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Long live triangles! 
Dynamic models for trigonometry 

 
¡Larga vida a los triángulos! 
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Abstract 
We present a GGB-Book to assist learning and teaching situations for trigonometry. 
First, we justify the choice to use dynamic geometry software as an instrument to 
organize mathematical activity, based on a classification of dynamic models based on 
the “moment of the mathematical activity”. Second, we present a detailed theoretical 
proposal with guidelines to use it. Finally, we show some results of a practical 
experience with secondary school students (age 15-16). 
Keywords: trigonometry; explorative model; ostensive representation of mathematical 
objects; inductive arguments. 

Resumen 
Se presenta en este trabajo un Libro-GGB para asistir situaciones de enseñanza y 
aprendizaje de la trigonometría. En primer lugar, se justifica la decisión de utilizar el 
software de geometría dinámica como instrumento para organizar la actividad 
matemática, basada en la clasificación de modelos dinámicos por “momentos de la 
actividad matemática”. En segundo lugar, se presenta una propuesta teórica detallada 
junto con indicaciones de uso. Finalmente, se muestran los resultados de una 
experiencia práctica con estudiantes de educación secundaria (15-16 años). 
Palabras clave: trigonometría; modelo de exploración; representación ostensiva de 
objetos matemáticos; argumentos inductivos. 

Introduction 

The second middle of the XX century was influenced by structuralism and the paradigm 

that the comprehension of general structures and reasoning would lead students to a 

better understanding of mathematics. The curriculum was reformed and mathematics 

where taught in Europe in terms of modern mathematics, which included a strong 

presence of logic, set theory and the use of symbols in early educational stages. For 

example, in Early Childhood and Primary Education, operative use of arithmetic and 
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descriptive plane geometry where postponed and the inner structure of mathematics was 

strengthen instead (LACASTA & WILHELMI, 2012). 

The approach to general mathematics even brought decisions to exclude particular 

representations of mathematical objects. For example, in their aim to rebuild the 

foundations of mathematics, the Bourbaki group presents geometry as a general algebra, 

without a single drawing4. 

Mathematics were abstracted to the point where it became a 
complicated but ultimately meaningless game of moving symbols on 
paper according to algorithmic rules – meaningless in that this 
intellectual game was not meant to have signification in terms of the 
physical world or the situations of everyday life (GEROFSKY, 2016). 

Bourbakis’ general approach is stated clearly in their manifesto: “The organizing 

principle will be the concept of a hierarchy of structures, going from the simple to the 

complex, from the general to the particular” (MATHIAS, 1992, 6). This example is 

indicative of the importance and the status intensive objects and their ostensive 

(codified) representations have in mathematics practice and education. 

Driven by Bourbakis paradigm, a rigorous argument must be necessarily abstract, and 

so, mathematics must be discussed using ostensive codified representations of intensive 

objects. For example, mathematicians may consider n-dimensional geometry to create 

general constructions. But, as Stewart (1994) remarks, there are geometric results 

related to plane geometry that do not arise from n-dimension geometry, such as the 

presence of number π in many different areas of mathematics and physics. Thus, the 

“general to particular” point of view fails to discuss special cases or non-algebraic 

topics. 

Nevertheless, rigor is not abstraction, and mathematicians use many types of ostensive 

representations of mathematical objects (drawings, diagrams, natural language, etc.) to 

solve problems or model situations. Mathematic Education theories based on semiotic 

grounds classify ostensive representations as linguistic elements used in mathematical 

practice in their various registers (FONT, GODINO & GALLARDO, 2013). 

In particular, gestures are didactically analyzed within embodiment and multimodality 

approaches, as being not only the first step in concept formation (Piagetian sensory-

                                                 
4 Leading Bourbaki mathematician Jean Dieudonné loads the famous sentence onto his shoulders: “Down 
with Euclid! Death to all triangles!” Bourbaki refused to use diagrams and other ostensive representations 
of particular mathematical objects; hence, the title for this article. 
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motor experiences), but an extension of the semiotic ground that unifies body and 

mental processes (ARZARELLO & SABENA, 2014). In this direction, neuroscience 

indicates that brain-functions work as a neuronal cloud or network, with no central brain 

location responsible for sense-making nor brain-modules controlling different brain 

areas devoted to different sensorial modalities. 

We don’t store images as facsimiles of things, events, words or 
sentences […] since any facsimile-like storing system would cause 
insuperable capacity problems […] explicit memory-images take 
place in the mind when some neuronal lighting-patterns activate, 
simultaneously for an instant. (DAMASIO, 2012, 154-156) 

Brain activity includes biological regulation, and control over emotions and feelings. 

Those aspects are relevant to operative and discursive mathematical practice too, since 

intuition or analogies are important factors to guide quests on problem solving 

heuristics (GUZMAN, 1991). 

Bourbaki claimed a revolution against pictorial representations: “Death to all triangles!” 

We claim the opposite, the eternal resurrection of the ostensive realm as a previous and 

necessary stage to think about non-ostensive (ideal) mathematical objects: “Triangles 

are dead, long live triangles!” 

1. Use of ostensive representations 

While modern mathematics generated new results in mathematical research, in 

Mathematics Education led to the illusion that once the student is exposed to the 

mathematical structure, then s/he can naturally apply the structure to solve particular 

problems. However, in order to introduce the general mathematical object to a student, 

new language and symbols must be introduced too, which need further explanations and 

the introduction of auxiliary mathematical objects, in a circular process. Brousseau 

(1997) identifies that illusion as an example of a metacognitive shift phenomenon. 

Structuralism has been gradually displaced in education, but there are still traces of that 

period that endure, mostly because of a lack of revision of textbooks (WILHELMI, 

BELLETICH, LACASTA & LASA, 2013; LASA, 2015, 2016). Books are accessory to 

learning and teaching processes, but as any other support (manipulative material, paper 

and pencil, software), a criterion must be applied to select the optimal and convenient 

combination of supports for each teaching situation, which includes a selection of 

appropriate ostensive representations. 
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The Onto-Semiotic Approach to Research in Mathematics Education (OSA) identifies 

linguistic elements, such as terms, expressions, notations or graphs, in their various 

registers (written, oral or gestural), which conform the ostensive part of operative and 

discursive mathematical practices. Linguistic elements are considered a type of primary 

mathematical objects, with situations, definitions, propositions, procedures and 

arguments (FONT, GODINO & GALLARDO, 2013). 

These languages are the ostensive part of a series of concepts / 
definitions, propositions and procedures that are involved in the 
elaboration of arguments whose purpose is to decide whether the 
simple actions of which the practice is composed, and the practice 
itself as a compound action, are satisfactory. (FONT, GODINO & 
GALLARDO, 2013, 109) 

Each primary mathematical object has multiple representations, and mathematical 

activity includes processes of treatment and conversion (DUVAL, 1993), where the 

representation is modified, respectively, within a certain semiotic register, or from one 

semiotic register to another. Sense and understanding (RADFORD, 2004) are notions 

also related to representations: on the one hand, sense is the capacity to present different 

representations of the same mathematical object; on the other hand, the synthesis of 

these representations leads to the understanding of the object (D’AMORE, 2007). 

Under these premises, the social perception which sees mathematics as the science of 

mere manipulation of symbols, slides mathematical activity to the fluent use of 

algebraic techniques, minimizing or excluding the use of alternative representations. At 

the same time, the general to particular approach generates new didactical phenomena, 

such as the atomization (LASA, 2016). 

Along the school year, teachers present split up procedures. Many 
times, this decision is justified by time-managing terms, or under the 
illusion that if the student is capable of efficient but isolated symbolic 
manipulations, then she could master them in complex situations. Yet, 
this decision leads to the disarticulation of different algebraic 
knowledge, and students lack methods to control their own proposals. 
(LASA, 2016, 276) 

Inner connections of mathematical structures are complex by nature, but the school-

system must manage time restrictions and finite resources. Teachers must decide how to 

spend time without wasting it, and, if time expires, they can decide to give some recipes 

to the student, to solve particular problems when applied to them. This approach is valid 

in the short term, but in the long term, students fail to sense and understand 

mathematical objects. 
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2. Explorative, illustrative and demonstrative moments 

Manipulative materials, paper and pencil and dynamic software are examples of 

supports for use in mathematics practice. The late allows a classroom management 

centered on properties, rather than on individual examples (LASA & WILHELMI, 

2013), and therefore, dynamic constructions help to cross the “inductive-deductive” gap 

from explanation to formal proofs. 

The use of traditional blackboard in the illustration of geometry 
contents has the obvious limitation of not being able to display more 
than one example, or a few, of geometrical representations during each 
session. These examples can generate a phenomenon of illusion of 
transparency, i.e., “the phenomenon whereby while teachers interpret 
an example as a model or as a representative of a class, students only 
see such an example”. This phenomenon is an example of the distance 
in the dynamics of construction and communication of mathematics, 
as scientific knowledge and as a crystallized and labeled teaching 
object at schools. It is therefore essential to identify means that allow 
students and teachers ‘talk the same language’”. (LASA & 
WILHELMI, 2013, 53) 

GeoGebra contributes to overcome this phenomenon, i.e., shortens the distance between the 

interpretation of an example as an “isolated object” and as a “representative of a class” 

(LASA & WILHELMI, 2013). This question is essential in any process of generalization, in 

which intensive (general) and extensive (particular) objects are involved. The example-class 

duality is essential in three moments of mathematical activity where the use of GeoGebra is 

pertinent: exploration, illustration and demonstration of a property (LASA & 

WILHELMI, 2013). Lasa (2016) joins those three moments up with the classical action, 

formulation and validation phases (BROUSSEAU, 1997) and articulates an outline to 

design situations where dynamic geometry software plays the role of antagonistic 

milieu5. Frame 1 summarizes this outline. 

It should be note that the term validation includes a wide rank of types of arguments and 

functions of proofs, depending on context and needs, which go from “explanation” to 

“deductive-formal-proof”. There is an active research field in Mathematics Education 

that studies the uses and meanings of proof. Many authors classify and clarify the 

different roles of proof, and the function of proof which suits better the context of 

dynamic software is probably that of De Villiers (1998), who notes that explorative 

                                                 
5 Antagonistic milieu. According to TDSM, students who confront a didactical situation are able to 
validate their solution-proposal by means of an immediate feedback from the situation, i.e., a situation is 
a mathematical problem which, “by design”, includes elements that give students the essential feedback 
to be aware of the correctness of their mathematical production. Thus, a dynamic model takes the place of 
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models aid students to develop intuitions before they formally verify a property. 

FRAME 1. GeoGebra moments in didactical situations (LASA, 2016, 52) 

Moreover, the classical inductive/deductive classification of mathematical arguments is 

gone out of fashion in official curriculums and textbooks (BON, 2015), and the 

irruption of automatic-theorem-solving software in mathematic activity modifies the 

concept of formal-proof itself, since a theorem can be proved true (in a deductive-

formal sense) when checked for a finite number of cases (BOTANA ET AL, 2015). 

The existence of empirical proofs obliges to revise the classification of arguments and 

their didactical transposition for every educational level, since the inductive/deductive 

classification is not accurate anymore from the epistemological point of view. GeoGebra 

tools include probabilistic numerical approximation modules, such as Are-Equal, Are-

Parallel, etc. (figure 1), based on Boolean operations; and automatic-theorem-solving 

modules (Prove and Prove-Details), which traduce geometric information into algebraic 

language to compute its veracity by means of a deterministic procedure (BOTANA, 

2015). 

  

FIGURE 1. Output of GeoGebra PNA tool Are-Parallel 
                                                                                                                                               
the antagonistic milieu, every time the model gives students that feedback. 
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Therefore, the use of automatic proofs in school mathematics is an open and interesting 

research area. Meanwhile, in our context of TDSM and OSA, the term validation stands 

for any type of proof used in the scholar context, regardless of its nature, any time they 

are useful to please students and teachers communicative processes in school 

mathematical activities. 

In addition, there is empirical evidence (LASA, 2015, 2016) that the integration of 

dynamic models have a direct effect in student’s performance when solving algebraic 

tasks. Furthermore, the sequence in which different supports are been used and 

implemented in school practice determine the type of improvement shown by the 

student: 

• On the one hand, students who manipulate a dynamic model before they are 
introduced to the use of an algebraic technique, obtain the correct and 
complete algebraic solution more often that those students who are directly 
instructed in the algebraic technique. 

• On the other hand, students who have been instructed in the algebraic 
technique, are able to articulate better arguments on the instrumental use of 
the dynamic model of the mathematic situation. 

These results suggests a helical outline where the progressive achievement of 

mathematical knowledge swings from explorative moments (dynamic model) to the 

consolidation of algebraic techniques (paper and pencil), and back, and optimizes the 

acquisition of mathematical knowledge in teaching and learning situations. 

Student’s progressive achievement of algebraic knowledge has been model by OSA. 

Godino et al (2016) present a theoretical description of algebraization levels, which are 

useful to graduate and describe the uses of algebra in the resolution of mathematical 

tasks. Students may use basic arithmetical strategies in the total absence of algebra 

(level 0), algebraic structural properties over numbers (level 1), symbols to represent 

unknown values (level 2), consolidated algebraic techniques (level 3), etc. 

In Chapter 3, we present a series of constructions for trigonometry, whose design  

follow the theoretical framework summarized on frame 1. Furthermore, the successive 

continuation of explorative, illustrative and demonstrative moments leads to a 

descriptive or a posteriori definition of trigonometric ratios: students use the explorative 

dynamic models in order to build a personal meaning (OSA) of trigonometric ratios; 

later, the teacher takes the responsibility to institutionalize (EOS, TDSM) the 

knowledge that arises from the mathematical activity. In Chapter 4, we briefly present 
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the results of a pilot study (BELLOSO, 2016), where secondary students effectively use 

those construction in their school activity. 

3. Three GeoGebra constructions for trigonometry 

In the following sections, we describe a series of dynamic models, compiled in a GGB-

Book6 format and available in four languages (Basque, Italian, English and Spanish). 

These models are the result of an international collaboration between EHGI7 and IGT8. 

The aim of the Book is to provide secondary school students (ages 14-17) a material to 

help them build a gradual meaning for trigonometric notions. 

3.1. Trigonometric ratios 

Students can use a numerical model as a first approach to explore invariant properties of 

trigonometric ratios. The presented models should be used by students, who begin to 

introduce themselves to trigonometry, and do not have previous knowledge, other than 

the classification of triangles (according to sides and angles), and the Pythagorean 

Theorem. 

Using the basic strategy of arithmetic calculations, students seek empirical evidences to 

state theorems-in-act (VERGNAUD, 1990). The first few calculations are executed in 

paper, to reach students arithmetical threshold (LASA & WILHELMI, 2014), but in the 

long term, as calculations become tedious, a spreadsheet is required. The use of a 

spreadsheet gives way to the illustrative moment. The absence of counterexamples in 

the study of many cases makes it possible to construct an inductive argument, and 

students are convinced that the property is true for any particular triangle. 

In addition, the dynamic model shows a triangle where the area of the triangle is 

variable. Therefore, the section of the plane between two rays is variable, even though 

the angle continues constant. Hence, the dynamic model contributes to overcome a 

classical epistemological obstacle: the amplitude of an angle does not depend on the 

area of the inner surface. 

The process should end with a deductive argument to prove that trigonometric ratios are 

invariant, and thereby, they are worth a definition. In this last step, geometrical formal 

                                                 
6 The complete GGB-Book is available in the following link: https://www.geogebra.org/m/oOGHNoq8#  
7 Euskal Herriko GeoGebra Institutua, www.ueu.eus  
8 Istituto GeoGebra di Torino, https://www.geogebra.org/istituto+di+geogebra+di+torino  

https://www.geogebra.org/m/oOGHNoq8
http://www.ueu.eus/
https://www.geogebra.org/istituto+di+geogebra+di+torino
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language is required to superimpose the structure of Thales Theorem on the explorative 

model of the triangle. 

• Sine, explorative moment. 
o Description of the model. The construction9 shows a dynamic right 

triangle. The user can select the amplitude of an acute angle (by 
inserting a numerical value in an “input box”) and the length of the 
base of the triangle (by dragging a vertex, “point on a line”). 

o Steps. Students work in pairs. First student manipulates the dynamic 
model in the graphic view to create a particular right triangle for a 
given acute angle. Second student writes down the values of the 
triangle from the model and calculates its trigonometric ratios. Then 
they switch positions and they start again with a new triangle. After a 
few tries, the theorem-in-act should arise. 

• Sine, illustrative moment. 
o Description of the model. The illustrative construction10 shows the 

previous explorative model and includes a spreadsheet to aid 
calculations (figure 2). Students must organize the spreadsheet 
information in three columns: length of hypotenuse, length of 
opposite side, free column for calculations. 

o Steps. Students still work in pairs, but the use of a spreadsheet 
facilitates the study of a greater number of cases. Then, students must 
formulate the explicit property, with the aim of convincing each 
other, and other teams. 

• Sine, demonstrative moment. 
o Description of the model. Students manipulate a dynamic model11 for 

the formal proof of the property, where numerical values are no more 
visualized (figure 3). Therefore, the construction is essentially 
different from the previous. The model shows a “control box” to 
superimpose the dynamic triangle of the explorative and illustrative 
constructions on a construction of Thales Theorem. 

o Steps. The demonstrative model can be used by students, ether 
independently, ether while teacher explains the deductive argument 
(in terms of similar right triangles). Students must reformulate their 
partial arguments in a general theorem, with a construction where the 
previous triangle overlays Thales Theorem. 

                                                 
9 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487311  
10 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487403  
11 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487545  

http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487311
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487403
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487545
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FIGURE 2: Illustrative model for sine ratio 

 
FIGURE 3: Demonstrative model for sine ratio 

3.2. Transition to trigonometric functions 

Once the notion of trigonometric ratio is presented, a further step is the development of 

trigonometric functions, as angle α becomes variable x. That is a different interpretation 

of the notion that has much to do with movement and velocity, i.e., the change of the 

value y=sin(x) as x goes from 0-to-360. 

We present the modification of this perspective by means of an explorative construction, 

an animation with a “play” button (figure 4). The dynamic model is been designed to 

facilitate the idea of periodic function, by means of a game, where the student creates a 

partial function, and the dynamic model reproduces that portion of function every given 

period. 
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• Function, explorative moment. Individual game12. As the student pushes the 
“play” button, an orange point start to move in real time along the positive 
direction on the abscise axis. Dragging on the point, student manipulates the 
ordinate of the point to draw a function. 

• Periodic function, explorative moment. Individual game13. Student pushes 
the “play” button to put into movement the orange point. When dragging the 
point, the model shows a second point (dark grey) which moves in 
translation of the orange one at a certain distance on the abscise axe. The text 
of the model shows additional information, i.e., the formal symbolic 
definition of a periodic function. 

• Period of a periodic function, explorative moment. Individual game14. Before 
putting the model into movement, student must decide a period for the 
function. The model shows as many dark-grey points as needed, in order to 
draw a periodic function. 

 
FIGURE 4: Explorative model, periodic function 

The way the ordinate of a point in the goniometric circle becomes the ordinate of a 

point in the Cartesian plane is not natural for a student in the first term. After the 

explorative moment, once the student is familiar with the periodicity of a function and 

its graphics, an illustrative model shows how the goniometric circle spreads on the 

Cartesian plane. This approach follows the premise that natural phenomena, force and 

velocity can model situations and problems (DEMANA & WAITS, 1990). 

Although convenient, the propedeutical introduction of radian angle is not strictly 

necessary at this stage (ACCOMAZZO, BELTRAMINO & SARGENTI, 2014). The 

concept of periodicity can be formalize first in the graphical register, before the 

numerical and symbolical approach, which can then help understand the precise 

meaning of the radian measure of an angle. 

                                                 
12 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487837  
13 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2488139  
14 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2488259  

http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2487837
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2488139
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2488259
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In a first illustrative construction, we show a triangle and its sine ratio within the 

goniometric circle. In a second illustrative construction (figure 5), the entire 

goniometric function is putted into movement along the Cartesian plane, in a way where 

the point showing the ordinate of the triangle and the point traveling along the graphic 

are actually “the same point”. 

• Goniometric circle, illustrative moment. The model15 represents the square 
triangle within the goniometric circle. The model presents the sine ratio of 
the triangle in direct relation to the y coordinate of the point in the Cartesian 
plane. Student uses “play” and “restart” buttons to activate the model. 

• y=sin(x) function, illustrative moment. The model16 puts into movement the 
entire goniometric circle, along the abscissa. The orange point represents the 
ordinate of the triangle vertex in the goniometric circle. The angle on the 
goniometric circle corresponds to the x-value of the function. The orange 
point paints the y=sin(x) graphic. 

 

FIGURE 5: Illustrative model, sine function 

3.3. Properties of trigonometric functions, the wave function 

Trigonometric functions satisfy a great number of properties. Nevertheless, rigorous and 

formal demonstrations of such equalities are hard to present to students, since they 

require the introduction of many auxiliary results and complex symbolic calculations. In 

secondary education, dynamic models can be used to explore, illustrate and sometimes 

prove trigonometric relations (at least, as we would see, partial proves can be presented 

for particular cases). 

• Trigonometric projection, explorative model. The design of the constructions 
in section 3.1 shows the invariant properties of trigonometric ratios, and 
visualizes how the independence from side-lengths permits the 
concretization of a well-formulated definition. In this example, students use 

                                                 
15 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2494883  
16 The dynamic model for the situation is available in the following link: 
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2495119  

http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2494883
http://www.geogebra.org/material/simple/id/oOGHNoq8#material/2495119
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the explorative model17 in a similar way, working in pairs and translating 
information from the graphical view to the spreadsheet, in order to seek 
patterns on trigonometric projections. The objective is to aid students arrive 
to relation between lengths in a square triangle, which would be used to 
demonstrate further properties. 

• Trigonometric properties, demonstrative model. The dynamic model18 
presents a geometrical situation where each segment length represents a 
particular trigonometric expression. Students work in pairs. By turns, each 
student seeks for a particular relation and translates it to the spreadsheet 
using general (not numerical) expressions: in the model, students introduce a 
particular numerical value for angle α and there is a geometrical link 
between angles α and β, but this implicit constraint is unknown and not 
necessary during the resolution process. Student must organize the collected 
symbolic information to formulate the property: the model contains two 
control boxes to show and hide hints using a color code. 

All examples shown until know are either numerical or use algebraic codes to represent 

function variables. These dynamic models are suitable for student who ether are familiar 

to the use of intensives to codify information and use these intensive expressions for 

numerical calculations (algebraization level 2), or are capable of symbolic calculation 

with variables (algebraization level 3). In more complex algebraic situations, students 

must deal with parameters (algebraization level 4), and the different nature and the 

distinction between variable and parameter can be problematic. In the design of these 

dynamic models an explicit decision has been made to use “sliders” to represent 

parameters, and thus, to give a slider a unique meaning or interpretation. 

• Wave functions, explorative model. The graphic view on the dynamic 
model19 represents two compound functions, distinguished by colors red and 
blue. A “shuffle” button presents the red function by random, and the 
spreadsheet shows the numerical values for the “red” parameters. Working in 
pairs, students must find the values for the “blue” parameters, superimpose 
both graphics, translate those values to the spreadsheet and find a numerical 
relation between “red” and “blue” parameters. 

• Wave functions, illustrative model. After students formulate their conjectures 
using the explorative model, we use an illustrative model to verify the 
validity of the aim. The model20 does not give an argument to demonstrate 
the property, but shows an alternative geometric structure that “comes 
together” when correct slider-values are selected, and gives a hint on find the 

                                                 
17 The dynamic model for the situation is available in the following link: 
https://www.geogebra.org/m/oOGHNoq8#material/j8kjR7Ow  
18 The dynamic model for the situation is available in the following link: 
https://www.geogebra.org/m/oOGHNoq8#material/OmnDxOfa  
19 The dynamic model for the situation is available in the following link: 
https://www.geogebra.org/m/oOGHNoq8#material/YCIuRH4v  
20 The dynamic model for the situation is available in the following link: 
https://www.geogebra.org/m/oOGHNoq8#material/fHvCHDlp  

https://www.geogebra.org/m/oOGHNoq8#material/j8kjR7Ow
https://www.geogebra.org/m/oOGHNoq8#material/OmnDxOfa
https://www.geogebra.org/m/oOGHNoq8#material/YCIuRH4v
https://www.geogebra.org/m/oOGHNoq8#material/fHvCHDlp
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equation between parameters. 

We implemented some of the theoretical designs in concrete school experiences. In the 

last section of this text, we show some results and empirical data. In particular, we will 

show a pilot experience where we implemented the first chapter of the GGB-Book, for 

the a posteriori definition of trigonometric ratios. 

4. Staging: an experience with secondary school students 

Belloso (2016) implements a slightly modified version of the GeoGebra book in chapter 

3.1 in a teaching and learning context, with secondary school students (grade DBH4, 

ages 15-16) in a group of 10 weak students who will not continue higher secondary 

education. The modification of the book includes a similar dynamic model for cosine, 

and a previous activity where students draw triangles in GeoGebra, given the length of 

their sides or the amplitude of a given angle. Students are required to manipulate the 

explorative and illustrative models in the book, to write down their personal conclusions 

from the outcome data they obtain, by filling a questionnaire (frame 2) in paper, in order 

to obtain definitions for both trigonometric ratios. 

Nº Questionnaire 

1 

Construction of triangles: a) draw a triangle in the computer, with the following sizes: a=6cm, b=8cm, c=3cm. 

Next, draw the triangle in your paper (by hand) and name its sides, angles and vertex; b) change the length of 

two sides of the triangle (move point A). Write down the values of the lengths of each side and the angles of 

the triangle (use a table if you find it necessary). Classify each triangle according to their angles and sides 

(write down all steps); c) try to find a relation that all sides satisfy (write down all steps). 

2 
Trigonometric ratios: a) follow the steps on the applet and try to find a trigonometric relation. Write down all 

steps and use a table if necessary.  

Frame 2. Questionnaire (BELLOSO, 2016, 109-118) 

4.1 Results 

There are differences in the number of tries students need to reach conclusions and to 

convince themselves on the veracity of inductive arguments. Some students find a first 

conjecture, and try to verify it in a number of tries: the inductive argument arises from 

the lack of counterexamples; some other students only give an example. For example, 

one of the first motivational questions is oriented to conclude that inner angles in a 

triangle add up to 180º. Some students draw many triangles and they fail to find a 

particular one where angles add up to an alternative number, i.e., they “prove” the 

property α+β+γ=180; other students don’t hesitate to present just a couple of triangles 

(figure 6). 
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Cuestion: “Tray to conclude a 
relation for the angles (write 

down all steps)” 
Answer: “The trhee angles add 

up 180º” 

 

Answer: “Angles A, B and C 
add up 180º”; then, s/he gives 6 

particular examples 

FIGURE 6: Examples vs inductive argument 

The dynamic model displays decimal numbers in the screen, and students are required 

to make calculations to two decimal places. Yet, standard mathematical activity at 

schools and usual textbooks present problems with only integer coefficients and values. 

This fact produces a phenomenon where students leave decimals out and operate only 

with the integer part (figure 7). 

 

Answer: Students give 6 
examples ommiting decimals, 
and conclude the following, 

“We get 180º in two triangles, 
but its not general” 

FIGURE 7: Pass over decimals 

Meanwhile, as a rule, students make a correct use of the dynamic model in the context 

of the explorative moment, and they achieve the main goal of the activity, i.e., they 

collect row data from the model, they analyze it and they express their conclusions. 
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Once the explorative moment is over, students solve a similar situation with the 

illustrative model, which allows accurate calculations in the spreadsheet; this second 

moment increases the amount of data, and students validate their first conjecture: 

trigonometric ratios only depend on the angle (figure 8). 

 

Answer: Columns correspond to 
(1) angle, (2) hipotenuse length, 
(3) adjacent legs length, and (4) 

the relation students find. All 
relations solely depend on the 

value for the angle. 

FIGURE 8: Collecting data from the illustrative model: cosine 

When attending traditional mathematical lectures, students get from teachers a strong 

impression that algebra is the most important component in mathematics. This 

impression comes from the fact that teachers begin their intervention from a particular 

“nice” formula, and they transform it by means of algebraic transformations to another 

bright and precise expression. In this activity, students are not familiar with basic 

algebraic manipulations, and they fail to obtain a symbolic formula for the numerical 

expression they get, even though they can precisely describe it in natural language 

(figure 9). 

 

Answer: “All [quotients] are 
less than 1; most of them 

between 0,5 and 0,8, but there 
are some between 0,9 and 1; the 
[invariant] relation arises when 
dividing the opposite leg by the 

hipotenuse” 

 

Answer: “The [invariant] values 
arise from the quotient of the 

opposite leg and the hipotenuse 
and all of them are less than 1” 

FIGURE 9: Use of natural language to express formulas 
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4.2 Brief analysis 

The activity follows an explorative structure in order to build inductive arguments, and 

students are required to present their own hypothesis and conjectures. Thereby, each 

student presents a different conjecture, depending on the empirical data they work with: 

one student claims that sinus is a value between 0.5 and 1; some other proposes a better 

approach, and claims that the value is a positive value, less than 1 (figure 9). The 

successive arrangement of explorative and illustrative models progressively increases 

accuracy in those calculations. Once the explorative didactical situation is over, the 

teacher is responsible to show the student the institutional meaning of the ratio and the 

correct lower and upper bounds and mathematical values (frame 1). 

The use of numerical sets other than integer numbers (rational or real numbers) is 

problematic, and school mathematical activity often slips coefficients to integer 

numbers, in order to reduce cognitive impact and avoid didactical obstacles. In 

consequence, students do not use decimal numbers, and tend to round numbers to their 

integer part. Dynamic models naturally show and compute decimal numbers, and 

therefore, promotes the use of decimal numbers, since trigonometric theorems do not 

arise when skipping the decimal part. 

When we request a student to confront an explorative situation, s/he is not supposed to 

know all linguistic elements involving the mathematical context. When using 

technological instruments (software, calculators), a student who lacks a particular 

linguistic element to formulate a conjecture or explain a calculation, would turn to that 

instrumental interaction. For example, figure 10 shows a production where the student 

turns to “calculator language” to explain how s/he used an inverse calculation (Shift + 

Sin) to obtain the angle from its trigonometric ratio, imitating the order in which data is 

introduced in the calculator. 

 

FIGURE 10: Use of “calculator language” 
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Conclusions 

In primary and secondary education, ostensive representations of mathematical objects 

are primordial for mathematical activity. Dynamic geometry software is a validated 

instrument to organize mathematical learning and teaching situations, with the capacity 

to present mathematical objects in many different but interrelated semiotic registers, 

showing a wide gallery of ostensive representations. There are three basic moments 

(explorative, illustrative and demonstrative) of the mathematical activity where the use 

of dynamic models is pertinent. We have described in this article a theoretical proposal 

of such models in the context of trigonometry and we have shown the results of a 

particular experience where students successfully use the models. For those teachers 

who are willing to use the proposal by themselves, we include some guidelines in 

Annex A. 
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ANNEX A 
Guidelines and Didactical Information for Teachers 

A.1 General Information 
Students can use Dynamic Geometry Software in two different basic ways. In the one 
hand, students can use the software freely to build their own constructions and explore 
mathematical properties. In the other hand, teachers can use the software to design a 
didactical situation, a closed construction or dynamic model, and students would use it 
as an antagonistic medium to learn mathematics. 
The second approach metaphorically takes the name “black box”, since the design of 
the model remains hidden to the student. The objective of “black box” models is to 
center classroom activity in the different moments of mathematical activity (to explore, 
illustrate and demonstrate mathematical properties). Otherwise, when using it in a 
freeway, students focus their activity in programing, and the mathematics they can 
develop are restricted to the previous informatics knowledge they have. Programing is 
also an interesting activity, of course, but if students are required to be fluent in the 
programing instrument as a previous stage in order to do mathematics, the primary 
objective of the activity (to do mathematics) can suffer a metacognitive shift to other 
type of activities (the instruction on the use of the instrument). 
Manipulative materials, paper and pencil and dynamic software are examples of 
supports that could be use in mathematics practice. The late allows a classroom 
management centered on properties, rather than on individual examples, and therefore, 
dynamic constructions help to cross the “inductive-deductive” gap from explanation to 
formal proofs. Thus, GeoGebra contributes to shorten the distance between the 
interpretation of an example as an “isolated object” and as a “representative of a class”. 
This question is essential in any process of generalization, in which intensive (general) 
and extensive (particular) objects are involved. The constructions presented in this GG-
Book have the following labels to identify the algebraic level required to use them: 

- Algebraic level 0: arithmetic; no algebraic knowledge required whatsoever. 
- Algebraic level 1: incipient; students recognize intensive objects in natural 

numeric, iconic or gestural language. 
- Algebraic level 2: intermediate; students manipulate isolated variables. 
- Algebraic level 3: consolidate; students manipulate algebraic expressions and 

solve equations. 
- Algebraic level 4: advance; students manipulate algebraic expressions with 

variables and parameters. 
In many explorative constructions, the use of “paper and pencil” is also required, since 
the translation of information between different views on the model (graphical view and 
spreadsheet) and the translation of information from one support to another (computer 
and paper) is critical in school mathematical activity. 
Link to the GGB-Book: http://www.geogebra.org/book/title/id/oOGHNoq8#  
 
A.2 Chapter 1 
 
GGB-Book chapter 1: Construction of trigonometric ratios, the sine. 
Objective: Introduction to trigonometry and trigonometric ratios. 

http://www.geogebra.org/book/title/id/oOGHNoq8


  
Revista do Instituto GeoGebra de São Paulo, ISSN 2237- 9657, v.5 n.2, pp 30- 55, 2016                 51 

 

Student previous knowledge: General knowledge on triangles (classification according 
to sides and angles, Pythagorean Theorem, Thales Theorem), notion of angle, basic 
arithmetic operations. 
Algebraic level: “2”. 
Description of models: 
The first model is explorative and shows a dynamic square triangle, with three relevant 
pieces of information: the amplitude of an acute angle, the length of the opposite side to 
this given angle and the length of the hypotenuse. The model is “two dimensional”, i.e., 
the user of the model can select the amplitude of the acute angle (by inserting a 
numerical value in an “input box”) and the length of the base of the triangle (by 
dragging a vertex, “point on a line”). When the user inserts the acute angle, the “input 
box” disappears and would not be visible again until the students decides to change to a 
triangle with a different angle. 
The second model is illustrative, shows the same triangle of the explorative model, and 
includes a spreadsheet to aid calculations. Three columns organize the information in 
the spreadsheet: length of hypotenuse, length of opposite side, free column for 
calculations. 
The third model is demonstrative. It does not show any numerical information, and 
therefore, is essentially different from the previous two. A “control box” superimposes 
the dynamic triangle of the explorative and illustrative constructions on a construction 
of Thales Theorem. 
Use and steps: 
In the explorative and illustrative models, student work in pairs and would be names A 
and B. 
1) Student A must prepare the starting ground. She introduces a numerical value for the 
angle and drags the orange point to modify the base-length. This way, the starting 
position is not been totally given, and at some point, the student is responsible of the 
values that would arise in the calculations. 
2) Student B writes down the values of the triangle from the model. When using the 
explorative model, the transcription would be into paper, and calculations made by 
hand. When using the illustrative model, student would perform both transcription and 
calculations on the spreadsheet. The task for student B is to perform calculations with 
the given information. 
3) Students switch positions. Student B decides a new position for the orange point 
(without changing the angle, since the “input box” is gone for the moment), and student 
A performs new calculations. Student repeat steps 2 and 3 a number of times. 
4) Students must formulate a conjecture and the conjecture must be coherent with the 
obtained data. 
5) Students push the “new angle” button, and they start again from step 1 with a new 
triangle. 
6) After repeating the process with a number of triangles, students reformulate their 
conjecture, which must be coherent with the obtained new data. 
Finally, the demonstrative model can be used by students A and B ether independently, 
ether while teacher explains the deductive argument. 
1) Student A decides a position of Thales Theorem. 
2) Student B superimposes the triangle on the geometrical construction. 
3) Student A and B switch positions, and they repeat steps 1 and 2. 
Observations: 
Trigonometric ratios are definitions and arise from invariant properties over triangles. 
Students use a numerical model as a first approach to explore those properties, using the 
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basic strategy “arithmetic calculations”. The integrate use of “paper and pencil” and 
“dynamic software” is critical, since the mathematical activity goes from one support to 
another, and back. Students make calculations until they arrive to their arithmetical 
threshold, i.e., their arithmetic/algebraic limit. When calculations become tedious, the 
spreadsheet is required. The absence of counterexamples in the study of many cases 
makes it possible to construct and inductive argument, and students are convinced that 
the property is true for any particular triangle. In addition, the dynamic model shows a 
triangle where the area of the triangle is variable. Therefore, the section of the plane 
between two rays is variable, even though the angle continues constant. Hence, the 
dynamic model contributes to overcome a classical epistemological obstacle: the 
amplitude of an angle does not depend on the area of the inner surface. The process 
should end with a deductive argument to prove that trigonometric ratios are invariant, 
and thereby, they are worth a definition. In this last step, geometrical formal language 
and Thales Theorem are required. 
 
A.3 Chapter 2 
 
GGB-Book chapter 2: Transition to trigonometric functions. 
Objective: Presentation of trigonometric functions as a dynamic development of 
trigonometric ratios. 
Student previous knowledge: General knowledge on triangles (classification according 
to sides and angles, Pythagorean Theorem, trigonometric ratios), notion of angle. 
Algebraic level: “2-3”. 
Description of models: 
The chapter contains five models. The first three models are explorative and the last two 
illustrative. In the explorative models students play individual games as they visit, little 
by little, the graphic notions of function, periodic function and period. 
In the first explorative model, when the student pushes the “play” button, an orange 
point start to move in real time along the positive direction on the abscise axis. 
Dragging on the point, student manipulates the ordinate of the point to draw a function. 
In the second explorative model, again, the student pushes the “play” button to put into 
movement the orange point. When dragging the point, the model shows a second point 
(dark grey) which moves in translation of the orange one at a certain distance on the 
abscise axe. The text of the model shows additional information, i.e., the formal 
symbolic definition of a periodic function. 
The third explorative model is similar to the second but includes a small improvement. 
Before putting the model into movement, the student must decide a period for the 
function. The model shows as many dark-grey points as needed, in order to draw a 
periodic function. 
After those previous three explorative models, students manipulate the two illustrative 
models, to see how the goniometric circle becomes a periodic function. 
The first illustrative model is a representation of the goniometric circle. The model 
includes a square triangle inside the goniometric circle. The sine ratio of the triangle 
represents the ordinate of the point in the Cartesian plane as well. The student can use 
the “play” and “restart” buttons to activate the model. 
Finally, the second illustrative model represents the same goniometric circle of the 
previous construction, in motion along the abscissa. The orange point represent the 
ordinate of the triangle vertex in the goniometric circle. The angle on the goniometric 
circle corresponds to the independent x variable of the function, while the orange point 
paints the y=sin(x) graphics. 
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Use and steps: 
Students use the explorative models individually. Following the information on the 
books, students push the “play” button and drag the orange point to draw a function. In 
the last explorative model, the periodic function construction requires additional 
information, i.e., the introduction of a number for the period. 
The illustrative constructions can be ether used individually by students, or can be used 
by a teacher while she explains the development of the goniometric circle into a 
periodic function. 
Observations: 
Once the notion of trigonometric ratio is presented, a further step is the development of 
trigonometric functions, as the angle α becomes a variable x. This interpretation of the 
notion is different from the previous one and has much to do with movement and 
velocity: the value y=sin(x) continuously changes in relation to x∈(0,360) 
An animation with a “play” button presents the modification of the perspective in an 
explorative construction. The notion of periodic function appears by means of a game, 
where the student creates a partial function, and the dynamic model reproduces that 
portion of function every given period. 
The way the ordinate of a point in the goniometric circle becomes the ordinate of a 
point in the Cartesian plane is not natural for a student in the first term. After the 
explorative moment, once the student is familiar with the periodicity of a function and 
its graphics, we use an illustrative model to show how the goniometric circle spreads on 
the Cartesian plane. This approach follows the premise that natural phenomena, force 
and velocity are useful for modeling situations and problems. 
The first illustrative construction shows the triangle and its sine ratio within the 
goniometric circle. The second illustrative construction puts the entire goniometric 
function into movement along the Cartesian plane, in a way where the point showing 
the ordinate of the triangle and the point traveling along the graphic are actually “the 
same point”. 
 
A.4 Chapter 3 
 
GGB-Book chapter 3: Properties of trigonometric functions, the wave function. 
Objective: Exploration, illustration and demonstration of trigonometric properties, 
exemplified in a particular wave function. 
Student previous knowledge: Trigonometric ratios and functions. 
Algebraic level: “3-4”. 
Description of models: 
The chapter contains four models. The first two models are explorative and 
demonstrative models regarding trigonometric projections. The last two models are 
explorative and illustrative models regarding a particular wave function. 
The first model shows an explorative situation where a dynamic square triangle shows 
all three side-lengths, and the numerical value of an inner acute angle. The position of 
two orange points represented in a circular arc, change the two dimensions of the 
triangle (radio and angle). The construction is similar to the illustrative model in chapter 
1, and shows both the graphical view and the spreadsheet. 
The second model shows a geometrical situation where each segment length represents 
a particular trigonometric expression. The user is required to introduce the amplitude of 
an angle in an “input box”, and to decide the location of a mobile orange point in a 
circular arc. The situation is demonstrative and the target-knowledge of the previous 
explorative model is necessary to solve it. Students must translate information from the 
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graphic view to the spreadsheet. There are two additional “control boxes” to show and 
hide hints to aid the seek properties: 
 

sin(α+β)=sin(α)cos(β)+sin(β)cos(α) 
cos(α+β)=cos(β)cos(α)-sin(α)sin(β) 

 
The following two models regard a particular aspect of wave functions. Each linear 
combination of sine and cosine functions admits a unique representation as a modified 
sine function: 

asin(x)±bcos(x)=Asin(x±α) 
 
The explorative model shows a random game. A red function represents the left side of 
the equation, and a blue function represent the right side, as two different functions. A 
“shuffle” button presents the red function by random, and the spreadsheet shows the 
numerical values for the “red” parameters a and b. The user must manipulate the “blue” 
sliders (parameters A and α) to superimpose the blue graphic on top of the red function. 
The spreadsheet also shows the “blue” values. When both graphics are the same 
graphic, students must find the numerical relation between red and blue values. 
The final model modifies the previous model to illustrate the solution of the problem. 
Students can thereby verify their conjectures. The model does not give an argument to 
demonstrate the property, but shows an alternative geometric structure that “comes 
together” when the blue sliders take correct values and gives a hint to find the algebraic 
relation between red and blue parameters. 
Use and steps: 
The first model explores trigonometric projections. Students use the explorative model 
in a similar way to explorative model in chapter 1. Students work in pairs and translate 
information from the graphical view to the spreadsheet, in order to seek patterns on 
trigonometric projections. The objective is to aid students arrive to the relation between 
lengths in a square triangle, which would be used to demonstrate further properties. 
Student A selects positions for both orange points in the circle, thus, changing the value 
of the radio of the circle and the length of the hypotenuse in the triangle. Then, student 
B translates the numerical values of the triangle from the graphic view to the 
spreadsheet and makes calculations. Students A and B interchange their positions and 
repeat the previous two steps a number of times. Finally, students write down 
conclusions about the observed numerical relations and translate these conclusions to 
algebraic language. 
The use of the second demonstrative model requires the emerging knowledge of the 
previous model. By turns, each student seeks for a particular relation and translates it to 
the spreadsheet using general (not numerical) expressions: in the model, students 
introduce a particular numerical value for angle α and there is a geometrical link 
between angles α and β, but this implicit constraint is unknown and not necessary 
during the resolution process. Students organize the collected symbolic information to 
formulate the property: the model contains two control boxes to show and hide hints 
using a color code. Students work in pairs (students A and B). Student A selects a value 
for the acute angle in the green triangle, (this value must be acute, otherwise, disfigures 
the geometric structure). Student B selects a position for the orange point. Observe that 
in the geometric structure: the acute angle in the yellow triangle is always equal to the 
green value; all triangles are square; hypotenuse in the red triangle is unitary; control 
boxes show hints about equalities on lengths. By turns, students one and two complete 
all missing symbolic information in the spreadsheet (remember to write all information 
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using “quotation marks”). Use expressions such as 
sin(α),sin(β),sin(α+β),cos(α),cos(β),cos(α+β). Students write down conclusions about 
the observed algebraic equalities. 
The final two constructions regard an approximation to wave functions. In the 
explorative construction, students must find the values for the “blue” parameters to 
superimpose both graphical, translate these values to the spreadsheet and find a 
numerical relation between “red” and “blue” parameters. In both explorative and 
illustrative models, students work in pairs. Student A shuffles values a and b, pushing 
the red button. A new wave function would appear in the graphic view. Student B 
manipulates sliders to select values A and α, so the blue graphic superimposes the red 
one. Student A tries to find a numerical relation in the spreadsheet. Students A and B 
interchange roles, and repeat steps a number of times. Students write down conclusions 
about the observed numerical and algebraic relations. The last illustrative construction 
enhances the seek relation in an additional geometric construction that gives a hint of 
the property. 
Observations: 
Trigonometric functions satisfy a great number of properties. Nevertheless, rigorous and 
formal demonstrations of such equalities are hard to present to students, since they 
require the introduction of many auxiliary results and complex symbolic calculations. In 
high secondary education, dynamic models can be used to explore, illustrate and 
sometimes prove trigonometric relations (at least, as we would see, partial proves can be 
presented for particular cases). 
Furthermore, constructions in this last chapter are examples of how you can use 
dynamic models to enhance the trigonometric representation of points and their radio-
angle coordinates. 
 
A.5 Final remarks 
 
All examples shown until know are either numerical or use algebraic codes to represent 
function variables. These dynamic models are suitable for student who ether are familiar 
to the use of intensives to codify information and use these intensive expressions for 
numerical calculations (algebrization level 2), or are capable of symbolic calculation 
with variables (algebrization level 3). In more complex algebraic situations, students 
must deal with parameters (algebrization level 4), and the different nature and the 
distinction between variable and parameter can be problematic. In the design of these 
dynamic models an explicit decision has been made to use “sliders” to represent 
parameters, and thus, to give a slider a unique meaning or interpretation. 


