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Artificial intelligence technology for radiation oncology understaff  

mitigation and cost-effective treatment planning 
Inteligência artificial para planejamento de tratamento e auxílio na escassez de  

profissionais em radioterapia 
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ABSTRACT 

Treatment with radiation therapy can be relatively inexpensive and highly effective, reducing the overall cost of healthcare, 

as well as saving lives of cancer patients. To face the posed challenges of laborious tasks and understaff in radiotherapy, the 

use of knowledge-based models (artificial Intelligence) to reduce the treatment planning times up to 95% might be a prom-

ising solution. One such tool, called RapidPlan (Varian Medical Systems, Palo Alto-CA), could be acquired with an invest-

ment of a small fraction of the treatment planning system cost. RapidPlan’s support during treatment planning results in a 

considerable increase in plan quality while reducing plan variability and elaboration time. The goal of this dissertation was 

to estimate the break-even point from where the time saved during treatment time would pay the initial investment on 

RapidPlan. Published data demonstrates that RapidPlan can largely benefit radiation therapy institutions by streamlining the 

treatment planning process and the break-even point started to be achieved after treating 112 to 2668 patients, depending on 

the cancer types treated for each group. Therefore, it may be possible to realize a return on investment within a reasonable 

time frame, while benefiting from gains in efficiency, and possibly mitigating understaffing and lack of experience in treat-

ment planning. 
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RESUMO 

O tratamento com radioterapia pode ser relativamente barato e altamente eficaz, reduzindo o custo geral dos cuidados de 

saúde bem como salvar vidas de pacientes com câncer. Para enfrentar os desafios impostos por tarefas laboriosas e falta de 

mão-de-obra na radioterapia, o uso de modelos baseados em inteligência artificial para reduzir os tempos de planejamento 

de tratamento em até 95% pode ser uma estratégia promissora. Um exemplo de tal ferramenta, denominada RapidPlan 

(Varian Medical Systems, Palo Alto-CA) pode ser adquirida com o investimento de uma fração do custo do sistema de 

planejamento de tratamento. O suporte do RapidPlan durante o planejamento do tratamento pode resultar em um aumento 

considerável na qualidade do plano, reduzindo a variabilidade e o tempo de planejamento. O objetivo desta dissertação foi 

estimar o ponto de equilíbrio a partir do qual o tempo economizado durante o tempo de tratamento pagaria o investimento 

inicial no RapidPlan. Pela avaliação dos dados publicados, pode-se concluir que o RapidPlan pode beneficiar amplamente 

as instituições de radioterapia, agilizando o processo de planejamento do tratamento e o ponto de equilíbrio começou a ser 

alcançado após o tratamento de 112 a 2.688 pacientes, dependendo dos tipos de câncer tratados para cada grupo. Portanto, 

é possível prever um retorno do investimento em um tempo razoável ao mesmo tempo que se usufrui de ganhos em eficiência 

e potencial mitigação da falta de pessoal e experiência em planejamento de tratamento. 

Palavras-chave: inteligência artificial; radioterapia; planejamento da radioterapia assistida por computador; custos de cui-

dados em saúde; investimentos em saúde; neoplasias. 
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INTRODUCTION 

In the digital age, radiation oncology has shown important 

advances due to advancements in image-guided precision ra-

diation therapy, cloud-based information technology, remote 

treatment planning, quality assurance, training, data collec-

tion and artificial intelligence [AI] tools. As a result of these 

developments, and due to the greater emphasis on early can-

cer detection and the consequent need for curative therapy, 

radiation therapy [RT] has a sustainable impact on future 

cancer care, emphasizing its cost effectiveness and long-last-

ing benefits.1  

There is a necessity of a collective transformation to expand 

access to high-quality radiation therapy and deal with the 

COVID-19 induced cancer backlog and the future cancer bur-

den worldwide.2 The emergency situation due to COVID-19 

brought focus to curative cancer treatment, so radiation therapy 

was prioritized over other cancer therapies.3 It led to radiation 

therapy centers exchanging experiences more frequently, and 

radiation therapy was identified as a safe COVID-19 cancer 

therapy that could be used to continue treating patients during 

the pandemic, as well as even a substitute for cancelled surgery 

for some malignancies. 

Treatment with radiation therapy can be relatively inex-

pensive and highly effective, reducing the overall cost of 

healthcare, as well as saving lives.4 It has been shown that 

full access to radiation therapy might require large invest-

ments, but the investment begins to pay off after 10 years 

when rolled out over 20 years and compared to human capital 

benefits over those years.5 There is insufficient access to ra-

diation therapy around the world and a lack of funding de-

voted to it. Radiation therapy is used in more than half of 

cancer patients and is involved in 40% of cancer cures.1 De-

spite of its high efficacy, only 7% of the cancer care budget 

in Europe is spent on radiation therapy.4 

AI has been investigated for different applications in med-

icine, including radiation therapy. AI methods aim to repro-

duce complex tasks in a timely manner with sufficient qual-

ity. AI has also been applied to improve the outcomes of 

time-sensitive cases6,7 and to free up time for pressing pa-

tient-related needs.8 For example, AI has been applied to 

auto-contour organs at risk9 and to help prioritize patients at 

risk of developing colorectal cancer.10  

Radiation oncology treatments involve a detailed planning 

process, where a trained professional, such as a dosimetrist, 

may spend several hours optimizing the radiotherapy plan.11 

RT departments might also be challenged due to lack of staff, 

caused by financial or qualification issues.12 Therefore, man-

ual treatment planning can be a time-consuming, thus an ex-

pensive activity which might reflect in overall treatment 

costs and decrease the treatment capacity of a radiation ther-

apy service.   

Patients from low- or middle-income countries might need 

to face long waiting times due to a shortage of capacity, 

which might directly impact the outcomes. As in Brazil, 

where among lung cancer patients, a study13 found that treat-

ment is usually provided within a reasonable period of time, 

in accordance with the 60-day law; there is, however, an as-

sociation between individual characteristics  and  the time to  

 

treatment, service provision in macro regions and factors 

related to it. Oncology service distribution reflects differ-

ences reported. Some regions may be underserved, while 

others may be overburdened thus treatment time is signifi-

cantly impacted by these factors. As a result, health care 

provision differs based on the patient's place of residence. 

Reports of disparities are possibly due to health access dif-

ferences to care services. Data derived from cervical cancer 

patients14 allowed to conclude that the wait of up to 60 days 

increased the risk of death, reinforcing the idea of that, 

when diagnosed with cancer, treatment should be started as 

soon as possible, preferably before 60 days. A large number 

of cancer patients who require radiation therapy in the Bra-

zilian public health system do not have access to this treat-

ment. The lack of RT treatment has a considerable negative 

impact on cancer survival; if radiation therapy was univer-

sally available, over 5000 deaths in the most prevalent can-

cer types would likely be avoided.15 Universal access to ra-

diation therapy is a very cost-effective public health pro-

ject16 that should be prioritized. 

 In determining the ensuing costs of radiation treatments, 

the applied fractionation modes, including dose distribution 

and the amount of time necessary to execute certain tasks, 

appear to be the most relevant. It's also crucial to consider 

the number of individuals who have been irradiated, which 

varies depending on the type of therapy modality utilized. 

Treatment planning and delivery tasks use the most effort 

and account for a significant percentage of total time. Ad-

vances in radiotherapeutic methods have enabled improved 

irregular target volume irradiation, as well as the potential 

of dose escalation, resulting in demonstrated improvements 

in treatment outcomes. When compared to 3D-CRT, the 

clinical efficiency of IMRT is notices, as it provides better 

quality of life more efficiently. For prostate cancer, the dif-

ference equated to approximately 20 additional QALYs for 

every 1000 treated patients, while IMRT offered significant 

advantages in terms of treatment efficiency, reduced tox-

icity, and lowered long-term care costs.17,18 To face the 

posed challenges of laborious tasks and understaffing in ra-

diotherapy, the use of knowledge-based models (artificial 

Intelligence) to reduce the treatment planning [TP] times 

up to 95% (19) might be a promising solution. One example 

of such tool, called RapidPlan (Varian Medical Systems, 

Palo Alto-CA), could be acquired with an investment of a 

fraction of the treatment planning system [TPS] cost. 

RapidPlan’s support during treatment planning might result 

in a considerable increase in plan quality and a reduction in 

plan variability. RapidPlan has been shown to be a useful 

tool for supplementing the planning capabilities of less ex-

perienced planners, resulting in greater treatment plan qual-

ity uniformity.20 As a result, a faster and efficient AI-as-

sisted workflow would allow a return of the investment in 

forms of increased treatment planning capacity and freeing 

dosimetrists time for other activities. This could partially 

address Brazilian long waiting times for treatment, as men-

tioned above, especially for patients that rely on the public 

health system. 
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The goal of this dissertation was to estimate the break-

even point from where the time saved by using RapidPlan’s 

AI-assisted workflow would pay its initial investment.  

 

 

MATERIALS AND METHODS 

By reviewing published studies, costs and time estimates 

for RT-related activities could be obtained. The focus here-

after will be on dosimetrist wages and time spent on treat-

ment planning. Published studies regarding the use of AI for 

automatic planning will be the source of time comparisons 

between manual and automated workflows.  

As an important additional module to the TPS, the authors 

find reasonable to estimate RapidPlan’s cost being around 20% 

of the total TPS price for return on investment [ROI] calculation 

purposes, due to the lack of published costs associated with this 

software license. A previous study estimated the value of a treat-

ment planning system from vendor quotations in 2014.21 In this 

study, the cumulative inflation of 12.37% (2014-mid 2022) was 

considered for the calculations.   

Considering the dosimetrist is the main responsible for 

treatment planning, the mean hourly wage used in this study 

is approximated to $30, after inflation correction based on 

published data.21 

The number of patients and cancer types treated can vary im-

mensely between institutions. Therefore, estimations were cal-

culated based on published results from different institutions and 

are intended to be used as an example on how much time can be 

saved by using RapidPlan. Based on the peer-reviewed data for 

treatments of different anatomical sites, economic estimations 

were calculated to provide the amount that could be saved in US 

dollars when using RapidPlan, which would later result in a 

break-even point after a certain number of patients was reached 

for each case. The method applied to estimate the break-even 

point is demonstrated in eq.1  

 

 

Where Break-even is the number of patients planned when 

the amount of monetary resources saved would equal the initial 

investment on the RapidPlan software license; RapidPlan license 

cost is the value estimated to license the product for clinical use; 

Cost savings per patient is the amount of monetary resources 

saved due to the automation of the treatment planning per each 

patient under determined conditions. 

By having the same intent of delivering a homogeneous 

prescribed dose while preserving the organs-at-risk [OAR], 

using the same TPS and RapidPlan, treatment planning times 

are expected to be within a comparable range for similar clin-

ical setups across institutions. Therefore, based on published 

results, estimations of the break-even would serve as an indi-

cation on how much time could be spared during treatment 

planning, which potentially can be translated into freeing re-

sources or mitigating an understaffed department. Results 

from each institution were not directly compared but rather 

presented as complementary information,  since  the  time 

 

 

required for treatment could drastically change accordingly 

to the treated area, patient-specific challenges or even a 

combination of these two or more factors.  

In principle, users can use a model created by another 

institution, re-train it or create a new one based on own da-

tabase. It is worth mentioning that the costs associated with 

training a RapidPlan model is not considered due to insuf-

ficient published data. 

 

 

RESULTS 

RapidPlan has been proven successful on this task of 

speeding up the treatment planning process while reaching 

clinically acceptable treatment plans, as will be shown from 

peer-reviewed studies results in the following text. 

At VU University Medical Center (Amsterdam, The 

Netherlands), a study was published for automated treat-

ment planning for breast plus locoregional lymph nodes.11 

For the manual and automated plans, respectively, the av-

erage overall planning time frames were 163 ±97 and 33 ±5 

minutes, with 130 and 5 minutes of planner interaction. The 

authors created an automated system for individualized 

treatment planning of breast plus locoregional lymph nodes 

employing a hybrid RapidArc approach, utilizing the TPS 

programming API and RapidPlan. The quality of the result-

ing plans was typically on par with or better than the corre-

sponding manual plans, which saw noteworthy reductions 

in treatment planning times. Such level of automation 

might ease the institutions workload and promote the adop-

tion of novel therapeutic approaches. And it is especially 

relevant, considering that breast cancer is the most frequent 

cancer type in women.22 Under the wages values assumed 

for treatment planning described on the previous section 

($30/hour), the average time saved for the 15 patients 

would roughly result in a total of 1950 minutes (130 

min/patient), therefore a $ 975 difference. Such a difference 

would require 920 patients to the break-even point of the 

estimated RapidPlan license cost.  

Published results from Hong Kong demonstrates that for 

complex cases as of nasopharyngeal cancer patients [NCP], 

the use of RapidPlan significantly (P<001) reduced the 

planning time from 295 to 64 minutes.23 Nine out of the 20 

patients could have clinically acceptable treatment plans by 

using RapidPlan alone, and in total for 19 patients it could 

achieved such quality level plans with manual touch-up af-

terwards. Minor manual touch-up was sufficient for those 

RP plans that could not initially meet the plan acceptance 

requirements and essentially yielded the same quality as 

those that did not require any further operator interaction. 

When compared to the overall planning time for the manual 

plans, the increase in planning time with manual touch-up 

was rather insignificant. Furthermore, the new patient data 

used in these evaluations could be applied to further train 

the model, thus improving its future performance. In con-

clusion, for this study, the time saved for the 20 patients 

was 4,620 minutes (231 min/patient), which we could esti-

mate as a $ 2,310 economy and in such a rate the break-

even would be reached with 520 patients.  

  𝐵𝑟𝑒𝑎𝑘 − 𝑒𝑣𝑒𝑛     =  
𝑅𝑎𝑝𝑖𝑑𝑃𝑙𝑎𝑛 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑐𝑜𝑠𝑡

𝐶𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡
    1  
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Source: 19 

 

In addition, automated planning has been used for chal-

lenging cases of hippocampal-sparing whole brain irradiation 

[HS-WBRT] in a study conducted in Chicago.24 For HS-

WBRT, planning and delivery were totally automated thanks 

to HyperArc [HA]25 technology and a RP model. Together, 

the automatically created plans and automated therapy deliv-

ery boosted the consistency and effectiveness of planning, by 

providing the possibility of delivering a complex high-quality 

therapy in a safe and quick manner, thus ultimately enhancing 

patient care. For such cases RP made possible to reduce the 

treatment planning times from 540 minutes to 40 minutes or 

less. For the 10 patients included in the study, the time reduc-

tion amounted to more than 5,000 minutes, which we assume 

as a cost of $ 2500 for planning efforts. For this type of treat-

ment, the break-even point would be at 240 patients.   

Prostate cancer is the most frequent cancer type for male 

patients.22 A study from Japan, performed a dosimetric com-

parison of manually and automated treatment plan for volu-

metric modulated arc therapy [VMAT] for prostate cancer pa-

tients.26 For patients with prostate cancer, the RP plans pro-

duced by a single optimization were clinically acceptable. 

Regardless of the planner's expertise and experience, they 

were able to demonstrate a reduction in optimization time. 

For the 30 treatment plan comparisons, the time saved was at 

least 45 minutes. Which means more than 1350 minutes; 

therefore, we could estimate as a $ 675 economy and a break-

even point of around 2668 patients. Where the time required 

to achieve such number of patients might vary drastically de-

pending on the capacity of the clinic.   

Given its high incidence,22 lung cancer might also benefit 

from faster and efficient treatment planning process. As an 

example, due to the relatively large size of the target and the 

necessity to protect vital organs that overlap or are located 

within the target volume, treatment planning for malignant 

pleural mesothelioma is a challenging task.  

An institution from New York published results showing 

that with less time spent on treatment planning and a higher 

prescription dosage, the RapidPlan model for malignant 

pleural mesothelioma demonstrated greater organ sparing.28 

The authors of this study concluded that KBP with 

RapidPlan may be utilized to create models for a challeng-

ing cancer type as mesothelioma. Furthermore, critical or-

gans were better protected by the model developed in this 

study than by manual treatment planning. The quality of 

such RapidPlan treatment plans were at least on par with or 

better than the corresponding manual plans. Additionally, 

standardized clinical plans may be created faster by using 

RapidPlan than manually created ones, and the quality of 

the model may be further enhanced by further adding pa-

tients and re-training it. The average planning time for the 

study with 23 patients was less than 21 minutes with 

RapidPlan against over 4 hours with manual planning. This 

would result in, at least, 5,037 minutes less and an estimated 

economy of $ 2,518.5 in labor time. The break-even point, 

at such rate, would be reached at 548 patients.   

A comprehensive study from an Australian institution de-

scribes their experience after implementing RapidPlan for 7 

months and creating plans for 496 patients for a variety of an-

atomical regions.19 They concluded that plans optimized using 

RapidPlan show clinically acceptable quality while greatly in-

creasing the workflow efficiency. RapidPlan not only pro-

duced plans of at least equivalent quality to those created man-

ually, but also shortened planning time by more than 80% in 

the majority of subsites. More uniform treatment planning both 

inside and between institutions can be accomplished by this 

tool effectiveness. In addition, the quality of treatment plans 

may continue to be refined and departmental efficiency may 

increase as models are revised and improved over time. The 

average time for each anatomical site was taken from this study 

and included in Table 1, where the percentage variation of the 

time taken for planning manually and with Rapid plan was cal-

culated for each anatomical site. Table 2 represents the finan-

cial impact these time differences would have under our de-

fined planner earnings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model name Average time 

 manual planning (min) 

Average time 

 RapidPlan planning (min) 

Percentage decrease in 

 planning time 

CNS 178 38 78.7% 

LungSBRT 185.3 38.3 79.3% 

Oesophagus 100 40 60.0% 

LiverSBRT 622 28.75 95.4% 

Rectum 1137.5 53.89 95.3% 

Anus 720 40 94.4% 

Gynae 805 50 93.8% 

Bladder 300 42.5 85.8% 

Prostate 390.7 44 88.7% 

Prostate + LN 456.7 91 80.1% 

Average  489.5 46.6 90.5% 

 

Table 1. Average times for manual and automated planning for each anatomical site.  
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Considering this particular mix of patients, the break-even 

would require only 272 patients. Which could be achieved in 

a relatively short time frame, especially considering that the 

number of patients included in this study was 496.   

 

 

DISCUSSION 

During treatment planning, the optimization inside the 

TPS uses mathematical descriptions of clinical goals to deter-

mine the most efficient dose-volume distribution, respecting 

published statistics about controlling the disease or compli-

cations due to the treatment. This process is often time-con-

suming and extremely operator-skill-dependent, given that it-

erations are required when there are trade-offs between con-

flicting objectives, such as treating the lesion and sparing a 

sensitive organ. A major difficult task for the operator is con-

verting clinical goals into practical optimization goals. For 

example, to treat locally advanced head and neck cancer can 

impose many hurdles, specially defining the dose constraints 

to important structures that are either overlapping or adjacent 

to the target volumes.29 Altogether leading to substantial var-

iability in the plan's quality.20 

Many opportunities have been explored aiming to stream-

line the treatment planning task while attaining high quality 

on such plans, such as planning automation (30,31), 

knowledge-based planning [KBP]32,33 or multicriteria optimi-

zation.34,35 The KBP technique, the same as used by 

RapidPlan, entails developing high-quality treatment plans 

by leveraging DVH prediction models that were generated 

from statistical examination of groups of clinical data from 

previous patients. To that end, during the treatment planning 

process, the operator can easily use this trained model to fore-

cast the ideal dose distribution for every new unique patient 

anatomy. 

 

 

 

Due to few resources and understaffed hospitals, cervical 

cancer has a high incidence and fatality rate in low - and 

middle-income nations.36 By expediting the radiation treat-

ment planning process, RapidPlan might also alleviate un-

derstaffing problems. Similar to previously cited studies, 

one optimization derived from RapidPlan is already likely 

to produce acceptable clinical treatment plan while reduc-

ing the waiting time to start the treatment for such type of 

cancer.37 To properly evaluate the efficacy of RapidPlan as 

a tool for multicenter clinical study design and quality as-

sessment, RapidPlan validation should be undertaken in a 

planned clinical trial dataset for which a meaningful plan-

ning comparison can be done.19 

By evaluation of the published data, it could be con-

cluded that RapidPlan can largely benefit radiation therapy 

institutions by streamlining the treatment planning process. 

In some cases, it made possible a time reduction of over 

90%, which become even more impactful when dealing 

with challenging cases like HS-WBRT planning, where the 

manual treatment planning takes around 9 hours to be com-

pleted.  Even when the time saved in minutes is smaller, for 

cases like prostate and breast cancer, due to the high inci-

dence of such malignancies, the time and efforts saved by 

using RapidPlan would rapidly add up to a considerable 

amount. Therefore, it is reasonable to foresee a return of in-

vestment in a relatively short time, while benefiting from 

gains in efficiency, and possibly mitigating understaffing 

and lack of experience in treatment planning. 

It is important to acknowledge that the applied method-

ology for calculating break-even points is based on certain 

assumptions, such as uniform distribution among treatment 

sites. This may not accurately reflect real-world scenarios 

where disease prevalence can vary significantly. Further-

more, our study focused on a specific patient population and 

Model name Manual planning cost $  RapidPlan cost $ Cost difference $ 

CNS 89.00  19.00 70.00 

LungSBRT 92.65  19.15 73.50 

Oesophagus 50.00  20.00 30.00 

LiverSBRT 311.00  14.38 296.63 

Rectum 568.75  26.95 541.81 

Anus 360.00  20.00 340.00 

Gynae 402.50  25.00 377.50 

Bladder 150.00  21.25 128.75 

Prostate 195.35  22.00 173.35 

Prostate + LN 228.35  45.50 182.85 

Average cost $ 244.76  $ 23.32 $ 221.44 

 

Table 2. Financial impact of the average time taken for manual and automated plan 

for each anatomical region. 

 

Source: Author’s calculation based on time estimations from Table 1. 
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may not be generalizable to other populations. As such, the 

break-even points presented in this paper should be inter-

preted with caution and may not be applicable to all institu-

tions and patient populations. It is important to gather addi-

tional data and tailor the methodology to the specific patient 

populations and resource limitations of individual institu-

tions to accurately determine break-even points.  

An alternative approach to estimate the break-even results 

would be to calculate it as the ratio of patients treated to li-

cense cost. This would allow readers to use our findings to 

indirectly estimate the cost of a license based on their patient 

volume and expected break-even point. Additionally, it is im-

portant to estimate the number of patients that can be planned 

under a single license for each institution, which will give 

them an idea of the upper limit of how fast their break-even 

time would be. We recommend that readers use our results in 

conjunction with their own estimates to make informed deci-

sions about RP implementation. 

 

 

FINAL CONSIDERATIONS 

The main goal of the present study was to present esti-

mates of monetary resources saved due to the implementa-

tion of a time-efficient AI treatment planning tool. Faster 

treatment planning would result in a larger capacity to assist 

patients, allow earlier start of the treatment, give the possi-

bility of using the dosimetrist expertise in another area (such 

as organ contouring), and mitigating the shortage of experi-

enced staff. These results would offer an overview on the 

gains from the initial investment of acquiring the software. 

Therefore, serve as basis for decisions for private and public 

institutions that want to benefit from an optimized radiation 

therapy workflow. The conclusions expressed in this work 

are those of the authors. They do not intend to reflect the 

opinions or views of Varian, a Siemens Healthineers com-

pany, or its members. 
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