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Abstract: Tarski’s pioneer work on abstract logic conceived consequence
structures as a pair (X, Cn) where X is a non empty set (infinite and
denumerable) and Cn is a function on the power set of X, satisfying some
postulates. Based on these axioms, Tarski proved a series of important
results. A detailed analysis of such proofs shows that several of these
results do not depend on the relation of inclusion between sets but only
on structural properties of this relation, which may be seen as an ordered
structure. Even the notion of finiteness, which is employed in the postulates
may be replaced by an ordered substructure satisfying some constraints.
Therefore, Tarski’s structure could be represented in a still more abstract
setting where reference is made only to the ordering relation on the domain
of the structure. In our work we construct this abstract consequence
structure and show that it keeps some results of Tarski’s original construction.
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Resumo: O trabalho pioneiro de Tarski sobre lógica abstrata concebia estrutu-
ras de conseqüência como um par (X, Cn) tal que X é um conjunto não vazio
e Cn é uma função definida no conjunto das partes de X, satisfazendo alguns
postulados. Baseado nesses postulados, Tarski demonstra uma série de resul-
tados importantes. Uma análise detalhada de tais demonstrações mostra que
vários desses resultados não dependem da relação de inclusão entre conjun-
tos, mas apenas das propriedades estruturais dessa relação, que pode ser vista
como uma estrutura de ordem. Mesmo a noção de finitude, que é empregada
nos postulados, pode ser substituída por uma subestrutura ordenada satisfa-
zendo alguns vínculos. Portanto, a estrutura de Tarski pode ser representada
em um contexto ainda mais abstrato onde se faz referência apenas à relação
de ordem sobre o domínio da estrutura. Neste trabalho, construímos essa
estrutura de conseqüência abstrata e mostramos como ela mantém alguns
resultados da estrutura de Tarski original.

Palavras-chave: Lógica abstrata. Operadores de conseqüência. Estruturas de
ordem.

1. Consequence Structures

A consequence structure is a pair (X, Cn) such that X is a non empty set (in fact,
Tarski considered X as an infinite enumerable set) and Cn is a map on the parts of X
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satisfying the following postulates for all A ⊆ X (see TARSKI, 1983a, 1983b; DE SOUZA;
VELASCO, 2001, 2002, and VELASCO, 2000):

(i) A ⊆ Cn(A);

(ii) Cn(Cn(A)) = Cn(A);

(iii) Cn(A) = ∪ {Cn(A’): for all A’ ⊆ A, finite}.

The first theorem is the well known law of monotonicity that can be proved as:
Consider A ⊆ B and let x ∈ Cn(A). So, by (iii), there exists A’ ⊆ A, finite such that x ∈
Cn(A’). Thus, there exists A’ ⊆ B, finite such that x ∈ Cn(A’) and, using (iii) again, we
have that x ∈ Cn(B).

A detailed analysis of such a proof shows that monotonicity does not depend on
the concept of finite that occurs in axiom (iii), but only on the properties of the relation
of inclusion between subsets of X. Even the concept of finite can be modified in a more
abstract setting.

Therefore, if we consider an arbitrary family F of subsets of X and if we change
the postulate (iii) by:

(iii’) Cn(A) = ∪ {Cn(A’): for all A’ ⊆ A, A’ ∈ F}, we would get monotonicity with an
analogous proof.

The aim of this work is to study consequence structures in a more abstract level
using partial orders.

2. Order Structures

In this section we review the main concepts of order structures that will be used in the
next sections.

A partial order is a pair (X,≤) where X is a non empty set and ≤ is a binary relation
on X such that, for every x,y,z ∈ X, we have the following properties:

a) Reflexivity: x ≤ x;

b) Anti-symmetry: if x ≤ y and y ≤ x, then x = y;

c) Transitivity: if x ≤ y and y ≤ z, then x ≤ z.

Moreover, if it holds that, for every x, y ∈ X, we have x ≤ y or y ≤ x, we say that
the order is linear or total.

Let A ⊆ X and x ∈ X. We say that x is a upper bound of A if for every a ∈ A, a ≤
x. Similarly, we say that x is a lower bound of A if for every a ∈ A, x ≤ a. We say that x
is a supremum of A if for every upper bound y of A, we have that x ≤ y. Again, we say
that x is a infimum of A if for every lower bound y of A, we have that y ≤ x. The
supremum or infimum of A (if they exist) are unique and will be denoted by sup A e inf
A, respectively. A partial order has a greatest element, if there exists y ∈ X such that x ≤
y, for every x ∈ X. Again, a partial order has a least element, if the exists y ∈ X such that
y ≤ x, for every x ∈ X. The greatest and least element of a partial order, if they exist, are
unique and will be denoted by 1 e 0, respectively.
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A lattice is a partial order (X, ≤) such that for every x, y ∈ X, there exist sup {x, y} and
inf {x, y}, denoted, respectively, by x ∨ y and x ∧ y. It is clear that, for lattices, if A finite
subset of X, then, by induction, there exist sup A e inf A. On the other hand, a lattice (X,
≤) is called complete if for all A ⊆ X, there exist sup A and inf A. Again, it is clear that, in this
case, 1 ≤ sup X and 0 ≤ inf X are the greatest and the least elements of the lattice.

The following results of order theory will be used freely in what follows. For x, y
∈ X and A, B ⊆ X we have:

1. x ∨ y = y if and only if x ≤ y;

2. x ∧ y = x if and only if x ≤ y;

3. x ≤ x ∨ y and y ≤ x ∨ y;

4. x ∧ y ≤ x and x ∧ y ≤ y;

5. If x ≤ y and x ≤ z, then x ≤ y ∧ z. In general, we have that, if x ≤ a, for all a ∈
A, then x ≤ inf A;

6. Se x ≤ z and y ≤ z, then x ∨ y ≤ z. In general, we have that, if a ≤ x, for all a ∈
A, then sup A ≤ x;

7. If A ⊆ B, then sup A ≤ sup B.

Consider a lattice (X, ≤) e let A ⊆ X. We say that A is a sub-lattice (of X) if for all
x, y ∈ A, we have that x ∨ y and x ∧ y also belong to A (that is, A is closed by the
operations sup and inf of whatever two of its elements).

3. Abstract Consequence Structures

An abstract consequence structure is a 4-tuple (X, F, ≤, c) where (X, ≤) is a complete
lattice, F ⊆ X is a sub-lattice that contains 0 and c is a function on X satisfying the
following conditions, for all x ∈ X:

(i) x ≤ c(x);

(ii) c(c(x)) ≤ c(x);

(iii) c(x) ≤ sup {c(y): y ∈ F and  y ≤ x}.

Theorem 1. For x ∈ X, c(x) ≤ c(c(x)).
Proof. By (i), we have c(x) ≤ c(c(x)). Then, by (ii) e anti-symmetry, it follows

the result.

We define a function Φ on X with values in the parts of X, such that for all x ∈ X,
we have that Φ(x) = {y ∈ F: y ≤ x}.

Theorem 2. For x ∈ X, c(x) = sup c(Φ(x)).
Proof. Regarding that if A ⊆ X, then c(A) = {c(a): a ∈ A}; the result is a direct

consequence of (iii) and the definition of Φ.
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Theorem 3. For x ∈ X, F(x) is a sub-lattice of F that contains 0.
Proof. As 0 is the least element of X (and is an element of F), then 0 ∈ Φ(x).

Moreover, if a, b ∈ Φ(x), then we have that a, b ∈ F and, thus, a ∨ b, a ∧ b ∈ F (because
F is a sub-lattice of X). Therefore, as a ≤ x and b ≤ x, then we have that a ∨ b, a ∧ b ≤ x
and, a ∨ b, a ∧ b ∈ Φ(x).

Theorem 4. For x, y ∈ X, we have the following properties:

a) If x ≤ y, then Φ(x) ⊆ Φ(y);

b) Φ(x) ∪ Φ(y) ⊆ Φ(x ∨ y);

c) Φ(x ∧ y) = Φ(x) ∩ Φ(y).

Proof. a) Suppose that x ≤ y and let z ∈ Φ(x). Then, z ∈ F and z ≤ x. By
transitivity, z ≤ y. Therefore, z ∈ Φ(y). b) e c) are consequence of a) and the fact that
x, y ≤ x ∨ y and x ∧ y ≤ x, y.

Theorem 5. For x, y ∈ X, we have that if x ≤ y, then c(x) ≤ c(y). That is, the
function c is monotone and increasing on X with respect to the order relation ≤.

Proof. Suppose that x ≤ y. By theorem 4a, Φ(x) ⊆ Φ(y). Then, c(Φ(x)) ⊆
c(Φ(y)), and we have that sup c(Φ(x)) ⊆ sup c(Φ(y)). Applying the theorem 2, we
have the result.

Theorem 6. For x, y ∈ X, are equivalents: x ≤ c(y) and c(x) ≤ c(y).
Proof. As, by (i), it holds that x ≤ c(x), considering that c(x) ≤ c(y), we have, by

transitivity, that x ≤ c(y). On the other hand, supposing x ≤ c(y), applying increasing
monotonicity, we obtain c(x) ≤ c(c(y)). By theorem 1, we have c(x) ≤ c(y).

Theorem 7. For A ⊆ X, are equivalents:

a) If x ≤ y, then c(x) ≤ c(y);

b) sup c(A) ≤ c(sup A);

c) c(inf A) ≤ inf c(A).

Proof. Let u = sup A and v = inf A. Then, a ≤ u for all a ∈ A. Applying a), c(a) ≤
c(u) for all a ∈ A. Thus, sup {c(a): a ∈ A} = c(u), that is sup c(A) ≤ c(sup A).

Similarly, as v = a for all a ∈ A, applying a), we have c(v) ≤ c(a) for all a  A. Thus,
c(v) ≤ inf {c(a): a ∈ A}, that is, c(inf A) ≤ inf c(A).

We proved that a) entails b) and c).
Consider, now, x,y ∈ X and let A = {x, y}. By b), we have that c(x) ∨ c(y) ≤ c(x ∨

y). As x ≤ y, then x ∨ y = y. Thus, c(x) ∨ c(y) ≤ c(y), that is, c(x) ≤ c(y).
Similarly, by c), we have that c(x ∧ y) = c(x) ∧ c(y). As x ≤ y, then x ∧ y = x. Thus,

c(x) ≤ c(x) ∧ c(y), that is, c(x) ≤ c(y).
We proved, then, that b) entails a) and also that c) entails a).
Therefore, we have the result.
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Theorem 8. a) For x, y ∈ X, we have that: c(x ∨ y) = c(x ∨ c(y)) = c(c(x) ∨
c(y)); b) If A ⊆ X, then c(sup A) = c(sup c(A)).

Proof. a) As, by (i), y ≤ c(y), we have that x ∨ y ≤ x ∨ c(y). By theorem 5, c(x ∨
y) ≤ c(x ∨ c(y)). As x ≤ c(x), we have that x ∨ c(y) ≤ c(x) ∨ c(y). Again, by theorem 5,
c(x Ú c(y)) ≤ c(c(x) ∨ c(y)).

On the other hand, x ≤ x ∨ y and y ≤ x ∨ y. by theorem 5, we have that c(x) ≤ c(x
∨ y) and c(y) ≤ c(x ∨ y). Thus, c(x) ∨ c(y) ≤ c(x ∨ y). Applying again the theorem 5, we
have c(c(x) ∨ c(y)) ≤ c(c(x ∨ y)). By theorem 1, c(c(x) ∨ c(y)) ≤ c(x ∨ y). Therefore, we
obtain, by anti-symmetry e transitivity, c(x ∨ y) = c(x ∨ c(y)) = c(c(x) ∨ c(y)).

b) As a ≤ c(a), for all a ∈ A, then sup {a: a ∈ A} ≤ sup {c(a): a ∈ A}. By theorem 5,
we have, then, c(sup {a: a ∈ A}) ≤ c(sup {c(a): a ∈ A}), that is, c(sup A) ≤ c(sup c(A)).

On the other hand, by theorems 5 and 7, we have that sup c(A) ≤ c(sup A).
Applying again the theorem 5, we obtain c(sup c(A)) ≤ c(c(sup A)). Now, by theorem
1, c(sup c(A)) ≤ c(sup A). Finally, by anti-symmetry, we obtain c(sup c(A)) = c(sup A).

Consider an abstract structure of consequence (X, F, ≤, c). Let x ∈ X. We say that
x is a theory if and only if c(x) ≤ x.

Theorem 9. For x ∈ X, x is a theory if and only if c(x) = x. That is, x is a fixed
point of the function c.

Proof. Immediate from (i) and the definition of theory.

Theorem 10. If x is a theory, then are equivalents, for y ∈ X: y ≤ x and c(y) ≤ x.
Proof. Suppose that y ≤ x. By theorem 5, c(y) ≤ c(x). As x is a theory, by

theorem 9, c(y) ≤ x. Suppose, now, that c(y) ≤ x. As by (i), y ≤ c(y), by transitivity, we
have that y ≤ x.

Theorem 11. For x ∈ X, we have that:

a) c(x) is a theory and if y is a theory such that x ≤ y, then c(x) ≤ y. That is, c(x)
= inf {y ∈ X: y is a theory and x ≤ y };

b) If x is a theory, then c(0) ≤ x That is, c(0) = inf {x ∈ X: x is a theory}.

Proof. a) By theorem 1, c(x) = c(c(x)). Then, by theorem 9, c(x) is a theory. b)
As 0 ≤ x, by theorem 5, c(0) ≤ c(x). As x is a theory, by theorem 9, c(0) ≤ x.

Theorem 12. We have: 1 is a theory and 1 = sup {x ∈ X: x is a theory}.
Proof. Immediate, because x ≤ 1, for all x ∈ X.

Theorem 13. a) If x, y ∈ X are theories, then x ∧ y is a theory. b) If A ⊆ X is a
family of theories, then inf A is a theory.

Proof. a) As x ∧ y ≤ x, y, by theorem 5, c(x ∧ y) ≤ c(x),c(y). Thus, c(x ∧ y) ≤ c(x)
∧ c(y) and, as x and y are theories, by theorem 9, c(x ∧ y) ≤ x ∧ y.

b) Let u ≤ inf A. Then, u ≤ a, for all a ∈ A. By theorem 5, c(u) ≤ c(a), for all a ∈ A,
that is, c(u) ≤ inf {c(a): a ∈ A}. As, for all a ∈ A, we have that a is a theory, then c(u) ≤ inf
{a: a ∈ A }, that is, c(inf A) ≤ inf A.
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4. Valuation Structures

A valuation structure is a pair (X, K) such that X is a non-empty set and K is a family of
subsets of X (see Da COSTA; BÉZIAU, 1994; Da COSTA; LOPARIC, 1984; De SOUZA,
2001, and Da SILVA, 2000).

Let A ⊆ X. We define Mod(A) = {V ∈ K: A ⊆ V} the set of models of A. Similarly, for
x ∈ X, we define Mod(x) = Mod({x}) = {V ∈ K: {x} ⊆ V} = {V ∈ K: x ∈ V}.

It is easy to see that Mod(∅) = K and Mod(X) = ∅, if X ∉ K.

Theorem 14. For A, B ⊆ X, we have the following results:

a) If A ⊆ B, then Mod(B) ⊆ Mod(A);

b) Mod(A) = ∩{Mod(a): a ∈ A}.

Proof. a) Suppose that A ⊆ B and consider V ∈ Mod (B). Then, V ∈ K and B ⊆ V.
Therefore, V ∈ K and A ⊆ V, that is, V ∈ Mod(A).

b) V ∈ ∩{Mod(a): a ∈ A} iff V ∈ Mod(a) for all a ∈ A iff V ∈ K and a ∈ V for all a
∈ A iff v ∈ K and A ⊆ V iff v ∈ Mod(A).

We define, for A ⊆ X, Cn(A) = {a ∈ X: Mod(A) ⊆ Mod(a)} the set of consequences
of A.

Theorem 15. Cn(A) = B iff Mod(A) ⊆ Mod(B).
Proof. Let A, B ⊆ X. Using theorem 14b we have: Cn(A) = B iff Mod(A) ⊆ Mod(b)

for all b ∈ B iff Mod(A) ⊆ ∩{Mod(b): b ∈ B} iff Mod(A) ⊆ Mod(B).

Theorem 16. For A, B ⊆ X, we have:

a) A ⊆ Cn(A);

b) If A ⊆ B, then Cn(A) ⊆ Cn(B);

c) Cn(A) = Cn(Cn(A)).

Proof. a) Consider a ∈ A and we have to show that a ∈ Cn(A), that is, Mod(A) ⊆
Mod(a). Let V ∈ Mod(A), then A ⊆ V. Thus, a ∈ V, that is, V ∈ Mod(a).

b) Consider A ⊆ B and suppose that a ∈ Cn(A). We have to show that a ∈ Cn(B),
that is, Mod(B) ⊆ Mod(a). Let V ∈ Mod(B). Thus, B ⊆ V and we have that A ⊆ V, that is,
V ∈ Mod(A). As a ∈ Cn(A), we have Mod(A) ⊆ Mod(a), and then, V ∈ Mod(a).

c) From a), we have that Cn(A) ⊆ Cn(Cn(A)). Now, suppose that a ∈ Cn(Cn(A))
and we have to show that a ∈ Cn(A), that is, Mod(A) ⊆ Mod(a). Consider V ∈ Mod(A)
and let D = Cn(A). Thus, Mod(A) ⊆ Mod(d) for all d ∈ D. Therefore, V ∈ Mod(d) for all
d ∈ D, that is d ∈ V for all d ∈ D, i.e., D ⊆ V. Then, V ∈ Mod(D). Now, as a ∈ Cn(Cn(A))
= Cn(D), then, Mod(D) ⊆ Mod(a). Therefore, V ∈ Mod(a).



108 Cognitio, São Paulo, v. 6, n. 1, p. 102-109, jan./jul. 2005

Cognitio – Revista de FilosofiaCognitio – Revista de FilosofiaCognitio – Revista de FilosofiaCognitio – Revista de FilosofiaCognitio – Revista de Filosofia

5. Abstract Valuation Structures

We finished this note defining an abstract setting for valuation structures in an analogous
way that we done for consequence structures.

An abstract valuation structure is a 3-tuple (X, ≤, K) such that (X, ≤) is a comple-
te lattice and K is just a subset of X.

If A, B ⊆ X we say that B recover A, in symbols A < B, iff for all a ∈ A there exists
b ∈ B such that a ≤ b. It is easy to see that A < A; if A < B and B < A, then A = B; and if
A < B and B < C, then A < C.

Consider x ∈ X. We define Mod(x) = {v ∈ K: x ≤ v} the set of models of x. It is
immediate that Mod(0) = K and Mod(1) = ∅, if 1 ∉ K. Moreover, if x ≤ y, then Mod(x)
⊆ Mod(y) and Mod(x) μ Mod(y).

Now, we define a function c: X → X, such that:

c(x) = inf {y ∈ X: Mod(x) < Mod(y)}.

It is easy to see that c has the properties of an abstract consequence operators:

a) x ≤ c(x);
b) if x ≤ y, then c(x) ≤ c(y);
c) c(x) = c(c(x)).

6. Final Considerations

Of course the theory developed here can be extended dealing with consistent and
complete sets, axiomatizability and so on as the original Tarski’s papers. This is just a
summary that will be developed in future papers.

We would like to acknowledge Alexandre Rodrigues and Juliano Maranhão for
many useful discussions on the subject of this paper.
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