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Measuring the invisible: a process among arithmetic, geometry and music

Fumikazu Saito'; Carla Bromberg"

Abstract

Studies establishing a parallel between music and mathematics abounded in the
l6tcentury. Relative to proportions, theorists considered the audible and visible
proportions to be analogous. However, upon approaching the corresponding treatises
by focusing on how mensuration was performed, we noticed differences in the very
notion of quantifying. In this paper we sought to identify the role arithmetic and
geometry played in the musical tradition through the notion of quantification. For that
purpose we took as point of departure the definition of the musical interval given by the
most important theorist of the 16 century, Gioseffo Zarlino, and then sought to identify
the core of the debates on music held within the realm of mathematics, as particularly
exemplified by the case of Vincenzo Galilei.
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Resumo

Estudos que estabeleciam o paralelo entre a musica e a matematica eram abundantes no
século XVI. No que diz respeito as propor¢des, podemos dizer que os tedricos admitiam
que as proporgoes audiveis e visiveis eram analogas. Contudo, quando examinamos os
tratados e neles analisamos os processos de mensuragao, notamos existir diferencas na
propria nogao de quantificacdo. Neste artigo, procuramos identificar os papéis da
aritmética e da geometria na tradicao musical através da nocao de quantificacdo, tendo
por foco a defini¢ao do intervalo musical atribuida pelo tedrico mais importante do
século XVI, Gioseffo Zarlino, e apontar para os debates ligados a musica no contexto
matematico.
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Introduction

Gioseffo Zarlino (1517-1590) — probably the most famous Italian music theorist
of the late Renaissance - provided a number of definitions for the musical interval in his
works. In his first treatise, Le Istitutione Harmoniche(1558),' he defined an interval as one
of the musical elements attributed to nature together with the low and the high.2 In his
second treatise, Dimostratione Harmoniche,® published in 1571, he defined interval as the
distance between the low and the high that was expressed by a ratio and stated that such

distance could be known by measuring the bodies that produced the intervals.*

It is important to note that in Istitutione, Zarlino defined the interval not in
relation to the sonorous body (corpo sonoro), but according to the distinction between
common and proper intervals as advocated by Aristides Quintilianus (fl. late 3*—early
4t century A.D.).5 Zarlino explains that the common interval, the definition of which
implied the notion of magnitude, is a space between two limited ends, but that it is not
his focus of interest; rather, he will consider the proper interval, or distance between low

and high sounds:

“[...] the interval, which is attributed to nature, can be named,
according to Aristides Quintilianus, in two different ways, either as common
or proper. The interval is named common, given that a magnitude is limited
by two ends and is therefore an interval; although such definition considers
the space between the two extremes, I do not intend to talk about this
because it is not under our consideration. The interval is named proper
because the distance between the low and the high sounds is called an

interval and that is under the musician’s consideration.”®

1 Gioseffo Zarlino, Le Istitutione Harmoniche (Venezia: Francesco de' Franceschi Senese, 1558).

2 “[.... elementi]. Quelle che si attribuiscono alla natura sono l’acuto, il grave & lo intervalo”; Ibid., 81.

3 Gioseffo Zarlino, Dimostratione Harmoniche (Venezia: Francesco de' Franceschi Senese, 1571).

4 “[...] ma perche ogni intervalli musicali ha distanza, che si trova tra il suono grave & acuto: la quale senza
dubio cade sotto alcuna proportione: perd volendo i musici havere la ragione de tale distanza: non hanno
ritrovato meglior mezzo, quanto la misura de i nominate corpi dalli quali nascono i suoni.”; Ibid.,
Ragionamenti I, definizione iii, 22.

5 According to Andrew Barker, the Greek author Quintilianus cannot be earlier than the 1¢t century A.D. nor
later than the 4%; Andrew Barker, “Harmonic and Acoustic Theory,” in Greek Musical Writings (Cambridge:
Cambridge University Press, 1989), 392. Quintilianus wrote the treatise De musica (Peri musike); see
Quintilianus, De musica libri IIl, in Antique musicae auctores septem: Graece et latine, ed. Marcus Meibom
(Amsterdam, Apud Ludovicus Elzevirium, 1652).

¢ “[...] lo intervallo adunque, il quale si attribuisce alla natura, si chiama in due modi, come vuole Aristide
Quintiliano, cioé commune, et proprio. Si dice commune; conciosia che ogni grandezza terminata da certi
fini, e detta intervallo; considerando pero il spatio, che si ritrova tra I'uno & l’altro estremo; & di questo non
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Unlike Istitutione, Dimostratione aimed at demonstrating a close relationship
between the abstract mathematical calculus of musical intervals and their application to
music instruments.” In Dimostratione, Zarlino explains what a sonorous body (corpo

sonoro) is, namely, “everything that enabled sound production”®, and then continues:

“[...] the musician (as you recall sir) proceeds by making and
obtaining results of his causes from the whole and the part of the sonorous
body, be it a string, or anything else that is often utilized, that is divisible
into infinity; then, by understanding and placing the larger number (and not
the smaller) of any ratio in such an order, by the whole of the sonorous body,

I divide it into so many parts [...]°

In the quotation above the relationship among ratio, intervals and corpo sonoro is
explicit and presents the corpo sonoro in two different ways: first, the corpo is approached
as a geometrical object “which is divisible into infinity”, and then it is considered as a
material object capable of being divided “into so many parts”. The ease with which
Zarlino mixes both divisions cannot be underestimated, because a real instrument
cannot be divided as a geometrical one can. One might infer from such a procedure that
Zarlino classified music as a geometric, rather than an arithmetic science, which fact is

rather curious.

It is curious, indeed, because up to the 16 century music was mostly understood
as an arithmetical science, as transmitted through the works of Anicius Manlius
Severinus Boethius (470/5?-524?) and Aristotle (384 -322 B.C.).1 Zarlino, following both,
defined music as a science of the quadrivium that was subordinate to arithmetic. In
Istitutione, chapter 20, Zarlino explains that the secondary, or subordinate, sciences -

such as perspectiva and music - took their first principles from the principal sciences,

intendo io parlare, perche é molto lontano dalla nostra consideratione. Si chiama proprio, perche la distanza,
che e dal suono grave all’acuto, € detta intervallo, & questo e considerato dal musico.”; Zarlino, Istitutione,
Part II, 15: 81-2.

7 Zarlino, Dimostratione, Proemio.

8Ibid., Rag. I, def. iii, 22.

°“[...] il musico [...] va facendo e cavando le sue ragioni dal tutto e dale parti fatte del corpo sonoro: sia poi
corda, o qual si voglia oltra cosa, che torni al proposito: il qual corpo & divisibile in infinito”; Ibid., Rag. I,
def. iii, 55-6; English translation in John E. Keheller, “Zarlino's Dimostrationi Harmoniche and
Demonstrative Methodologies in the Sixteenth Century (PhD dissertation, Columbia University, 1993), 102.
10 Severius N. Boethius, Institutio Arithmetica 1,1,8, in Boethian Number Theory: A Translation of the De
Institutione Arithmetica, ed. & transl. Michael Masi (Amsterdam: Editions Rodopi B.V., 1983); Boethius,
Fundamentals of Music, transl.,, intr.,, & notes Calvin Bower (New Haven: Yale University Press, 1989);
Aristotle, Posterior Analytics I, 13, 79a5-6, in Great Books of the Western World Vol. 8. Aristotle I, transl. G.R.G.
Mure (Chicago: Encyclopaedia Britannica, 1952) vol. 1, 95-137, on 108.
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geometry and arithmetic, respectively.!! He further explains the musical structures based

on Aristotle’s four causes:

“[...] the agent, that is, the musician, who is called the efficient cause;
the material, which are the strings, also called the material cause; and the
form, that is, the proportion, called the formal cause; nevertheless, the last
two are intrinsic causes of something, and the agent and the goal are its

extrinsic causes.”12

Nevertheless, contrary to ‘the philosopher “(i.e., Aristotle), Zarlino believed that
music was more mathematical than natural. 3 Regarding the placement of the
subordinated sciences, it is important to consider that the status of, and types of
definition for the subordinated sciences during the Middle Ages were attributable to the
commentaries produced on Aristotle’s works; both music and optics continued to be

considered complex mathematical disciplines during the Renaissance.!

The Aristotelians distinguished the mathematical from the natural knowledge by
advising mathematicians to separate, through thought, the forms found in nature that
addressed abstract and immobile beings, in contrast to the natural philosophers, who
were to directly concern themselves with the objects of physis which were subjected to

generation and corruption.'® However, in Posterior Analytics, Aristotle defined the

11 Zarlino, Istitutione, Part I, 20:30.

121bid., Part I, 41: 54; English translation in Lucille Corwin, “Le Istitutioni Harmoniche of Gioseffo Zarlino,
Part I. A Translation with Introduction” (PhD dissertation, City University of New York, 2008), 486.

13 Zarlino, Istitutione, Part I, 20: 31.

14 See Fumikazu Saito, O Telescdpio na Magia Natural de Giambattista della Porta (Sao Paulo: Livraria da Fisica;
Educ; FAPESP, 2011), 73-172; Alistair C. Crombie, Science, Optics and Music in Medieval and Early Modern
Thought (London: The Hambledon Press, 1990); David C. Lindberg, Theories of Vision from Al-Kindi to Kepler
(Chicago: The University of Chicago Press, 1976); David C. Lindberg, “The Science of Optics,” in Science in
the Middle Ages, ed. D.C. Lindberg (Chicago: The University of Chicago Press, 1978), 338-68, on 340; David C.
Lindberg, “Optics in Sixteenth-Century Italy,” in Novita Celesti e Crisi del Sapere, ed. P. Galluzzi (Firenze:
Giunti Barbera, 1984), 131-48; Filippo Camerota, “Renaissance Descriptive Geometry: The Codification of
Drawing Methods,” in Picture Machines, 1400-1700, ed. W. Lefévre (Cambridge, MA: The MIT Press, 2004),
175-208; Filippo Camerota, “Misurare ‘per perspectiva’: Geometria pratica e Prospectiva Pingendi,” in La
prospettiva: Fondamenti teorici ed esperienze figurative dall’antichita al mondo moderno, ed. R. Sinisgalli (Firenze:
Edizioni Cadmo, 1998), 293-308; Graziella F. Vescovini, “L’inserimento della ‘perspectiva’ tra le arti del
quadrivio,” in Arts Liberaux et Philosophie au Moyen Age. Actes du IV¢ Congrés International de Philosophie
Meédiévale. Université de Montreal, 27/08-02/09, 1967, ed. Institut d’études médievales (Paris: J. Vrin, 1969), 969-
74; Jean Gagné, “” in Arts Libéraux et Philosophie au moyen dge. Actes du IV¢ Congrés international de Philosophie
meédiévale. Université de Montreal, 27/08-02/09, 1967, ed. Institut d’études médiévales (Paris: J. Vrin, 1969), 975-
86.

15 Aristotle, Physics 11, 2, in Works of Aristotle, 259-355, on 270-1.



CIRCUMSCRIBERE 16 (2015): 17-37 m

subordinated sciences - such as music and optics - in both ways.!® Those definitions led
medieval and renaissance scholars to consider the two aspects, i.e., the mathematical
and the physical, in different ways, while still maintaining a relationship of

subordination between them.

Therefore it is within the aforementioned definitions of subordinated sciences
that the mathematical and the natural elements of music have to be understood when
addressing Zarlino's statements. However, one must keep in mind that although both
arithmetic and geometry were then mathematic disciplines, they were two independent

sciences, and their respective role in music has to be correctly identified.

Therefore, based on new historiographical approaches,’” in this paper we sought
to explore possible relationships among arithmetic, geometry and music. We began by
the 16%-century definition of musical interval and then sought to identify the core of
Vicenzo Galilei's (1520?-1591) criticism against Zarlino within the realm of

mathematics.!8

Notions of proportion or the part and the whole

The definition of music as an arithmetic science was based on the relationship
between the music interval and the notion of ratio. Although 16%-century readers might
have been familiar with the Pythagorean doctrine of the musical ratios, attributing a
magnitude to musical intervals was not a simple task. Whereas in music proportion can
be easily grasped in the quantitative differences in note duration that entails the musical
rhythm, proportional ratios cannot be observed in sheet music as rhythm can. It also
cannot be seen as in sculpture, in which one sees the proportional relationship between

the parts and between the parts and the whole.

161bid., I 7; 9; 13. See also: Edward Hussey, “Aristotle and Mathematics,” in Science and Mathematics in
Ancient Greek Culture, ed. C.J. Tuplin, & T.E. Rihll (Oxford: Oxford University Press, 2002), 217-29.

17 See Carla Bromberg, "The Mathematical Status of Architecture and Music in the Works of Daniele
Barbaro", paper presented at SCIENTIAE 2014, University of Warwick, UK; Carla Bromberg, Vincenzo Galilei
contra o Niimero Sonoro (Sao Paulo: Livraria da Fisica; Educ; FAPESP, 2011); Fumikazu Saito, "History of
Mathematics and History of Science: Some Remarks Concerning Contextual Framework", Educagio
Matematica Pesquisa 14/3 (2012): 363-85; Arpad Szabd, The Beginnings of Greek Mathematic (Dordrecht: D.
Reidel, 1978); see also Keheller.

18 Bromberg, Vincenzo Galilei; see also Keheller.
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Here we assume that magnitude enables qualitative and quantitative
descriptions of concepts through numbers, that is to say, magnitudes can be reduced to
numbers. However, since measuring involves comparison, the magnitude to be

measured must be material.

How were authors able to transpose [or transform] an audible record (numerical)
into a visual one (geometrical)? What did it mean in the 16% century to express a
numerical proportion (an abstract entity) as a string or part of a string (a concrete and

material entity)?

In this sense, according to Ptolemy (d. 168 A.D.) both hearing and seeing needed
“some method derived from reason, to address the things that they are not naturally
capable of judging accurately”?. In music history, the most important method to render
sounds visible was through an instrument called kanon, or monochord, which was
known since ancient times. Through it musical relationships became quantifiable, and
special proportions appeared to underlie special intervals or concords. As a function of
their mathematical properties, the concords, which are accessible to perception only as

qualities, became included within the realm of arithmetic.?

As mentioned above, the derivation of music theory from arithmetical
proportionality was traditionally transmitted through Boethius” works,? and it was by
far the strongest music theory during the 16 century. As a result, music — an arithmetic-
based science — developed its elements and conceptions according to the notions and

operations of arithmetic.

However, also geometry participated in music, particularly concerning the role
played by the monochord, which as an instrument could approximate geometry, then a
less abstract science than arithmetic, to physics. In this respect, A. Szabd, when
comparing the Sectio canonis (a treatise misattributed to Euclid) to Euclid’s Elements, described two
different Greek traditions involved in the division of the kanon. While one tradition
placed the whole and its divisions on a same string, the other used more than one string,
placing the whole on one string and its parts on another. As a result Szab¢ identified the

origin of the analogy between numbers and segments, as it appears in Euclid’s Elements,

19 Ptolemy, “Harmonics”, Book I, 5.10, in Barker, Greek Musical Writings, II: 270-391, 278.

2 David Creese, The Monochord in Ancient Greek Harmonic Science (Cambridge: Cambridge University Press,
2010), 4.

2l However, there also was a second trend, namely, the one of authors who understood music primarily as a
harmonic study and thus paired it with astronomy rather than with arithmetic; see, e.g., Martianus Capella,
Liber De Nuptiis Mercurii et Philologiae, as cited in Boethius, Boethian Number Theory, 13.
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in the Greek practice of the kanon.?2 According to him, a musical interval could be
represented by the term diastema, which had two meanings within music theory. On the
one hand, it was analogous to a “musical interval” and to the “ratio between numbers
which expressed this interval”,?* and on the other, it also meant “line segment” or the
“distance between two points”. Some authors agreed and others disagreed with Szabd's
definitions. Creese and Barker agreed that in the Elements term diastema was used to
indicate ‘distance’ between points in geometrical constructions.?* However, Barker
concluded that currently one became accustomed “to speak of notes as higher or lower,
as if they were placed as points on a vertical continuum”, but because “they could be
measured and compared like distances along a line, this way of depicting the

phenomena, [...] although convenient [...] was entirely metaphorical.”?®

As mentioned above, diastema meant both the straight line and the numerical
ratio of a musical interval. The Greek word diastema translates as musical interval. That
Barker interprets it in a metaphorical sense might be related to his choosing to interpret
the interval as that which is bounded by two sounds with different tensions. This
interpretation is based on his finding of the Greek words oxys and barys in places where
he believed high and low could have been used; and since the Greek word for pitch is
tasis, which literally means tension, the words sharp (oxys) and heavy (barys) made more

sense to him.2¢

The idea of tension connected to intervals is apparent in the work of Aristoxenus
of Tarento (fl. 335 B.C.), who said, “an interval is that which is bounded by two sounds

having different tensions (i.e., pitches)”, to the continue:

“Thus, according to the basic concept, an interval manifests itself
both as a difference in tension [...] and as a space capable of taking in those

tones that are higher than the lower pitch bounding the interval, and lower

2 Arpad Szabd, The Beginnings of Greek Mathematic (Dordrecht: D. Reidel, 1978), 161-6.

2 According to Szabd, 107, Euclid frequently used the term diastema in the latter sense, as it appears in his
third postulate: “It is postulated that a circle can be drawn with any centre and any line segment”.

2 Creese, Monochord in Ancient Greek, 32. According to him, word diastema occurs thirty times in the
Elements, exclusively in the geometrical books, specifically I-IV and XI-XII; Andrew Barker, The Science of
Harmonics in Classical Greece (Cambridge: Cambridge University Press, 2007), 378.

> Ibid., 21.

2 Jbid..
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than the higher one [..] A difference in pitch, however, consists in being

more or less taut.”?

As is known, Porphyry (234-305), in his commentary on Ptolemy’s theory of
harmony, used interval (diasterna) and numerical ratio (logos) as equivalent concepts
within the terminology of the Pythagorean musical theory.?® This use of the terms also
appears in Sectio canonis and in other works by Porphyry.?” In his commentary on
Ptolemy’s harmony, Porphyry explained that “[...] some call a numerical ratio between
end points, diastema; these could be characterised in terms of their end points as Adyoy,
as well as dixotuata, namely, the fourth would be epitritos logos (4:3), the fifth would

be hemiolios logos (3:2) and so on”3.

According to Szabd, this quotation shows that the two concepts, musical interval
(diastema) and numerical ratio (logos), were equivalent according to the Pythagoreans,
and also because it clearly implies that end points could have functioned as end points

of diastemata as well as of horoi.?!

It appears that Szabd was attempting to defend the notion that the music interval
was more geometrical than arithmetical. In fact, if we consider A and B to be numbers,
each one representing a quantity, we may infer a proportion A::B between A and B

(Figure 1):

¥ Aristoxenus of Tarento, Die harmonischen Fragmente des Aristoxenos, ed. P. Marquard (Berlin:
Weidmann,1868), 20 et seq. See an English translation in Szabd, 112.

2% Ibid., 113-4.

» Ibid., 114.

% Porphyrius, Kommentar zur Harmonielehre des Ptolemaios, ed. Ingemar Diiring (Goteborg: Elanders
Boktryckeri Aktiebolag, 1932), 94; 31 et seq., translated by Szabd, 114.

3 Ibid. Szabd concludes that in addition, since the end points of the straight line were numbers on the kanon,
word diastema was also used to describe the relationship between two numbers exhibited by the
proportional numbers of consonances (12:6, 12:9, 12:8 and so on). Normally, the horoi was shown as two
numbers on the kanon. Diastema in this sense was visible as a length of string in the kanon, that is, the length
by which the section of the string that produced the first sound differed from the one that produced the
second. However, diastema was used only to designate concordant intervals — or consonances, which in
turn were designated by the names of the involved strings, because the octave was known as the concord of
the hypate and nete. Therefore, diastema may also have been construed as the concord produced by two
different lengths of strings rather than a piece of string that did not vibrate; see Ibid.,125.
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Figure 1. A and B as numbers

However, we might also consider an interval between two numbers, A and B,
represented by a line AB. Accordingly, the relationship between A and B might

expressed by its measure, or number (Figure 2):

Figure 2. Relationship between A and B expressed by its measure

In the second case, the geometric distance is identified as arithmetical entity,
given that the visual geometrical segment is used to express an arithmetical argument.
Nevertheless, it is important to note that this diagrammatic exposition of an arithmetic
proportion does not make it a geometrical proposition, because arithmetic recognizes

AB as a numerable quantity but not as a distance.
Therefore, it was possible to proceed as Zarlino suggested:

“And because the differences that are found among low and high
vocal and instrumental sounds are not known if not through sounding
bodies, musicians, bearing this is mind, chose a string made of metal or

another material that produced sound [..] Having the opinion that the
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quantity of sound of the string was proportional to the number of its parts
that was considered, [once] its length and quantity were known according to
the number of its measured parts, they could immediately estimate the

distances found between low and high sounds, or vice versa [...]”*

Zarlino stated that it was possible to divide the string in a way that resulted in
intervals equal to those estimated between the low and the high and vice versa. The
citation above highlights two aspects. First, there is a correspondence between
mathematics and physics, because the thing conceived either geometrically or
arithmetically is related to the interval as a physical distance and vice versa. Second, and
resulting from the first, it is possible to overlap the quantity that was found through a

mathematical method onto the string.

Musical intervals as calculated in the monochord and intervals applied to real

instruments

The division of the monochord and the explanations concerning the division of
intervals can be found in nearly every music treatise of the Renaissance.?* The technique

and history of the monochord can also be found in a wealth of literature, from Cecil

3 Zarlino, Istitutioni, in Corwin, 314-5; “Et perche le differenze, che si trovano tra le voci & tra i suoni gravi e
acuti, non si conoscono, se non col’'mezzo de i corpo sonori; pero considerando Il Musico tal cosa, elessero
una chorda, fatta di metallo o d’altra materia, che rendesse suono]...] esi havendo openione che tanto fusse
la quantita del suono della chorda, quanto era Il numero delle parti considerato in essa, conosciuta la sua
lunghezza e quantita secondo il numero dell sue parti misurate, subito potevano far giuditio delle distanze
che si trovano esser tra gli suoni gravi & gli acuti [...]”; Zarlino, Istitutione, Part I, 19: 29.

3 Adkins lists important authors clustered in groups according to their goals and techniques; just to mention
a few: Ramos de Pareia, Musica practica (1482), ed. Johannes Wolf (Leipzig: Breitkopf und Hartel, 1901);
Franchinno Gaffurio, Theorica musicae (1492), ed. facsimile (Roma: Reale Academia d'Italia, 1934); Andreas
Ornitopharcus, Micrologus, trans. John Dowland (London: T. Adams, 1609); Henricus Grammateus,
“Arithmetica applicirt oder gezogen auff die edel Kunst Musica”, appendix to Ayn new kunstlich Buech
(Ntirnberg: Stuchs, 1518); Ludovico Fogliano, Musica theorica. (Venezia: Antonium et Sabio, 1529); Giovanni
M. Lanfranco, Scintille di musica (Brescia: Lodovico Brittanico, 1533); Martin Agricola, Musica instrumentalis
deutsch (Wittenberg: Georgen Thaw, 1545); Heinrich Glareano, Dodecachordon (Basel: Petri, 1547); Zarlino,
Istitutione; Zarlino, Dimostratione; Francisco Salinas, De musica libri septem (Salamanca, 1577. Facsimile ed.
Kassel: Bérenreiter, 1958); Vincenzo Galilei, Dialogo di Vincentio Galilei nobile fiorentino della musica antica et
della moderna. (Firenze: Giorgio Marescotti, 1581); Wolfgang Figulus, De musica practica (Noribergae:
Montani, 1565); Andreas Reinhard, Monochordum (Leipzig: Valentin, 1604); Abraham Bartolus, Musica
mathematica, printed as the second part of Theatri Machinarum (Altenburg: Johann Meuschke, 1614); Fabio
Colonna, La sambuca lincea (Naples: C. Vitale, 1618); Marin Mersenne, Harmonie Universelle (Paris: Cramoisy,
1635); Athanasius Kircher, Musurgia universalis (Roma: Francesco Corbelletti, 1650); Abdias Trew, Lycei
musici theorico-practici...explicatio tredecim divisionum monochordi. (Rotenburgi: Jacobi Mollyni, 1635); Lemme
Rossi, Sisterma musico (Perugia: Laurenzi, 1666).
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Adkins’s pioneer work, a PhD dissertation devoted to its history,* to the most recent
discussions on the monochord, such as the one published by David Creese in The
Monochord in Ancient Greek Harmonic Science.®> Although the manipulation and technique
involved in finding intervals in the monochord have been largely addressed, their
transposition to real instruments is rarely described in the musical treatises of the 16t

century.

As we have mentioned above, Zarlino argued more than once for placing
intervals in instruments and also for musicians to divide corpus sonorus. As did other
authors,’ he relied on the relationship between interval calculation and monochord
divisions. Zarlino divided his Istitutione in four parts. In the second one he explains the
division of the monochord according to his senario ratios, attempted to explain how to
‘accomodare’ them in real instruments, and even also how to build an instrument in
which such ‘harmonies” could be found.? Still in this part of Istitutione, Zarlino presents

an instrument called the clavicembalo (Figure 3).

Zarlino did not build the instrument; he commissioned it to the luthier Domenico
Pesarese.®® After providing the illustration, Zarlino explained that placing the intervals
was simple, and that anyone who wished to know more about that science was invited

to check the “difficulties” demonstrated in his Dimostratione.3°

% Diatonic divisions based on superparticular proportions; the second includes the various methods of
adding chromatic semitones to a diatonic division, and the third comprises divisions whose notes are
determined mathematically in terms of string lengths. See Cecil Adkins, “The Technique of the
Monochord,” Acta Musicologica 39, no. 1/2 (1967): 34-43, on 39.

% See note #30.

% See note #33.

¥ Zarlino, Istitutione, 2. As mentioned in note #33, Adkins divided authors in four groups based on their
techniques and goals and placed Zarlino and Galilei in different groups, although both groups tended to
present the monochord as a means to aurally demonstrate the intervals of a tuning as a part of the general
theoretical discussion. Galilei’s group presented one single tuning, whereas Zarlino’s group presented a
number of them.

3 Pesarese built the instrument in 1548; Zarlino, Istitutione, Part II, 47: 140.

¥ Ibid., Part II, 47: 141.
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Figure 3. The clavicembalo*
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Zarlino’s illustration corresponded to a type of keyboard instrument, whose scale
patterns were calculated with the monochord, which could play in diatonic, chromatic
and enharmonic styles. Nevertheless, in Dimostratione no instructions are given as how
to accomodare the intervals. Instead, Zarlino goes back to the division of the monochord
and the construction of tetrachords according to those divisions (diatonic, chromatic and

enharmonic).

Zarlino was convinced that his abstract rationalization of intervals could be
directly applied to instruments: ‘Now it is time to use hands, ruler and compass to
accommodate the intervals we just talked about and their proportions on the sonorous
body’4.

In his Dimostratione, he explains that by placing the larger terms and larger ratio
before the smaller terms and smaller ratio, the visual ordering of the natural places of

intervals would be preserved, because “[...] the musician proceeds by making and

* Zarlino, Istitutione, Part II, 47: 141.
4 “[...] hora fa bisogno [...] di adoperare le mani, la riga & il compasso accomodando gli intervalli, de i

qualli habbiamo parlato, alle proportioni loro sopra il corpo sonoro [...]”; Zarlino, Dimostratione, Rag. III,
146.
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obtaining results of his causes from the whole and the part of the sonorous body, be it a

string or anything else often utilised, which is divisible into infinity [...]"42.

In his definition of the corpo sonoro given in Dimostratione, Zarlino explained that
since the interval is a distance between high and low sounds, which are found in
proportion, musicians who want to know that distance have no better method of
obtaining it than measuring the corpi out of which sound is made.** However, a number
can quantitatively express a magnitude, and since measuring essentially means to
compare two different magnitudes, there are instruments that can reduce magnitudes to
numbers. For example, if we were to express the size of a segment AB considering a unit

u, we will have (Figure 4):

Figure 4. A measure and its unit

This was the very core of the criticism Vincenzo Galileu raised against Zarlino’s
conception, as in last instance, the full issue could be circumscribed to the modes of

measuring.*

According to Barker, there were in essence two systems of measuring; in one the
intervals were understood as gaps between low and high sounds and could be

‘imagined’ as points strung out along a line that attempted to linearly represent the

4 7[...] il musico va facendo e cavando le sue ragioni dal tutto e delle parti fatte del corpo sonoro: sia poi
corda, o qual si voglia altra cosa, che torni al proposito: il qual corpo e divisibile in infinitio [...]”; ibid., Rag.
I, 55; English translation in Keheller, 102.

4 Zarlino, Dimostratione, Rag. I, def .iii, 22.

4 See James A. Bennett, “The Challenge of Practical Mathematics,” in Science, Culture and Popular Belief in
Renaissance Europe, ed. S. Pumfrey, P.L. Rossi, & M. Slawinski (Manchester: Manchester University Press,
1991), 176-90; James A. Bennett, “Practical Geometry and Operative Knowledge,” Configurations 6 (1998):
195-222; and James A. Bennett, “Knowing and Doing in the Sixteenth Century: What Were Instruments
For?,” British Journal for the History of Science 36 (2003): 129-50.
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intervals in their lengths; the other aimed at representing them by ratios between speeds
of movement. In the first case, but not in the second, identifying an auditory unit of
measurement was necessary.?* The common textual witness to the procedure by which
the unit involved was accessible to hearing only is a well-known dialogue in Plato’s

Republic between Socrates and Glaucon.#

Aristotle described the unit as the smallest audible part called diesis, which
sometimes equaled a minor semitone. This unit, if added as many times as desirable,
could construct the different sizes of the musical intervals. His definition, it is important
to remember, was based on his understanding of music as an arithmetical subordinated
science. Aristotle had explained that while some authors prioritized the mathematical
aspects of the study of harmonia, others prioritized the audible aspect. The former were
called mathematical harmonicists, i.e., the ones who investigate harmonics according to

numbers,*” and were the only ones who possessed the demonstrations of causes.*

In the monochord, sometimes the unit was understood as the difference between
two segments and sometimes it was the aliguota, namely, the minor part that could
measure the whole taken as a unit. In Compendio della Teorica della Musica,* Galilei gave
the following definition: “[an] aliquot is a part which is taken many times thus

reintegrating the whole”.

In geometry the unit was not a number but a magnitude, which was variable.
According to Euclid, Elements book V, it: “was a part of a magnitude, the less of the

greater, when it measures the greater”. Therefore, “The greater is a multiple of the less

4, Science of Harmonics, 29-30.

4 Plato, Republic, 531a4-8, transl. Paul Shorey (Cambridge: Harvard University Press, 1972), book 7.
According to Barker, Science of Harmonics, 23-4, Socrates’s metaphors involved adjusting the pitches of an
instrument’s strings by twisting the tuning pegs until two strings gave notes so nearly identical that they
could come no closer without reaching an apparent unison. When that situation was achieved, the unit of
measurement had been identified.

47 Aristotle, Topics, 107 al5-16, in Works of Aristotle, 143-223, on 151.

4 This alleged superiority of the mathematical approach to harmonics was challenged by Aristoxenus of
Tarentum and Theophrastus. The former made stronger impact, because his writings provoked a counter-
attack in the form of a treatise known as Sectio canonis. That work contains the first mention ever to the
monochord, even though mathematical harmonics pre-existed the monochord; demonstrations of harmonic
ratios are evident in writings from the 5% century B.C., but there is no evidence of the monochord’s existence
before 300 B.C.

¥ Vincenzo Galilei, Compendio di Vicentio Galilei della teorica della Musica (ce.1570), Biblioteca Nazionale
Centrale di Firenze, Anteriori di Galileo, vol. 4, fols. 3r-47v).

% “Parte aliquota e quella che presa piu volte (aggiunta) rintegra esso numero; et per Il contrario non
aliquota e quella che non ha tal faculta", Galilei, Compendio, 10r.
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when it is measured by the less; [and] a ratio is a sort of relationship with respect to size

between two magnitudes of the same kind”>.

Furthermore, it is necessary to consider that in arithmetic the unit is indivisible
per definition, which is not the case in geometry, whose segments can be infinitely
divided. When one considers the studies on perspective and surveying elaborated in the
15% and 16 centuries, it becomes clear that the notion of quantifying in arithmetic was

quite different from the one in geometry (Figure 5).5

Figure 5. Proportion and ratio
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As is known, arithmetic and geometry were two different fields of knowledge.
Arithmetic was the science concerned with discrete, and geometry with continuous
magnitudes. In practical terms, regarding measuring, arithmetic notions and operations

could not be applied to geometry, although a number of mathematicians, such as

5t Euclid, Elementi, V, in Euclide tutte le opere: testo greco a fonte, ed. Fabio Acerbi (Milano: Bompiani, 2007),
975-6.

52 As Zarlino’s understood, “I principii proprii della geometria sono (per darvi un esempio) questi: si puo
condurre uma linea da um punto all’altro, il continuo e divisibile in infinito: et altri simili. Ma quelli
dell’arithmetica sono: il numero ¢ moltitudine ordinata di unita, le parti del numero non si coniungono ad
um termine commune: i numeri procedono oltra 1'unita in infinito: e gli altri; Et quelli della musica sono:
I'intervallo e habitudine dei spazii del suono grave e dell’acuto e altri simili, come presto vedrete. Et queste
si chiamano principii proprii;” Gioseffo Zarlno, Sopplimenti musicali, libro 1V (Venetia: Francesco de'
Franceschi, 1588), 140. From the 16" century on, it became more typical to attribute a number to the
magnitude. It is mostly assumed that such attribution derived from the influence of the algebra in Arabic
treatises, however we argue that it was originated in the abacus schools; see Antoni Malet, “Renaissance
Notions of Number and Magnitude,” Historia Mathematica 33 (2006): 63-81.
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Niccolo Tartaglia (1499-1557) and others - called mathematical practitioners -

transgressed this rule.>

Associating a number to a magnitude was a common practice among
mathematical practitioners.> Between the 16" and 17" centuries the development of new
experimental and mathematical methods demanded constructing new instruments,>
and several mathematicians published treatises on this subject. However, many such
treatises were primarily aimed at instructing the public in how to construct different
types of instruments and in the different ways of measuring distances. It is in such
treatises that a constant association between number and magnitude is found. The
mathematical instruments allowed associating number and magnitudes, because the
instruments themselves incorporated the unit of measurement and as such, the
magnitude - which was geometric - could be expressed by a number or an arithmetic

ratio.%®

Mensuration understood in such terms had three important properties. The first
was accessibility, that is, the need for a measurement instrument. In this regard, the
human body was considered the oldest instrument: the feet and the fingers were widely
used to measure distances, width and length. The second property of measurement was
its adequacy to the intended purpose. Consistency was the third property, which
ensured stable and reliable measurements. Those properties were mentioned in many

treatises devoted to studies of astronomy, land surveying and navigation (Figure 6).5

% The separation between arithmetic and geometry was mentioned by many authors in the 16% and 17t
centuries, such as John Dee (1527-160[8]) and Egnatio Danti (1536-1586; see John Dee, The Mathematical
Preface of the Elements of Geometrie of Euclid of Megara (1570) [facsimile New York: Science History
Publications, 1975); Egnatio Danti, Le scienze matematiche ridotte in tavole (Bologna: appresso Compagnia della
Stampa, 1577); see also Malet.

% On mathematical practitioners, see Eva G. Taylor, The Mathematical Practitioners of Tudor & Stuart England
(Cambridge: Cambridge University Press, 1954); Hester Higton, “Does Using an Instrument Make You
Mathematical? Mathematical Practitioner of the 17 Century,” Endeavour 25 (2001): 18-22.

% Albert van Helden, “The Birth of the Modern Scientific Instrument, 1550-1770,” in The Uses of Science in the
Age of Newton, ed. J.G. Burke (Berkeley: University of California Press, 1983), 49-84; Deborah ]. Warner,
“What is a Scientific Instrument, When Did It Become One, and Why?” British Journal for the History of
Science 23 (1990): 83-93.

5% See Malet; Fumikazu Saito, & Marisa S. Dias, Articulacdo de Entes Matemidticos na Construgdo e Utilizacdo de
Instrumento de Medida do Século XVI (Natal: SBHM, 2011); and Fumikazu Saito, “Instrumentos Matematicos
dos Séculos XVI e XVII na Articulagao entre Histéria, Ensino e Aprendizagem de Matematica,” Rematec 9,
no. 16 (2014): 25-47.

57 Cosimo Bartoli, Cosimo Bartoli Gentil’huomo, et accademico Fiorentino, Del modo di misurare le distantie, le
superficie, i corpi, le piante, le province, le prospettive, & tutte le altre cose terrene.... (Venetia: Francesco de'
Franceschi Sanese, 1564).
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Figure 6. Mathematical instruments; from left to right: quadrante, squadro baculo, p.10.5
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It is important to remember that the aforementioned mathematical instruments
were intended to quantitatively represent the distance between two or more points. As
concerns music, this procedure demanded more than simply deciding which type of
phenomena were to be measured. As a fact, it was necessary to know what had to be

measured.

The words space and distance appeared in the definitions of intervals that
entailed the notion of measuring. However, the difference between measuring an

audible phenomenon and a visual one could only be inferred from the context itself.

Juan Bermudo’s (1510—ca.1565) Declaracion de instrumentos (1549), a treatise that
includes descriptions of tuning instruments, describes distance primarily as an audible
phenomenon. Bermudo defines the distance between the strings of the vihuela stating
that they were consonances: “The same distance will be found between the strings of the
vihuela, beginning from the inferior to the superior string, except for the distance
between the fourth and the third string, which is a ditono [a major third, made of four

semitones]”*. Bermudo, however, knew that the measures necessary for constructing

8 .

% Ibid., 3; 8; 10.

% “Esta mesma distancia hallareys em toda la vihuela desde una cuerda inferior a la otra mas cercana
superior: excepto desde la quarta cuerda ala tercera, que ay un ditono, que es tercera mayor: la qual
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instruments were different from the measures of intervals: “instrumental music
demands two types of measures, one to build the instruments and another to tune and

play them” 0.

Silvestro Ganassi, a Venetian musician who played the recorder and wrote two
important treatises on tuning viols and flutes,®! explains that although many proportions
were used to place the frets on the viol, the order of the proportions should not be
driven by theory alone, but by actually placing the frets on the viols. While this might be
seen as a simple statement on the difference between theory and practice, it actually
unfolds as a brand new explanation. According to Ganassi, ordering the proportions
was only possible when one took the sizes of the viols into account, because viols, being

made by different makers, had different sizes and parts.®

Despite the different approaches towards measuring, Bermudo’s and Ganassi's
ideas echo Galilei’s criticism of Zarlino. Galilei clearly noted that Zarlino’s writings on
experimenting with musical instruments were merely rhetorical. He observed that
Zarlino's textual content did not correspond to the demonstrations,® because on the one
hand, Zarlino relied on information originated by ancient authors to ponder the
quantities and qualities of sound,® and on the other hand, he assumed that his
conclusions on experiments with strings would also apply to other instruments.® Galilei
summarizes: ‘[Zarlino] distracted himself with Euclid's mathematics, Aristotle’s

philosophy and reading books, finding definitions, predicaments, and other gentilezze” .

Galilei knew the difference between ‘talking about doing’ and ‘actually doing’
things. Zarlino had described in his works the construction of instruments and tuning
systems, but proved to be unaware of the properties of instruments. Finally, upon

attempting to quantify the physical elements of music, Zarlino was driven by

consonancia tiene quatro semitonos.”; Juan Bermudo, EI ilbro llamado declaracion de instrumentos musicales
(Osuna: Juan de Leon ,1555), f. xxviij.

60 “[...] para la musica instrumental es menester dobladas medidas: una para hazer los dichos instrumentos,
y otra para tanerlos.”; Ibid., f. iiii.

61 Silvestro Ganassi, Lettione Seconda pur della prattica di sonare il violone d’arco da tasti .... Stampata per Lautore
proprio (Venezia, 1543).

62 Cecil Adkins, “The Theory and Practice of the Monochord” (PhD Dissertation, The State University of
Iowa, 1963), 414-6.

6 Vincenzo Galilei, Critica fatta di Vicentio Galilei intorno ai supplementi musicali di Gioseffo Zarlino. Anteriori di
Galileo, Biblioteca Centrale Nazionale di Firenze, Anteriori di Galileo, vol. 5, fols. 3r-58r, on 47r.

¢4 Ibid., V: f. 40r.

6 Ibid., V:.ff. 42v-43v.

6 Ibid., V: f. 32r .
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conclusions found in text documents only.®” Contrariwise, Galilei showed that the

mathematical ratios proposed by Zarlino did not have acoustic correspondence.

Conclusion

It is traditionally assumed that instruments are mediators between theory and
practice, resulting in either theory mediated by instrument and practice or vice versa. As
we attempted to show here, historically instruments did not mediate between theory
and practice or between practice and theory, because they should not be reduced to the

function of applying theory or materializing practice.®®

The instrument - as we saw with Galilei and Zarlino - brought up new questions
that challenged both the theoretical and the practical knowledge. Accommodating music
intervals in real instruments could not be achieved solely through mathematical
calculation of ratios. Therefore, the instrument fostered a new type of knowledge likely

to change the traditional relationship between theory and practice (and vice-versa).

The traditional historiography on the struggle between abstract mathematical
objects and real, physical ones fails to fill in the gap between the theoretical and practical
aspects of the mathematical-physical relationship. First, because it subjects the
instrument to either theory or practice, and second because it neglects the distinction
between arithmetical and geometrical elements. We argue that the theory-instrument-
practice relationship should be reconfigured in such a way that neither theory nor
experiment is given an epistemological or historical priority. The reason is that in the
process of knowledge construction, the instrument is often the first to appear, giving rise
to theoretical and experimental questions. In the specific case of the musical instruments,
on the one hand luthiers built them even without any knowledge of musical theories
and, on the other, the discussions on the monochord were twofold. While approaching

the theoretical order, we should bear in mind that mathematical harmonics existed even

67 Galilei, Dialogo di Vincentio Galilei; and Galilei, Critica fatta di Vicentio Galilei, V: ff. 3r-58r.

6 Fumikazu Saito, “Revelando Processos Naturais por Meio de Instrumentos e Outros Aparatos
Cientificos,” in Historia da Ciéncia: Topicos Atuais 3, ed. M.H.R. Beltran, F. Saito, & L.S.P. Trindade (Sao
Paulo: Livraria da Fisica, 2014), 95-115; Fumikazu Saito, “Algumas Considera¢des Historiograficas para a
Histdria dos Instrumentos e Aparatos Cientificos: O Telescopio na Magia Natural,” in Centendrio Simdo
Mathias: Documentos, Métodos e Identidade da Histéria da Ciéncia, ed. A.M. Alfonso-Goldfarb et al. (Sdo Paulo:
PUC-SP, 2009), 103-21; and Fumikazu Saito, “Instrumentos e o ‘Saber-Fazer’ Matematico no Século XVI”,
Revista Tecnologia e Sociedade, 18 (2013): 101-12.
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before the monochord,® and relative to the experimental order that divisions on the

monochord could not simply be applied to any other musical instrument.

Therefore, the instrument should not be analyzed as a mediator. The instrument
promotes new knowledge in the sense that it should be seen within a different
conceptual framework [because it belongs to a different conceptual framework]. In the
case of Zarlino, theory was expanded to provide practice a theoretical background;
nevertheless it failed to demonstrate the theoretical musical system in real instruments.
In consequence, Zarlino attempted to establish rules for constructing new instruments

(polychordo, clavicembalo) convinced that his system would work in those cases.

While analyzing the mathematical-musical controversies between Zarlino's and
Galilei's works, we realized that while the latter’s approach was, indeed, different from
the former’s, it was not opposed to it, as it is argued in the literature, which sees Zarlino
as a man of theory and Galilei as a man of experimentation. As we have shown here
Galilei did not start from practice to only then move on to theoretical considerations, but
an analysis of his conceptual framework clearly shows that it remained mathematical.
However, different to Zarlino's, Galilei’s mathematical approach was geometrical and
practical rather than arithmetical and speculative. As a result, one should not conclude
that Galilei was solely concerned with questions related to experiments or of a purely

natural order, as the current literature holds.

Regarding experimentation with instruments, as we showed, Zarlino attempted
to demonstrate his theoretical system by constructing instruments able to play it. Such
attempts were proven flawed by Galilei. And he did that on theoretical grounds and
reasoning. As he himself explained in Critica (his last work) and before that in his first
treatise, the Compendio (c. 1570) - in which he had exposed all the mathematical
definitions of the musical elements and procedures - his realm of work was

mathematics.

Nevertheless, his awareness of the speculative mathematical foundation of
mathematics did not prevent Galilei from promoting in practice a tuning system that he
knew was alien to the theoretical framework. And he found the solution in practical
mathematics. Since the tuning system (temperament) adopted by Galilei could not be
included in the arithmetical musical tradition that grounded Zarlino’s views, Galilei
developed a mathematical argumentation based on geometry. That fact

notwithstanding, Galilei did not approach the intervals by studying a vibrational string,

® Creese, Monochord in Ancient Greek, ch. 2.
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as an acoustical body, although he knew the sound relations (e.g., that an octave is
produced when one divides the string by its half, etc.), he analyzed them based on the
relationships between the length, or parts of the length, of the strings as they appear to
geometry. Galilei's discussion of the nature of intervals, such as the diapason and

unissono, in his later dialogues should not be detached from this context.

The role arithmetic and geometry played in music is, as we believe, the central
point in the debate between Zarlino and Galilei. As appears in their works, especially
Zarlino's Dimostrationi and Supplementi and Galilei's Discorso and Critica, these authors
advocated different notions of music as a science. Zarlino understood it as a
mathematical science subordinated to arithmetic, being more mathematical than natural
and without taking sound into account sound. In turn, Galilei understood music as
mathematical and closer to natural science, because sound ought not to be eliminated
from musical considerations. The latter assertion, naturally, is very far from stating that

the point of departure of Galilei’s analysis was acoustical experiments.

Hence, we hope to have demonstrated that while discussing the role theory and
practice played in the mathematical sciences in the 16% century, it is extremely important
to go beyond the formal and current definitions that distinguish the theoretical from the
practical knowledge. The role the instrument played in the 16% century cannot be
understood based on modern philosophical conceptions. Analyses of historical
documents are important because only they enable us to grasp the different
configurations established by historical figures and let us comprehend the construction
of knowledge from an epistemological perspective. Therefore, the role of the instrument
must be approached in its specificity, rather than as generic mediator between two types
of knowledge. Similarly, Galilei should not be considered an empiricist, since he
developed his criteria on clearly mathematical grounds, just as Zarlino should not be

considered a mere theorist, in the light of his practical and empirical considerations.



