
Could a.Machine Think?
Classical AI is unlikely to yield conscious

.- machines; systems that mimic the brain might

by Paul M. Churchland and Patricia Smith Churchland

rtificial-intelligence research isAundergoing a revolution To ex-
plain how and why, and to put

John R. Searle’s argument in perspec-
tive, we first need a flashback.

By the early 1950’s the old, vague
question, Could a machine think? had
been replaced by the more approach-
able question, Could a machine that
manipulated physical symbols accord-
ing to structure-sensitive rules think?
This question was an improvement
because formal logic and computa-
tional theory had seen major devel-
opments in the preceding half-centu-
ry. Theorists had come to appreciate
the enormous power of abstract sys-
tems of symbols that undergo rule-
governed transformations. If those sys-
tems could just be automated, then
their abstract computational power, it
seemed, would be displayed in a real
physical system This insight spawned
a well-defined research program with
deep theoretical underpinnings.

Could a machine think? There were
many reasons for saying yes. One of
the earliest and deepest reasons lay in
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two important results in computation-
al theory. The first was Church’s the-
sis, which states that every effective-
ly computable function is recursive-
ly computable. Effectively computable
means that there is a “rote” procedure
for determining, in finite time, the out-
put of the function for a given input.
Recursively computable means more
specifically that there is a finite set of
operations that can be applied to a
given input, and then applied again
and again to the successive results of
such applications, to yield the func-
tion’s output in finite time. The notion
of a rote procedure is nonformal and
intuitive; thus, Church’s thesis does
not admit of a formal proof. But it
does go to the heart of what it is to
compute, and many lines of evidence
converge in supporting it.

The second important result was
Alan M. Turing’s demonstration that
any recursively computable function
can be computed in finite time by a
maximally simple sort of symbol-ma-
nipulating machine that has come to
be called a universal Turing machine.
This machine is guided by a set of re-
cursively applicable rules that are sen-
sitive to the identity, order and ar-
rangement of the elementary symbols
it encounters as input.

These two results entail some-
thing remarkable, namely that a
standard digital computer, given

only the right program, a large enough
memory and sufficient time, can com-
pute any rule-governed input-output
function. That is, it can display any
systematic pattern of responses to the
environment whatsoever.

More specifically, these results im-
ply that a suitably programmed sym-
bol-manipulating machine (hereafter,
SM machine) should be able to pass
the Turing test for conscious intel-
ligence. The Turing test is a purely
behavioral test for conscious intelli-
gence, but it is a very demanding
test even so. (Whether it is a fair test
will be addressed below, where we
shall also encounter a second and
quite different “test” for conscious in-

telligence.) In the original version of ’
the Turing test, the inputs to the SM
machine are conversational questions
and remarks typed into a console by
you or me, and the outputs are type-
written responses from the SM ma-
chine. The machine passes this test
for conscious intelligence if its re-
sponses cannot be discriminated from
the typewritten responses of a real,
intelligent person Of course, at pres-
ent no one knows the function that
would produce the output behavior of
a conscious person But the Church
and Turing results assure us that,
whatever that (presumably effective)
function might be, a suitable SM ma-
chine could compute it.

This is a significant conclusion, es-
pecially since Turing’s portrayal of a
‘purely teletyped interaction is an un-
necessary restriction The same con-
clusion follows even if the SM machine
interacts with the world in more com-
plex ways: by direct vision, real speech
and so forth After all, a more complex
recursive function is still Turing-com-
putable. The only remaining problem
is to identify the undoubtedly com-
plex function that governs the human
pattern of response to the environ-
ment and then write the program (the
set of recursively applicable rules) by
which the SM machine will compute it.
These goals form the fundamental re-
search program of classical AI.

Initial results were positive. SM
machines with clever programs per-
formed a variety of ostensibly cog-
nitive activities. They responded to
complex instructions, solved com-
plex arithmetic, algebraic and tactical
problems, played checkers and chess,
proved theorems and engaged in sim-
ple dialogue. Performance continued
to improve with the appearance of
larger memories and faster machines
and with the use of longer and more
cunning programs. Classical, or ‘pro-
gram-writing,” AI was a vigorous and
successful research effort from al-
most every perspective. The occa-
sional denial that an SM machine
might eventually think appeared unin-
formed and ill motivated. The case for
a positive answer to our title question
was overwhelming.

There were a few puzzles, of course.
For one thing, SM machines were ad-
mittedly not very brainlike. Even here,
however, the classical approach had a
convincing answer. First, the physical
material of any SM machine has noth-
ing essential to do with what function
it computes. That is fixed by its pro-
gram. Second, the engineering details
of any machine’s functional architec-
ture are also irrelevant, since different
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architectures running quite different
programs can still be computing the
same input-output function

Accordingly, AI sought to find the
input-output function characteristic
of intelligence and the most efficient
of the many possible programs for
computing it. The idiosyncratic way in
which the brain computes the func-.
tion just doesn’t matter, it was said.
This completes the rationale for clas-
sical AI and for a positive answer to
our title question.

! c

ould a machine think? There
were also some arguments for
saying no. Through the 1960’s

interesting negative arguments were
relatively rare. The objection was oc-
casionally made that thinking was a
nonphysical process in an immaterial
soul. But such dualistic resistance was
neither evolutionarily nor explanatori-
ly plausible. It had a negligible impact
on AI research.

A quite different line of objection
was more successful in gaining the AI
community’s attention In 1972 Hu-
bert L. Dreyfus published a book that
was highly critical of the parade-case
simulations of cognitive activity. He
argued for their inadequacy as sim-
ulations of genuine cognition, and he
pointed to a pattern of failure in these
attempts. What they were missing, he
suggested, was the vast store of inar-
ticulate background knowledge every
person possesses and the common-
sense capacity for drawing on relevant
aspects of that knowledge as changing
circumstance demands. Dreyfus did
not deny the possibility that an arti-
ficial physical system of some kind
might think, but he was highly critical
of the idea that this could be achieved
solely by symbol manipulation at the
hands of recursively applicable rules.

Dreyfus’s complaints were broadly
perceived within the AI community,
and within the discipline of philoso-
phy as well, as shortsighted and un-
sympathetic, as harping on the inevi-
table simplifications of a research ef-
fort still in its youth These deficits
might be real, but surely they were
temporary. Bigger machines and bet-
ter programs should repair them in
due course. Time, it was felt, was on
AI’s side. Here again the impact on
research was negligible.

Time was on Dreyfus’s side as
well: the rate of cognitive return on in-
creasing speed and memory began to

. slacken in the late 1970’s and early
1980’s. The simulation of object rec-
ognition in the visual system, for ex-
ample, proved computationally inten-
sive to an unexpected degree. Realistic

results required longer and longer pe-
riods of computer time, periods far
in excess of what a real visual system
requires. This relative slowness of the
simulations was darkly curious; signal
propagation in a computer is rough-
ly a million times faster than in the
brain and the clock frequency of a
computer’s central processor is great-
er than any frequency found in the
brain by a similarly dramatic margin.
And yet, on realistic problems, the
tortoise easily outran the hare.

Furthermore, realistic performance

required that the computer program
have access to an extremely large
knowledge base. Constructing the rel-
evant knowledge base was problem
enough, and it was compounded by
the problem of how to access just
the contextually relevant parts of that
knowledge base in real time. As the
knowledge base got bigger and bet-
ter, the access problem got worse. Ex-
haustive search took too much time,
and heuristics for relevance did poor-
ly. Worries of the sort Dreyfus had
raised finally began to take hold here

OSCILLATING ELECTROMAGNETIC FORCES constitute light even though a magnet
pumped by a person appears to produce no light whatsoever. Similarly, rule-based
symbol manipulation might constitute intelligence even though the rule-based sys-
tem inside John R. Searle’s “Chinese room” appears to lack real understanding.
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and there even among AI researchers.
At about this time (1980) John Searle

authored a new and quite different
criticism aimed at the most basic as-
sumption of the classical research
program: the idea that the appropriate
manipulation of structured symbols-
by the recursive application of struc-
ture-sensitive rules could constitute
conscious intelligence.

Searle’s argument is based on a
thought experiment that displays two
crucial features. First, he describes a
SM machine that realizes, we are to
suppose, an input-output function ad-
equate to sustain a successful Turing
test conversation conducted entirely
in Chinese. Second, the internal struc-
ture of the machine is such that, how-
ever it behaves, an observer remains
certain that neither the machine nor
any part of it understands Chinese. All
it contains is a monolingual English
speaker following a written set of in-
structions for manipulating the Chi-
nese symbols that arrive and leave
through a mail slot In short, the sys-
tem is supposed to pass the Turing
test, while the system itself lacks any
genuine understanding of Chinese or
real Chinese semantic content [see
“Is the Brain’s Mind a Computer Pro-
gram?” by John R. Searle, page 261.

The general lesson drawn is that
any system that merely manipulates
physical symbols in accordance with
structure-sensitive rules will be at
best a hollow mock-up of real con-
scious intelligence, because it is im-
possible to generate “real semantics”
merely by cranking away on yempty
syntax.*’ Here, we should point out,
Searle is imposing a nonbehavioral
test for consciousness: the elements
of conscious intelligence must pos-
sess real semantic content.

One is tempted to complain that
Searle’s thought experiment is unfair
because his Rube Goldberg system
will compute with absurd slowness.
Searle insists, however, that speed is
strictly irrelevant here. A slow thinker
should still be a real thinker. Every-
thing essential to the duplication of
thought, as per classical AI, is said to
be present in the Chinese room

Searle’s paper provoked a lively
reaction from AI researchers, psy-
chologists and philosophers alike. On
the whole, however, he was met with
an even more hostile reception than
Dreyfus had experienced. In his com-
panion piece in this issue, Searle forth-
rightly lists a number of these critical
responses. We think many of them are
reasonable, especially those that “bite
the bullet” by insisting that, although
it is appallingly slow, the overall sys-

tern of the room-plus-contents does
understand Chinese.

We think those are good respons-
es, but not because we think that the
room understands Chinese. We agree
with Searle that it does not. Rather
they are good responses because they
reflect a refusal to accept the crucial
third axiom of Searle’s argument: “$vz-
tax by itself is neither constitutive of
nor sufficient for semantics.” Perhaps
this axiom is true, but Searle cannot
rightly pretend to know that it is.
Moreover, to assume its truth is tanta-
mount to begging the question against
the research program of classical AI,
for that program is predicated on
the very interesting assumption that if
one can just set in motion an appro-
priately structured internal dance of
syntactic elements, appropriately con-
nected to inputs and outputs, it can
produce the same cognitive states and
achievements found in human beings.

The question-begging character of
Searle’s axiom 3 becomes clear when
it is compared directly with his con-

elusion 1: “Programs are neither cbn-
stitutive of nor sumcient for minds.”
Plainly, his third axiom is already
carrying 90 percent of the weight of
this almost identical conclusion. That
is why Searle’s thought experiment is
devoted to shoring up axiom 3 spe-
cifically. That is the point of the Chi-
nese room.

Although the story of the Chinese
room makes axiom 3 tempting to the
unwary, we do not think it succeeds in
establishing axiom 3, and we offer a
parallel argument below in illustration
of its failure. A single transparently
fallacious instance of a disputed argu-
ment often provides far more insight
than a book full of logic chopping.

Searle’s style of skepticism has am-
ple precedent in the history of sci-
ence. The 18th-century  Irish bishop
George Berkeley found it unintelligible
that compression waves in the air,
by themselves, could constitute or be
sufficient for objective sound. The
English poet-artist William Blake and
the German poet-naturalist Johann W.

.8 .2 .I .4

NEURAL NETWORKS model a central feature of the brain’s microstructure. In this
three-layer net, input neurons (bottom left) process a pattern of activations (bottom
right) and pass it along weighted connections to a hidden layer. Elements in the
hidden layer sum their many inputs to produce a new pattern of activations. This
is passed to the output layer, which performs a further transformation. Overall the
network transforms any input pattern into a corresponding output pattern as dic-
tated by the arrangement and strength of the many connections between neurons.
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von Goethe found it inconceivable that
small particles by themselves could
constitute or be sufficient for the ob-
jective phenomenon of light. Even in
this century, there have been people
who found it beyond imagining that
inanimate matter by itself, and howev-
er organized, could ever constitute or
be sufficient for life. Plainly, what peo-
ple can or. cannot imagine often has
nothing to do with what is or is not the
case, even where the people involved
are highly intelligent.

To see how this lesson applies to
Searle’s case, consider a deliberate-
ly manufactured parallel to his ar-
gument and its supporting thought
experiment.

Axiom 1. Electricity and magnetism
are forces.

Axiom 2. The essential property of
light is luminance.

Axiom 3. Forces by themselves are
neither constitutive of nor sufficient for
luminance.

Conclusion 1. Electricity and mag-
netism are neither constitutive of nor
suficient  for light.

Imagine this argument raised short-
ly after James Clerk Maxwell’s 1864
suggestion that light and electro-
magnetic waves are identical but be-
fore the world’s full appreciation of
the systematic parallels between the
properties of light and the properties
of electromagnetic waves. This argu-
ment could have served as a compel-
ling objection to Maxwell’s imagina-
tive hypothesis, especially if it were
accompanied by the following com-
mentary in support of axiom 3.

“Consider a dark room containing a
man holding a bar magnet or charged
object. If the man pumps the magnet
up and down, then, according to Max-
well’s theory of artificial luminance
(AL), it will initiate a spreading cir-
cle of electromagnetic waves and will
thus be luminous. But as all of us who
have toyed with magnets or charged
balls well know, their forces (or any
other forces for that matter), even
when set in motion, produce no lumi-
nance at all. It is inconceivable that
you might constitute real luminance
just by moving forces around!”

How should Maxwell respond to this
challenge? He might begin by insisting
that the “luminous room” experiment
is a misleading display of the phenom-
enon of luminance because the fre-
quency of oscillation of the magnet
is absurdly low, too low by a factor
of lOIs. This might well elicit the im-
,patient response that frequency has
nothing to do with it, that the room
with the bobbing magnet already
contains everything essential to light,

according to Maxwell’s own theory.
In response Maxwell might bite

the bullet and claim, quite correctly,
that the room really is bathed in lu-
minance, albeit a grade or quality too
feeble to appreciate. (Given the low fre-
quency with which the man can oscil-
late the magnet, the wavelength of the
electromagnetic waves produced is far
too long and their intensity is much
too weak for human retinas to re-
spond to them.) But in the climate of
understanding here contemplated-
the 1860’s-this tactic is likely to elicit
laughter and hoots of derision. “Lumi-
nous room, my foot, Mr. Maxwell. It’s
pitch-black in there!”

Alas, poor Maxwell has no easy route
out of this predicament. All he can do
is insist on the following three points.
First, axiom 3 of the above argument is
false. Indeed, it begs the question de-
spite its intuitive plausibility. Second,
the luminous room experiment dem-
onstrates nothing of interest one way
or the other about the nature of light.
And third, what is needed to settle
the problem of light and the possibil-
ity of artificial luminance is an ongo-
ing research program to determine
whether under the appropriate condi-
tions the behavior of electromagnetic
waves does indeed mirror perfectly
the behavior of light.

This is also the response that clas-
sical AI should give to Searle’s ar-
gument. Even though Searle’s Chinese
room may appear to be “semantical-
ly dark,” he is in no position to insist,
on the strength of this appearance,
that rule-governed symbol manipu-
lation can never constitute seman-
tic phenomena, especially when people
have only an uninformed common-
sense understanding of the semantic
and cognitive phenomena that need
to be explained. Rather than exploit
one’s understanding of these things,
Searle’s argument freely exploits one’s
ignorance of them.

With these criticisms of Searle’s
argument in place, we return to the
question of whether the research
program of classical AI has a realistic
chance of solving the problem.of con-
scious intelligence and of producing a
machine that thinks. We believe that
the prospects are poor, but we rest
this opinion on reasons very differ-
ent from Searle’s. Our reasons derive
from the specific performance failures
of the classical research program in AI
and from a variety of lessons learned
from the biological brain and a new
class of computational models in-
spired by its structure. We have al-
ready indicated some of the failures of
classical AI regarding tasks that the

’ “

brain performs swiftly and efficiently.
The emerging consensus on these fail-
ures is that the functional architecture
of classical SM machines is simply the
wrong architecture for the very de-
manding jobs required.

What we need to know is this:
How does the brain achieve
cognition? Reverse engineer-

ing is a common practice in indus-
try. When a new piece of technology
comes on the market, competitors find
out how it works by taking it apart
and divining its structural rationale.
In the case of the brain, this strategy
presents an unusually stiff challenge,
for the brain is the most complicated
and sophisticated thing on the planet.
Even so, the neurosciences have re-
vealed much about the brain on a wide
variety of structural levels. Three ana-
tomic points will provide a basic con-
trast with the architecture of conven-
tional electronic computers.

First, nervous systems are parallel
machines, in the sense that signals
are processed in millions of different
pathways simultaneously. The retina,
for example, presents its complex in-
put to the brain not in chunks of eight,
16 or 32 elements, as in a desktop
computer, but rather in the form of
almost a million distinct signal ele-
ments arriving simultaneously at the
target of the optic nerve (the lateral
geniculate nucleus), there to be proc-
essed collectively, simultaneously and
in one fell swoop. Second, the brain’s
basic processing unit, the neuron,
is comparatively simple. Furthermore,
its response to incoming signals is
analog, not digital, inasmuch as its
output spiking frequency varies con-
tinuously with its input signals. Third,
in the brain axons projecting from
one neuronal population to another
are often matched by axons return-
ing from their target population These
descending or recurrent projections
allow the brain to modulate the char-
acter of its sensory processing. More
important still, their existence makes
the brain a genuine dynamical system
whose continuing behavior is both
highly complex and to some degree
independent of its peripheral stimuli.

Highly simplified model networks
have been useful in suggesting how
real neural networks might work and
in revealing the computational prop-
erties of parallel architectures. For
example, consider a three-layer mod-
el consisting of neuronlike units fully
connected by axonlike connections to
the units at the next layer. An input
stimulus produces some activation
level in a given input unit, which con-
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veys a signal of proportional strength
along its “axon” to its many “synaptic”
connections to the hidden units. The
global effect is that a pattern of activa-
tions across the set of input units
produces a distinct pattern of activa-
tions across the set of hidden units.

The same story applies to the out-
put units. As before, an activation pat-
tern across the hidden units produces
a distinct activation pattern across the
output units. All told, this network is a
device for transforming any one of a
great many possible input vectors (ac-
tivation patterns) into a uniquely cor-
responding output vector. It is a de-
vice for computing a specific function
Exactly which function it computes is
fixed by the global configuration of its
synaptic weights.

There are various procedures for
adjusting the weights so as to yield
a network that computes almost any
function-that is, any vector-to-vec-
tor transformation-that one might
desire. In fact, one can even impose on
it a function one is unable to specify,
so long as one can supply a set of
examples of the desired input-output
pairs. This process, called “training up
the network,” proceeds by successive
adjustment of the network’s weights
until it performs the input-output
transformations desired.

Although this model network vast-
ly oversimplifies the structure of the
brain it does illustrate several im-
portant ideas. First, a parallel architec-
ture provides a dramatic speed ad-
vantage over a conventional computer,
for the many synapses at each level
perform many small computations si-
multaneously instead of in laborious
sequence. This advantage gets larger
as the number of neurons increases
at each layer. Strikingly, the speed of
processing is entirely independent of
both the number of units involved in
each layer and the complexity of the
function they are computing. Each
layer could have four units or a hun-
dred million; its configuration of syn-
aptic weights could be computing
simple one-digit sums or second-or-
der differential equations. It would
make no difference. The computation
time would be exactly the same.

Second, massive parallelism means
that the system is fault-tolerant and
functionally persistent; the loss of a
few connections, even quite a few, has
a negligible effect on the character of
the overall transformation performed
by the surviving network.

Third, a parallel system stores large
amounts of information in a distrib-
uted fashion, any part of which can
be accessed in milliseconds. That in-
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NERVOUS SYSTEMS span many scales of organization, from nemotransmitter mole-
cules (bottom) to the entire brain and spinal cord. Intermediate levels include single
neurons and circuits made up of a few neurons, such as those that produce orien-
tation selectivity to a visual stimulus (middle), and systems made up of circuits such
as those that subserve language (top right). Only research can decide how close-
ly an artificial system must mimic the biological one to be capable of intelligence.

formation is stored in the specific
configuration of synaptic connection
strengths, as shaped by past learning.
Relevant information is “released” as
the input vector passes through-and
is transformed by-that configuration
of connections.

Parallel processing is not ideal for
all types of computation On tasks that
require only a small input vector, but
many millions of swiftly iterated re-
cursive computations, the brain per-
forms very badly, whereas classical SM
machines excel. This class of compu-
tations is very large and important,
so classical machines will always be
useful, indeed, vital. There is, howev-
er, an equally large class of computa-
tions for which the brain’s architec-
ture is the superior technology. These
are the computations that typically
confront living creatures: recognizing
a predator’s outline in a noisy environ-
ment; recalling instantly how to avoid
its gaze, flee its approach or fend

off its attack; distinguishing food
from nonfood and mates from non-
mates; navigating through a complex
and ever-changing physical/social en-
vironment; and so on

Finally, it is important to note that
the parallel system described is not
manipulating symbols according to
structure-sensitive rules. Rather sym-
bol manipulation appears to be just
one of many cognitive skills that a
network may or may not learn to dis-
play. Rule-governed symbol manipula-
tion is not its basic mode of operation.
Searle’s argument is directed against
rule-governed SM machines; vector
transformers of the kind we describe
are therefore not threatened by his
Chinese room argument even if it were
sound, which we have found indepen-
dent reason to doubt.

Searle is aware of parallel proces-
sors but thinks they too will be devoid
of real semantic content. To illustrate
their inevitable failure, he outlines a



second thought experiment, the Chi-
nese gym, which has a gymnasium full
of people organized into a parallel
network. From there his argument
proceeds as in the Chinese room

We find this second story far less re-
sponsive or compelling than his first.
For one, it is irrelevant that no unit
in his system understands Chinese,
since the same is true of nervous sys-
tems: no neuron in my brain under-
stands English, although my whole
brain does. For another, Searle ne-
glects to mention that his simulation
(using one person per neuron, plus a
fleet-footed child for each synaptic
connection) will require at least 10”
people, since the human brain has 10”
neurons, each of which averages over
lo3 connections. His system will re-
quire the entire human populations of
over 10,000 earths. One gymnasium
will not begin to hold a fair simulation.

On the other hand, if such a system
were to be assembled on a suitably
cosmic scale, with all its pathways
faithfully modeled on the human case,
we might then have a large, slow, odd-
ly made but still functional brain on
our hands. In that case the default
assumption is surely that, given prop-
er inputs, it would think, not that it
couldn’t. There is no guarantee that its
activity would constitute real thought,
because the vector-processing theory
sketched above may not be the correct
theory of how brains work. But neither
is there any a priori guarantee that it
could not be thinking. Searle is once
more mistaking the limits on his (or
the reader’s) current imagination for
the limits on objective reality.

T

he brain is a kind of computer,
although most of its properties
remain to be discovered. Charac-

terizing the brain as a kind of comput-
er is neither trivial nor frivolous. The
brain does compute functions, ftmc-
tions of great complexity, but not in
the classical AI fashion. When brains
are said to be computers, it should not
be implied that they are serial, digital
computers, that they are programmed,
that they exhibit the distinction be-
tween hardware and software or that
they must be symbol manipulators or
rule followers. Brains are computers
in a radically different style.

How the brain manages meaning is
still unknown, but it is clear that the
problem reaches beyond language use
and beyond humans. A small mound
of fresh dirt signifies to a person,
and also to coyotes, that a gopher is
around; an echo with a certain spectral
character signifies to a bat the pres-
ence of a moth. To develop a theory of

meaning, more must be known about
how neurons code and transform sen-
sory signals, about the neural basis
of memory, learning and emotion and
about the interaction of these capaci-
ties and the motor system. A neurally
grounded theory of meaning may re-
quire revision of the very intuitions
that now seem so secure and that are
so freely exploited in Searle’s argu-
ments. Such revisions are common in
the history of science.

Could science construct an artifi-
cial intelligence by exploiting what
is known about the nervous system?
We see no principled reason why
not. Searle appears to agree, although
he qualifies his claim by saying that
“any other system capable of causing
minds would have to have causal pow-
ers (at least) equivalent to those of
brains.” We close by addressing this
claim. We presume that Searle is not
claiming that a successful artificial
mind must have all  the causal pow-
ers of the brain, such as the power to
smell bad when rotting, to harbor slow
viruses such as kuru, to stain yellow
with horseradish peroxidase and so
forth. Requiring perfect parity would
be like requiring that an artificial fly-
ing device lay eggs.

Presumably he means only to re-
quire of an artificial mind all of the
causal powers relevant, as he says, to
conscious intelligence. But which ex-
actly are they? We are back to quarrel-
ing about what is and is not relevant.
This is an entirely reasonable place for
a disagreement, but it is an empirical
matter, to be tried and tested. Because
so little is known about what goes into
the process of cognition and seman-
tics, it is premature to be very confi-
dent about what features are essential.
Searle hints at various points that ev-
ery level, including the biochemical,
must be represented in any machine
that is a candidate for artificial intelli-
gence. This claim is almost surely too
strong. An artificial brain might use
something other than biochemicals to
achieve the same ends.

This possibility is illustrated by Car-
ver A. Mead’s research at the Califor-
nia Institute of Technology. Mead and
his colleagues have used analog VLSI
techniques to build an artificial retina
and an artificial cochlea. (In animals
the retina and cochlea are not mere
transducers: both systems embody a
complex processing network.) These
are not mere simulations in a mini-
computer of the kind that Searle de-
rides; they are real information-proc-
essing units responding in real time to
real light, in the case of the artificial
retina, and to real sound, in the case

of the artificial cochlea. Their circuit-
ry is based on the known anatomy and
physiology of the cat retina and the
barn owl cochlea, and their output is
dramatically similar to the known out-
put of the organs at issue.

These chips do not use any neu-
rochemicals, so neurochemicals are
clearly not necessary to achieve the
evident results. Of course, the artifi-
cial retina cannot be said to see any-
thing, because its output does not
have an artificial thalamus or cortex to
go to. Whether Mead’s program could
be sustained to build an entire artifi-
cial brain remains to be seen, but there
is no evidence now that the absence of
biochemicals renders it quixotic.

We, and Searle, reject the Turing
test as a sufficient condition
for conscious intelligence. At

one level our reasons for doing so are
similar: we agree that it is also very
important how the input-output func-
tion is achieved; it is important that
the right sorts of things be going on
inside the artificial machine. At anoth-
er level, our reasons are quite differ-
ent. Searle bases his position on com-
monsense intuitions about the pres-
ence or absence of semantic content.
We base ours on the specific behav-
ioral failures of the classical SM ma-
chines and on the specific virtues of
machines with a more brainlike ar-
chitecture. These contrasts show that
certain computational strategies have
vast and decisive advantages over oth-
ers where typical cognitive tasks are
concerned, advantages that are empir-
ically inescapable. Clearly, the brain is
making systematic use of these com-
putational advantages. But it need not
be the only physical system capable
of doing so. Artificial intelligence, in
a nonbiological but massively parallel
machine, remains a compelling and
discernible prospect.

FURTHERREADlNG
coMPuI-INc  MACHINERY AND lNTELLI-

CENCE. Alan M.  Turing in Mind, Vol. 59,
pages 433-460; 1950.
WHATCOMPUTERS~?  DO;ACRITIQUE
OFARTIFICIALREASON.  HubertL.Drey-
fus. Harper & Row, 1972.
NEIJROPHILOSOPHY:  TOWARD A UNIFIED
UNDERSTANDING OF THE MIND/BRAIN.
Patricia Smith Churchland  The MIT
Press, 1986.
FAST THINKING in Ihe Intentional Stance.
Daniel Clement Dennett  The MlT Press,
1987.

A NEIJROCOWUI-ATIONAL  PERSPECTIVE:
THENATURE  OFMJMIAND-IHESTRUC-
TUFC OF SCIENCE. Pad M.  Churchhnd.
The MIT Press, in press.

SCIENTIFIC AMERICAN January 1990 37


	copyright notice: NOTICE: The copyright law of the United States (Title 17 U.S. Code) governs the making of photocopies or printouts of copyright materials.  The person using this system is liable for any infringement.


