(12), 61-68.

Ohlson, A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131.

Osho, A., & Idowu, A. (2018). Relevance of Accounting Theory in Forecasting Techniques and Default Prediction in an Organization in Nigeria. European Journal of Business and Management, 10(29), 116-129.

Ribeiro, B., Silva, C., Vieira, A., & Gaspar-Cunha, A. :. (2010). Financial distress model prediction using SVM+. The 2010 International Joint Conference on Neural Networks (IJCNN), (pp. 1-7).

Sabek, A. (2023). Unveiling the diverse efficacy of artificial neural networks and logistic regression: A comparative analysis in predicting financial distress. Croatian Review of Economic, Business and Social Statistics (CREBSS), 9(1), 16-32.

Sabek, A., & Horak, J. (2023). Gaussian Process Regression´s Hyperparameters Optimization to Predict Financial Distress. Retos, Revista de Ciencias Administrativas y EconA3micas, 13(26), 273-289.

Sabek, A., & saihi, Y. (2021). Using Artificial Neural Network To Predict The Financial Distress: The Case Of Some Algerian Companies. Journal of North African Economics, 17(3), 475-492.

Sudarsanam, S. (2016). A Fuzzy Neural Network Model for Bankruptcy Prediction. Journal of Engineering Computers & Applied Sciences, 5(6), 33-40.

Tang, Y., Ji, J., Zhu, Y., Gao, S., Tang, Z., & Todo, Y. (2019). A Differential Evolution-Oriented Pruning Neural Network Model for Bankruptcy Prediction. Complexity, 2019, 1-21.

Xie, C., Luo, C., & Yu, X. (2011). Financial distress prediction based on SVM and MDA methods: the case of Chinese listed companies. Quality and Quantity: International Journal of Methodology, 45(3), 671-686.

Downloads

Publicado

2023-10-01

Como Citar

Sabek, A., & Saihi, Y. (2023). Analisando números, tomando decisões: inteligência artificial e estatísticas para previsão de dificuldades financeiras na Argélia e na Arábia Saudita. CAFI, 6(2), 183–201. https://doi.org/10.23925/cafi.62.60718