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Sobre um problema  
que não era interessante para Erdős 

 On a problem that was not interesting for Erdős 
 

Zoltan Kovacs1 
RESUMO 

Estudamos um problema na geometria euclidiana elementar utilizando múltiplas abordagens. 
Concluímos que o estudo assistido por computador de hoje pode introduzir novos métodos para 
compreender melhor as relações e conceitos. Nomeadamente, usando as Ferramentas de 
Raciocínio Automático do GeoGebra, vários detalhes do problema original podem ser colocados 
em um contexto algébrico e, portanto, sua investigação automatizada é possível, em algum 
sentido, mecanicamente. Ainda assim, o pensamento criativo e a reformulação do problema em 
um cenário diferente continua sendo útil. 

Palavras-chave: Ferramentas de Raciocínio Automático; Teorema do Ângulo Inscrito; teorema 
de Pitágoras. 

 

ABSTRACT 

We study a problem in elementary Euclidean geometry by using multiple approaches. We 
conclude that today's computer assisted study can introduce new methods to understand 
relationships and concepts better. Namely, using GeoGebra's Automated Reasoning Tools, 
several details of the original problem can be put into an algebraic context, and therefore, its 
automated investigation is possible, in some sense, mechanically. Still, creative thinking and 
reformulation of the problem in a different setting remains useful. 

Keywords: Automated Reasoning Tools; inscribed angle theorem; Pythagorean theorem. 

Introduction 

Paul Erdős is said to be one of the most prolific and influential mathematicians 
of the 20th century. He wrote about 1500 scientific papers with more than 500 co-
authors, mostly in the field of number theory, but he influenced several other areas 
of mathematics. Despite born in a Hungarian family he worked in several countries 
in the world and motivated many generations to find new conjectures and work hard 
to prove them. 

I met Erdős twice in person. First, when I was about 15 years old, I attended a 
mathematics summer camp in Budapest, led by Lajos Pósa, a student of Erdős's, his 
“favorite child”. As a special event, Erdős visited the camp, and the young people 
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had the opportunity to ask him questions. At a certain point of the meeting, I could 
go to the blackboard and show the following geometric problem to Erdős: 

Given the triangle ABC. Let us erect squares on its sides externally. Choose a 
point on an external side of one of the squares, say J (see Figure 1), join it with C 
and consider the intersection point K with the external side of another square. Now 
repeat this idea and create point L by finding the intersection of KA and HI. Finally, 
do this again by intersecting LB and DE, getting the final point M. 

 
FIGURE 1: The original problem setting, redrawn as a GeoGebra construction 
SOURCE: Author's own work 

Question: How to choose J to get back to this initial point, namely, to have 
M=J? 

After thinking a couple of seconds, Erdős wanted to hear the solution so I 
quickly disclosed a possible approach. Surprisingly, he was not excited, claiming 
that “I don't think this is very interesting.” At that time, I knew very little of Erdős's 
life, his attitude and contribution to mathematics, so I was not so disappointed as one 
may expect. But I still remember that day when I missed a possible connection to 
higher mathematics by remaining a young man who had a question that was “not 
selected” by Erdős. 
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In fact, this problem came from a very positive and accepting working group 
of young students, led by enthusiastic Hungarian teachers István Vincze and József 
Kosztolányi, both influenced by Pósa's experimenting approach to teach mathematics 
as a discovery adventure. The Hungarian education system, around 1990, was a very 
open scene for teaching experiments in mathematics, and several new books were 
published written by experts that were well-accepted and supported by the Hungarian 
government as well. (See, for example, Reiman (1987) for a book on elementary 
geometry written for gifted high school students.) 

Despite that, this type of geometrical problem was difficult to study at that 
time. No one could solve it in my class, and in the school either. Besides being active 
in learning mathematics I was one of the editors of the local newspaper of the school, 
and I was responsible to create mathematical puzzles for the other students. We, the 
young editors, printed, copied and sold the newspaper on our own, with very little 
support from the school's teachers. In fact, the newspaper contained other types of 
articles like poems and funny stories, but there was a strong bias towards 
mathematics. We usually collected the solutions of the monthly puzzles in a mailbox 
settled in the school building and evaluated them right after the submission deadline. 
For this problem, however, there were not any solutions submitted. So, I assume that 
this problem was hard: the school's focus was on nature sciences, so it was indeed 
surprising that no one could solve this puzzle. 

After several weeks, the only solution that was finally found was sent to us by 
the father of one of my classmates, György Gyurkó, having doctorate in mathematics. 
He found an easy and very elegant solution. We discuss his idea in this paper later, 
but first we focus on the immediate answer that can be obtained with GeoGebra 
nowadays. 

In fact, such questions can be quickly solved by GeoGebra today, unless you 
are not familiar with some new features. To be honest, the simple way works just for 
some particular cases, but it is still much more than we had in the nineties! The applet 
at https://www.GeoGebra.org/m/FZM8J9T8 focuses on the GeoGebra command 
LocusEquation(M ≟ J, J) and the obtained equation 0=-1 shows that there is no 
solution, at least for the considered triangle. (If you cannot see the equality 0=-1 
immediately when opening the web page, then just drag one of the vertices of the 
triangle to recompute the equation.) It is important that each step of the construction 
is drawn with one of the “allowed” tools or commands, namely, to create a triangle, 
erect squares, put a point on a line, and intersect lines or segments, in our example. 
The “allowed” tools have algorithmic representations in GeoGebra's internals that 
make possible to translate geometry into algebra. Therefore, instead of investigating 
a pure geometric drawing, the computer can set up a couple of equations in several 
variables and obtain the consequence purely in an algebraic way. 

https://www.geogebra.org/m/FZM8J9T8
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1. GeoGebra's Automated Reasoning Tools 

 

GeoGebra 5.0 (published in September 2014) came with several new features, 
but its advanced computer algebra support was something new. The underlying 
computer algebra system was already changed to Giac in version 4.4. Giac is a 
minimalistic but very robust system that provides fast manipulation on algebraic 
equation systems. It is developed by the French mathematician Bernard Parisse. 
Since GeoGebra 4.4 fast solution of a system of equations in several variables is 
performed in a very efficient way because Giac uses an effective method to compute 
the Gröbner basis of a so-called polynomial ideal. Also, a related operation called 
elimination was done quickly enough to support real-time animation of symbolic 
locus visualizations (see KOVÁCS and PARISSE, 2015). 

In fact, other systems were also considered to add symbolic computation 
support to GeoGebra, before Giac. Directly before version 4.2 Mathpiper was used 
to perform such heavy operations, and later Reduce in version 4.2. They provided, 
however, unsatisfactory support in a web browser. Giac was proven to be a very 
efficient computation engine during the years for a very wide set of applications, 
including automated reasoning. 

At this point we need to give credit to a larger team that contributed in 
developing GeoGebra's Automated Reasoning Tools, first to the initiator Tomás 
Recio and his research colleagues Francisco Botana, M. Pilar Vélez, Miguel 
Abánades and Sergio Arbeo. This work was started in GeoGebra in the early 2010s, 
but the theoretical foundations go back to the 1990s or even earlier. The first attempts 
to translate geometry into algebra and investigate the algebraic counterpart was 
probably started by Wen-Tsün Wu and his student Shang-Ching Chou: the latter 
published a book on proving 512 geometrical statements, completely automatically 
by using this concept, in 1987 (CHOU, 1987). Several papers (and even several 
computer software) were published based on the work of these Chinese experts, 
however, to allow exploiting the benefits of algebra-geometric proofs for a larger 
audience, an open-sourced dynamic geometry system was required: GeoGebra. 

At the time of writing of this paper GeoGebra is at version 5.0.638.0: the 5.0 
series is a rolling release, providing the classic Java interface. Similarly, version 
6.0.638.0 was published at the same time (on 20 April 2021): the 6.0 series is another 
rolling release, targeting a modern-looking application for desktop users. In the last 
years GeoGebra has reached a critical number of users (about 100 million worldwide 
to date) that made it necessary to keep the development under the control of a 
professional programmer group. This prevents our research team, led by Recio, to 
quickly add new features to GeoGebra. Instead, we made a so-called fork of 
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GeoGebra 5.0.591.0 and add our own improvements to this version by publishing 
the extended program under the name “GeoGebra Discovery”. GeoGebra Discovery 
contains all important features of GeoGebra, with the following extra features: 

• The Discover command allows the user to find interesting features of a 
geometric figure, by selecting a point. The found features will then be 
proven automatically and reported to the user visually. 

• The Compare command enables comparing two geometric quantities, 
by searching for a relationship between them. 

There are some additional features that are not covered in this paper. We plan that 
our improvements will be finally incorporated in the rolling releases of GeoGebra, 
by the professional help of the programmers of the GeoGebra Team. Here we 
emphasize the importance of the collaboration between the GeoGebra developers 
and our research team. 

 Finally, we point the reader to GeoGebra Discovery's website 
https://github.com/kovzol/GeoGebra-discovery. Here additional references can be 
found, and the program can be downloaded for various platforms, including 
Windows, Mac and Linux. Further information can be obtained in Hohenwarter et al 
(2019) and Kovács et al (2018). 

 

2. A proof via the Inscribed Angle Theorem 

 

One drawback of our first approach by getting the solution via the 
LocusEquation command is that we know nothing about the reason why the points J 
and M never coincide. Even if we know that something is true, another challenging 
question should be raised: why? This should be an essential part in mathematical 
thinking. 

This year I announced this problem for my prospective mathematics teacher 
students in the frame of a course “How to solve contest problems?” At the University 
of Linz, Austria, I tried to keep this course as old-fashioned as possible, by pointing 
on the essence of mathematics many times. Unfortunately, many of my students 
preferred to use a kind of modern method to solve open questions, namely, to search 
for an answer with an Internet search engine! On one hand, this is usually successful 
and therefore something positive, but it has nothing to do with mathematical thinking 
and mathematical problem solving. To defend myself I must admit that nowadays it 
is difficult to give a question that has no answer anywhere on the Internet in some 
form already. I hoped that my 1990 problem was still unpublished, so I decided to 
try by showing the Figure 2 as problem setting. 

https://github.com/kovzol/geogebra-discovery
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FIGURE 2: The problem setting in 2021 
SOURCE: Author's own work 

Of course, this figure is a kind of cheating. By using the technical trick that 
the “lines” JCK, KAL and LBJ can be drawn as circle arcs with a very large radius, 
we can give the optical illusion that the construction is achievable for some well-
chosen inputs. Therefore, the problem setting was to find suitable positions for J, K 
and L, instead of asking for a proof of impossibility. 

This assignment was not easy for the students. Among 25 participants there 
were only three who submitted a solution, and only two were correct. Both used 
Gyurkó's concept: If one assumes that a suitable triangle JKL can be constructed, 
then the sum of its interior angles must be less than 180 degrees, and this is a 
contradiction. If someone is a bit familiar with hyperbolic geometry, Figure 2 can 
point towards this concept, because “triangle” JKL looks like a triangle in the 
Poincaré model of the hyperbolic geometry (see Figure 3). 
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FIGURE 3: A tessellation of the hyperbolic plane with triangles 
SOURCE: Claudio Rocchini: Hyperbolic Order-4 bisected pentagonal tiling, Wikipedia,  

https://it.wikipedia.org/wiki/Geometria_iperbolica, 15 February 2007 

We only must show that all angles ALB, BJC and CKA are less than 60 degrees. 
This is, again, not completely trivial. First, the same statement is true for 55 degrees, 
but not for 50. To learn the reason behind this, one requires some more thinking and 
therefore more time. One possible way to show these properties is to use 
trigonometry, but I rather prefer pure Euclidean methods that do not require a 
calculator and thus numerical approximations. Why am I against calculators when a 
geometric problem is discussed? Well, using a calculator for solving mathematical 
problems is a kind of bad habit, similarly to the concept that doing mathematics is 
nothing more than a clever combination of several formulas. Geometry teaches us to 
think differently about mathematics. 

So, when I disclosed the solution during my lecture, I started to draw a couple 
of different triangles ACK' inside the square ACFG. Sometimes K' was lying on side 
FG, but sometimes inside the square. This was a kind of introduction to explain the 
concept of the inscribed angle theorem, a generalization of Thales' circle theorem. 
The question was: How to draw a large set of triangles ACK' with fixed side AC 
where the angle at vertex K' is fixed. Usually, I do not assume that students have a 
deeper knowledge on facts in Euclidean geometry, but Thales' circle theorem is 
mostly well-known and interiorized enough to be a basis for a generalization. In 
addition, most students usually have no experience in using the LocusEquation 
command, so an input like LocusEquation(α ≟ β, K') has little to do with their 
former knowledge. 

Figure 4 shows how this concept can be sketched up in seconds. First the 
square ACFG is created. Then the triangle ACK' is created where K' is arbitrary. 

https://it.wikipedia.org/wiki/Geometria_iperbolica
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Next, an arbitrary but fixed angle PQR is constructed. We denote this angle by α, 
and the angle AK'C will be denoted by β. The above mentioned GeoGebra command 
delivers the equation eq1 which is drawn as a magenta set. Here we need to explain 
that the obtained set contains all points K'' such that the angle AK''C equals to the 
angle α. By dragging the points P, Q and R the user can learn that the set eq1 is 
changing dynamically, but it is mostly a set of two circles. 

 
FIGURE 4: An algebro-geometric introduction to the inscribed angle theorem 
SOURCE: Author's own work 

In fact, GeoGebra here shows a larger set than expected. In a strict geometrical 
meaning the sought set should not contain the inner parts, only the arcs d1 and d2 
(shown as dashed lines in Figure 4). This is more than confusing, especially for those 
users who do not have any deeper knowledge in algebraic geometry. Algebraic 
geometry explains this issue to us, namely, that there is no way to use only equation 
systems and no other techniques to exclude the inner parts. GeoGebra internally uses 
Gröbner bases to compute the locus equation, and they are unable to handle 
inequalities that may be required here to restrict the output to the outer arcs. (For a 
very detailed explanation see COX et al, 2007, Chapter 4 on algebraic closures. In a 
nutshell, the set of two circles is the algebraic closure of the two circular arcs.) 

It is surprisingly easy to create an imperfect output, based on the 
LocusEquation command. Some more work is required if we want to get an accurate 
picture, by explicitly constructing the two arcs. We note that the locus equation still 
helps us a lot in the imagination of a first concept of the set of locus curves. Figure 
5 shows a possible way by coloring the various double arcs with different colors, 
based on the angle they belong to. (See LOSADA, 2014, for more on dynamic 
coloring.) We learn by experimenting that a continuous change of the angle α results 
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in a continuous change of the locus. This implies that the various loci, corresponding 
to different α values, are non-intersecting. Finally, we obtain a kind monotonicity of 
the locus curves: The greater radius a pair of arcs has, the greater value of α 
corresponds to it. Of course, we could find a numerical formula to express this 
connection, but, for the solution at least, we do not need an exact expression, only 
the property of monotonicity. This enables finding a purely geometric solution 
without involving unnecessary algebraic magick. 

 
FIGURE 5: Dynamic coloring helps understanding the inscribed angle theorem 
SOURCE: Author's own work 

Now we can go back to the original problem setting, and to the subproblem 
which asks about the angles, namely, when K is on segment FG. Both successful 
students found the magical angle 53.130102… degrees, and it turned out, that this 
border situation occurs if K is the midpoint of FG. On the other hand, after some 
experimenting it seems plausible that this angle can also be constructed by dragging 
points P, Q and R to a simple situation, namely, to make a Pythagorean triangle with 
sides 3, 4 and 5. For me, this experiment resulted in a conjecture, and I was very 
interested in giving a simple proof, of course, without any help of trigonometry. 
Before having a deeper look on this, we could summarize how the inscribed angle 
theorem helps us showing the impossibility to choose a suitable point K on FG: 

• If K is the midpoint of FG, we have an angle less than 54 degrees at K 
for the target triangle JKL, 

• if K is different from the midpoint of FG, then the angle is even less, for 
example, by choosing F or G, the angle will be just 45 degrees. 
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So, at the end of the day, the sum of the interior angles of “triangle” JKL cannot 
be more than 3 times 54 degrees, so JKL is not a triangle. This finishes the proof. 

 

3. Continue with further challenges 

 
The “magical angle” 53.130102… can inspire us towards another challenge. 

A simple reformulation of the challenge can be seen in Figure 6. We consider an 
arbitrary square ABCD, the midpoints E and F on two adjacent sides, and another 
midpoint G. In fact, G is a quartering point of side BC. 

 
FIGURE 6: Reformulation of the angle equality to a concyclicity problem 
SOURCE: Author's own work 

It is obvious that triangle BGA in Figure 6 plays the same role as triangle PQR 
in Figure 5. They are similar, since both have the same Pythagorean ratios, 3:4:5. 
Now we are about to show that angles BGA and BEA are equal. Instead of operating 
with angles we use the converse of the inscribed angle theorem: If points A, B, G and 
E are concyclic, then the angles BGA and BEA are equal. 

GeoGebra's Automated Reasoning Tools provide multiple ways to check 
concyclicity in a symbolic way. We can use the Input Bar by entering Relation({A, 
B, G, E}) to get a numerical check first, and then, by clicking “More…” we can 
obtain a complete statement. Mathematically the same result can be performed when 
typing Prove(AreConcyclic(A, B, G, E)) or ProveDetails(AreConcyclic(A, B, G, 
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E)), but these commands are designed for advanced users or programmers. Here we 
consider yet another method, namely, the Discover tool. It does not require any 
keyboard interaction. The user only needs to click on the Discover tool  (being 
available only in GeoGebra Discovery at the time of writing this paper) and selecting 
one point in the figure as the target of interest. Any of our four points will succeed, 
so let us simply choose point A. 

Figure 7, left, shows a communication window in GeoGebra: it contains some 
remarkable facts that are obtained in the figure, in connection to point A. All these 
facts are found in a mechanical way, using the algebro-geometric framework in 
GeoGebra's internals. In fact, some of the discovered properties are not surprising. 
For example, concyclicity of “ABCD” is somewhat trivial, but concyclicity of 
“ABEG” is exactly what we expect! Other relationships like parallelism of lines AB 
and CDE, furthermore lines AD and BCFG, and their perpendicularity, can also be 
considered trivial. On the other hand, showing, say, the perpendicularity of segments 
AE and DF may be some non-trivial assignment at introductory level for learners of 
geometry. Figure 7, right, shows the found properties in a visualized form: equal 
long segments are colored uniquely, and parallel/perpendicular line sets have the 
same color. 

 
FIGURE 7: Finding concyclicity by using the Discover tool in GeoGebra Discovery 
SOURCE: Author's own work 

I leave the reader to play with this simple construction a bit more. (One can, 
for example, discover parallelism of DF and EG, which is a special case of the 
midline theorem.) At last, Figure 8 is shown to identify additional grid points on 
circle ABEG, namely H, I, J, K, L, M, N and O, a total of 12 points! But after having 
a deeper look on the figure, and creating point P as center of the circle, it is quite 
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clear that 7 additional copies of the Pythagorean triplet appear, and this explains the 
reason quickly. 

One may investigate the question further how usual it is to have so many grid 
points on a circle. The reader can do further experiments in this direction, playing 
more with number theory than geometry, by studying the topic of the sum of two 
squares theorem (UNDERWOOD, 1978, Section 18). 

 
FIGURE 8: A circle with 12 grid points 
SOURCE: Author's own work 

As a final comment it can be highlighted that the equality of two angles was 
shown without using any numerical values like the “magical angle” 53.130102… To 
be precise, the two approximations of this angle do not match in Figure 5: the last 
digits differ! In the strict mathematical sense, a numerical computation that leads to 
an infinite process cannot be accepted if equality is to be shown. This means that the 
pure geometric reasoning, based on concyclicity, gives obvious evidence. 

One may say that we do not need to explicitly compute the “magical angle” to 
solve the original problem. Indeed, it is enough to show that it is below 60 degrees, 
and this is clear if we erect a regular triangle on side AC inside the square ACFG. 
The same explanation was found in Gyurkó's solution, back in 1990. 
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4. Erdős’s memory in the Euclidean geometry 

 
 

Honestly, I needed several decades to have a deeper understanding on what a 
genius Erdős was. Maybe the first step on this journey was Reiman’s introductory 
book for young mathematicians, mentioned above: it recalls Erdős’s conjecture on a 
simple inequality that holds in triangles (ERDŐS, 1935). It was proven by L.J. 
Mordell and D.F. Barrow in 1937, and it is usually called the Erdős-Mordell 
inequality. It states that for any triangle ABC and point P inside ABC, the sum of 
distances from P to the sides is less than or equal to half of the sum of the distances 
from P to the vertices. Even if the statement sounds simple, its proof is far from 
trivial. 

I can still recall Erdős’s words on some simple conjectures that are easy to 
understand even by babies, “csecsemők” in Hungarian. The sound of this word 
depicts the shocking fact that a conjecture can be extremely simple, but its solution 
may exceed the competence of the best researchers. I met Erdős in 1995 for the 
second time. I was already a university student in Szeged, Hungary. A huge 
audience, consisting of many great local mathematicians and other interested people 
listened to him in a full lecture room. A couple of months later he died, only hours 
after he solved a geometry problem in a conference in Warsaw. 

Can GeoGebra Discovery prove the Erdős-Mordell inequality by using these 
new technical means? To date, no. A brand new feature of GeoGebra Automated 
Reasoning Tools is the ability to prove certain inequalities. But the Erdős-Mordell 
inequality, as of today, cannot be proven with the most sophisticated new computer 
algebra methods, either, even if the problem is specified to an equilateral triangle, an 
isosceles triangle, or a right triangle. Paul Erdős remains with us, by challenging us 
with his own questions. 
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