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Abstract: Deontic logic is a branch of symbolic logic interested in notions such as 
obligatory, permissible, optional, ought, and others similar. There are some equivalent 
ways to present the Standard Deontic Logic or KD. In this paper, we will mention some of 
them and highlight one that is of interest. With this presentation we can propose a simple 
algebraic model for the Standard Deontic Logic.
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Resumo: A lógica deôntica é um ramo da lógica simbólica interessada em noções como 
obrigatório, permitido, opcional, dever e outras semelhantes. Existem algumas maneiras 
equivalentes de apresentar a Lógica Deôntica Padrão ou KD. Neste artigo, vamos citar 
alguns deles e destacar um que é de interesse. Com esta apresentação podemos propor um 
modelo algébrico simples para a Lógica Deôntica Padrão.
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1	 Introduction

Since Antiquity the alethic sense of “necessarily” and “possibly” has 
attracted the interest of logicians. These terms are used to qualify the 
truth of a proposition.

The pioneers of Modal Logic, at the beginning of the XX century, 
investigated the formal behaviour of expressions such as “it is necessary 
that” and “it is possible that” using formal propositional language with 
two modal operators for necessary and possible. Currently we have used 
the symbols □ and ◊ for these two notions, respectively.

Currently, the term “modal logic” is broader and characterizes a 
family of logical systems, each with several different modalities.

This family is always increasing; however, it includes tense or 
temporal logics, epistemic logics, deductively valid aspects of logics, 
doxastic logics, among others, and deontic logics.

We are particularly interested in the case of deontic logic, that 
analyses expressions such “it is obligatory that”, “it is permitted that”, 
and “it is forbidden that”. 

It is common, in introductory texts on modal logics, to present a 
modal family constructed from a weak logic indicated by K, in honour 
of Saul Kripke, who, in the 1950s introduced the Kripke models for this 
family of logics.
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This family has as its language the set L = {¬, ∧, ∨, →, □} such that the four first operators are the 
classical ones and the last one is the modal operator for ‘necessary’.

The operator for possibility must be defined from □ by ◊ϕ =df ¬ □ ¬ ϕ.
System K is obtained by adding the following two principles to classical propositional logic. 
Necessitation Rule: If ϕ is a theorem of K, then □ϕ is also a theorem of K.
Axiom K: □(ϕ → ψ) → (□ ϕ → □ ψ).
The axiom K is also known as the Distributivity Axiom.
From the Necessitation Rule, any theorem of logic is necessary. Axiom K says that if an implication 

ϕ → ψ is necessary, then for every necessary ϕ there is a necessary ψ. 
We are particularly interested in a case of deontic logic, Standard Deontic Logic (SDL), which 

introduces the primitive symbol O for “it is obligatory that”, a deontic necessity, in the place of □.
From the operator O, we can define the operator P for “it is permitted that”, deontic permission, by 

P ϕ ⇔ ¬ O ¬ ϕ, and F for “it is forbidden that” by F ϕ ⇔ O ¬ ϕ.
The usual modal axiom T: Oϕ → ϕ is not appropriate for deontic logic. Even if some action is 

obligatory, it may not always be the case.
However, the logic SDL admits the axiom (D): O ϕ → P ϕ, which says that if ϕ is obligatory, then 

ϕ is permissible; moreover, axiom D is a weakening of axiom T.
Therefore, we start with the logical system SDL presented in different but equivalent axiom systems.
Considering one of these presentations we introduce D-algebras, which are planned as algebraic 

models for SDL.
Finally, we show that D-algebras are completely adequate models for SDL.

2	 Standard deontic logic

Standard Deontic Logic is known as the system KD generated by the inclusion of axiom D.
Axiom D: □ ϕ → ◊ ϕ. 
In Deontic Logics we use the following formalization: O for “it is obligatory that”, P for “it is 

permitted that” and F for “it is forbidden that”.
Thus, axiom D says that if  is obligatory, then ϕ is permitted. 
If we take the operator of obligation O as basic, then we can define the operators of permitted and 

forbidden by:
	 P ϕ =df  O ¬ ϕ
	 F ϕ =df O ¬ ϕ.  
Now, we will present three different but equivalent presentations of KD. The last one is less usual 

but it is formidable for the algebraic model.

Let us consider the propositional language L = {¬, ∧, ∨, →, O}, with Var(KD) = {p1, p2, p3, ...} the 
set of propositional variables, and the operators P and F defined as above. “‘For(KD)”’ denotes the set 
of formulas of KD.

As we are presenting axiomatic deductive systems, we consider the usual concepts of deduction and 
proof.

Definition 1.1: If Γ ⊆ For(KD) and Ax denotes a set of axioms for KD, then C(Γ) = { ∈ For(KD) : Γ ∪ 
Ax ⊢ ψ} is the set of consequences of Γ. 

Definition 1.2: We say that  is derivable in KD, or ψ is a theorem of KD, when ψ ∈ C(∅).
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Thus, we have C(∅) as the set of theorems of KD. That is,  ∈ C(∅) ⇔ ⊢ ψ.

Definition 1.3: A theory of KD is a set ∆ ⊆ For(KD), such that C(∆) = ∆.

The logical system KD can be characterized in several ways, for example, by some of the following 
deductive systems, KD1, as in (CARNIELLI; PIZZI, 2001), and KD2 or KD3, as in (CHELLAS, 1980), 
such that: 

		  • KD1: 
	 (CPC) 		  ϕ, if ϕ is a tautology 
	 (K) 		  O(ϕ → ψ) → (O ϕ → O ψ) 
	 (D) 		  O ϕ → P ϕ 
	 (MP) 		   → ψ, ϕ / ψ 
	 (Nec)		  ⊢ ϕ / ⊢ O ϕ. 
		  • KD2: 
	 (CPC) 		  ϕ, if ϕ is a tautology 
	 (OD*) 		  ¬ (O ϕ ∧ O ¬ ϕ) 
	 (MP) 		  ϕ → ψ, ϕ / ψ 
	 (ROK)		  ⊢ (ϕ1 ∧ ...  ϕn) → ψ /  ⊢ (O ϕ1 ∧ ... ∧ O ϕn) → O ψ, for n ≥ 0 . 
		  • KD3: 
	 (CPC) 		  ϕ, if ϕ is a tautology 
	 (OC) 		  (O ϕ ∧ O ψ) → O (ϕ ∧ ψ) 
	 (ON) 		  O ⊤  
	 (OD)		   O ⊥  
	 (MP) 		   → ψ, ϕ / ψ 
	 (ROM) 		 ⊢ ϕ → ψ / ⊢ O ϕ → O ψ.

Proposition 1.4: The systems KD2 and KD3 are deductively equivalent.
Proof: We need to achieve OD* and ROK in KD3.

From OC we have (Oϕ ∧ O¬ϕ) → O (ϕ ∧ ¬ϕ) ⇔ (Oϕ ∧ O¬ϕ) → O⊥. Considering OD, it follows 
that ¬ (O ϕ ∧ O ¬ϕ).

As (ϕ ∧ ψ) → ϕ and (ϕ ∧ ψ) → ψ, then by ROM we get O(ϕ ∧ ψ) → (O ϕ ∧ O ψ). Compounding 
with OC it holds that O(ϕ ∧ ψ) ↔ (O ϕ ∧ O ψ), that can be extended for [1]  O(ϕ1 ∧ ... ∧ ϕn) ↔ (O ϕ1 
∧ ... ∧ O ϕn).

Now, if we take ⊢ (ϕ1 ∧ ... ∧ ϕn)  ψ, by ROM we obtain ⊢ O(ϕ1 ∧ ... ∧ ϕn) → O ψ. With the 
equivalence [1] we get ⊢ (O ϕ1 ∧ ... ∧ O ϕn) → O ψ. 

In the other direction, we need to establish OC, ON, OD, and ROM in KD2.
From ROK, considering n = 0, we have ⊢ ϕ / ⊢ O ϕ. Since ⊢ ⊤, then ⊢ O ⊤.
Again, from ROK, considering n = 1, we have ROM.
From ⊢ (ϕ ∧ ψ) → (ϕ ∧ ψ) and ROK we get OC.
From OD* we have ¬ O⊥ ∨ ¬ O ¬⊥ ⇔ ¬ O⊥ ∨ ¬ O⊤. Considering ON then ¬ O⊥.		

■

Proposition 1.5: The systems KD1 and KD2 are deductively equivalent.
Proof: The axioms and rules of KD1 are obtained in KD2.

From ROK with n = 0 we get Nec.
From OD* we obtain D in the following way ¬ (O ϕ ∧ O¬ ϕ) ⇔ ¬ O ϕ ∨ ¬O ¬ ϕ ⇔ ¬ O ϕ ∨ P 

ϕ ⇔ O ϕ → P ϕ.
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Finally, considering the tautology ((ϕ → ψ) ∧ ϕ) → ψ, using ROK we get (O(ϕ → ψ) ∧ O ϕ) → O 
ψ. Now using CPC we have O(ϕ → ψ) → (O ϕ → O ψ). 

The axioms and rules of KD2 are obtained in KD1.
As above, OD* and D are equivalent.
We need to prove ROK in KD1.
If ⊢ (ϕ1 ∧ ... ∧ ϕn) → ψ by Nec it follows that ⊢ O((ϕ1 ∧ ... ∧ ϕn)  ψ) and using  K we get ⊢ O(ϕ1 ∧ 

... ∧ ϕn) → O ψ. With the equivalence [1] we have ⊢ (O ϕ1 ∧ ... ∧ O ϕn) → O ψ. 	 ■

3	 D-algebra

D-algebra describes the fundamental properties of KD3 in a Boolean algebra with an operator.

Definition 2.1: D-algebra is a 7-tuple DD = (D, 0, 1, , ∨, ~, π) such that (D, 0, 1, ∧, ∨, ~) is a Boolean 
algebra and π: D → D is an operator for which:

(i) π 1 = 1
(ii) π 0 = 0
(iii) π(a ∧ b) = (π a ∧ π b).

Definition 2.2: A D-algebra is non-degenerate if its universe D has at least two elements.

Proposition 2.3: If DD = (D, 0, 1, , ∨, ~, π) is a D-algebra and a, b ∈ D, then:
(i) a ≤ b ⇒ π a ≤ π b
(ii) (π a ∨ π b) ≤ π(a ∨ b).

Proof: (i) a ≤ b ⇒ a = a ∧ b ⇒ π a = π (a ∧ b) = π a ∧ π b ⇒ π a ≤ π b.
(ii) As a ≤ a ∨ b, then π a ≤ π(a ∨ b). Hence, (π a  π b)  π (a ∨ b). ■

Theorem 2.4: For each D-algebra DD there exists a monomorphism h from DD into a D-algebra defined in 
a Boolean algebra of sets BB.
Proof: From the Stone’s isomorphism, it is known that for each Boolean algebra (B, 0, 1, , ∨, ~) there is 
a monomorphism h from it into a Boolean algebra of subsets BB.

We denote this Boolean algebra determined by Im(h) by BB = (P(B), ∅, B, ∩, ∪, C) and h: DD ≅ BB.
Next, we introduce a D-algebra of sets in BB and extend the isomorphism h to an isomorphism 

between DD and BB = (P(B), , B, ∩, ∪, C, π).
For each set a ∈ D we define π h(a) = h(π a).
We need to show that π satisfies the definition of a D-algebra:
(i) π(B) = π(h(1)) = h(π 1) = h(1) = B.
(ii) π(∅) = π(h(0)) = h(π 0) = h(0) = ∅.
(iii) π (h(a) ∩ h(b)) = π h(a ∧ b) = h (π (a ∧ b)) = h(π a ∧ π b) = h(π a) ∩ h(π b) = π h(a) ∩ π 

h(b). 	 ■
In the next section, we show that the D-algebras are appropriate models for KD.

4	 Algebraic adequacy of KD

Now, we will take a generic D-algebra D as an algebraic model for KD.

Definition 3.1: A restrict valuation is a function v: Var(KD) → DD, that maps each variable of KD in an 
element of DD.
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Definition 3.2: A valuation is a function v: For(KD)  DD, that extends natural and uniquely v as follows:
(i) v(p) = v(p)
(ii) v(¬ ϕ) = ~ v(ϕ)
(iii) v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ)
(iv) v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ)
(v) v(O ϕ) = π v(ϕ).

As usual, the operator symbols on the left side represent logical operators and those on the right side 
represent algebraic operators.

Definition 3.3: A valuation v: For(KD) → DD is a model for a set Γ ⊆ For(KD) if v(γ) = 1, for each 
formula γ ∈ Γ. 

In particular, a valuation v: For(KD) → DD is a model for a formula ϕ ∈ For(KD) when v(ϕ) = 1.

Definition 3.4: A formula  ∈ For(KD) is valid in a D-algebra DD if each valuation v: For(KD) → DD is a 
model for ϕ. 

Definition 3.5: A formula  is D-valid, what is denoted by ⊨ ϕ, when it is valid in every D-algebra. 

Let (For(KD), ∧, ∨, →, ¬, O, ⊥, ⊤) be the algebra of formulas of KD, such that , ∨ and → are binary 
operators, ¬ and O are unary operators, ⊥ and ⊤ are constants, and ϕ → ψ =df ¬ ϕ ∨ ψ. 

As usual, we define the Lindenbaum algebra of KD.

Definition 3.6: For Γ ⊆ For(KD), the following equivalence relation is defined by ≡:
ϕ ≡ ψ ⇔ Γ ⊢ ϕ → ψ and Γ ⊢ ψ → ϕ.

The relation , more than an equivalence relation, is a congruence relation, since by rule Rom: ϕ ≡ ψ 
⇔ Γ ⊢ ϕ ↔ ψ ⇒ Γ ⊢ O ϕ ↔ O ψ ⇔ O ϕ ≡ O ψ.

If Γ∪{ψ} ⊆ For(KD), we denote by [ψ]Γ = {σ ∈ For(KD) : σ ≡ ψ} the equivalence class of ψ 
module ≡ and Γ.

Definition 3.7: The Lindenbaum algebra of KD, denoted by AAΓ(KD), is the quotient algebra defined by:
AAΓ(KD) = (For(KD)|, 0, 1, ∧|, ∨|, ¬|, O|), such that:

(i) [ϕ] ∧|≡ [ψ] = [ϕ ∧ ψ]
(ii) [ϕ] ∨|≡ [ψ] = [ϕ ∨ ψ]
(iii) ¬|≡ [ϕ] = [¬ ϕ]
(iv) O|≡ [ϕ] = [O ϕ]
(v) 0 = [ϕ ∧ ¬ ϕ] = [⊥] and
(vi) 1 = [ϕ ∨ ¬ ϕ] = [⊤].

In general, it is not important to indicate the index ≡ of these operations. 
When Γ = ∅ we denote the Lindenbaum algebra of KD by AA(KD).

Proposition 3.8: In AAΓ(KD) holds: [ϕ] ≤ [ψ] ⇔ Γ ⊢ ϕ → ψ.
Proof: [] ≤ [ψ] ⇔ [ϕ]∨[ψ] = [ψ] ⇔ [ϕ∨ψ] = [ψ] ⇔ Γ ⊢ ϕ∨ψ ↔ ψ ⇔ Γ ⊢ ϕ → ψ. ■
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Proposition 3.9: The algebra AAΓ(KD) is a D-algebra.
Proof: ON: O ⊤ ⇒ [O ⊤] = 1 ⇒ O[⊤] = 1.

OD: ¬ O ⊥ ⇒ [¬ O ⊥] = 1 ⇒ O[⊥] = 0.
Since ⊢ O(ϕ ∧ ψ) ↔ (O ϕ ∧ O ψ), then O[ϕ ∧ψ] = [O ϕ] ∧ [O ψ]. ■

Definition 3.10: The algebra AAΓ(KD) is the canonical model of Γ ⊆ For(KD).
We denote a valuation on the canonical model by v0: For(KD) → AAΓ(KD). When Γ = ∅ we have v0: 

For(KD) → AA(KD).

Corollary 3.11: Let ϕ ∈ For(KD) and AA(KD) be the canonical model for KD. If ϕ is a theorem of KD, 
then [ϕ] = 1, and if  is irrefutable, then [ϕ] ≠ 0.
Proof: If ⊢ ϕ, as AA(KD) always has an identity element 1, then:
 1. ⊢ ϕ 				    Hypothesis 
 2. ⊢ ϕ → (ψ → ϕ) 		  CPC 
 3. ⊢ ϕ → ((ϕ → ϕ) → ϕ) 	 Substitution in 2 
 4. ⊢ (ϕ → ϕ) → ϕ 		  MP in 1 and 3

Hence: 1 = [ϕ → ϕ] ≤ [ϕ], that is, [] = 1. 

On the other hand, if [ϕ] = 1, then [ → ϕ] ≤ [ϕ] and so ⊢ (ϕ → ϕ) → ϕ. Since ⊢ ϕ → ϕ, by MP, it 
follows that ⊢ ϕ.

Now, ϕ is irrefutable iff ⊬  ϕ iff [ ϕ] ≠ 1 iff ¬ [ϕ] ≠ 1 iff [ϕ] ≠ 0. ■

From the preceding proposition and the definitions of 0 and 1 in the Lindenbaum algebra, it results 
that for each formula ϕ:

[ϕ] = 1 iff ⊢ ϕ and
[ϕ] = 0 iff ⊢ ¬ ϕ.

Theorem 3.12: (Soundness) The D-algebras are correct models for the logic KD.
Proof: Let DD = (D, 0, 1, ∧, ∨, ~, π) be a D-algebra. It remains to prove that the axioms ON, OC, OD are 
valid and the rule Rom preserves validity:

ON: v(O ⊤) = π v(⊤) = π 1 = 1.
OD: v(¬ O ⊥) = ~ v(O ⊥) = ~ π v(⊥) = ~ π 0 = ~ 0 = 1.
OC: v(O ϕ ∧ O ψ) = v(O ϕ) ∧ v(O ψ) = π v(ϕ) ∧ π v(ψ) = π (v(ϕ) ∧ v(ψ)) = v(O (ϕ ∧ ψ)).
Rom: v(ϕ → ψ) = 1 ⇒ v(ϕ) ≤ v(ψ) ⇒ π v(ϕ) ≤ π v(ψ) ⇒ v(O ϕ) ≤ v(O ψ) ⇒ v(O ϕ → O ψ) = 1. 	

■

Corollary 3.13: The logic KD is consistent.
Proof: Suppose that KD is not consistent. Then there is ϕ ∈ For(KD) such that ⊢  and ⊢ ¬ ϕ.

So, by the Soundness Theorem, ϕ and ¬ ϕ are valid. Let v be a valuation in a D-algebra with exactly 
two elements 2 = {0, 1}. Since ϕ is valid, then v(ϕ) = 1 and v(¬ϕ) = ~ v(ϕ) = 0. But this contradicts the 
fact of ¬ ϕ is valid.	 ■

Theorem 3.14: For ϕ ∈ For(KD), the following assertions are equivalent:
(i) ⊢ ϕ
(ii) ⊨ ϕ
(iii) ϕ is valid in every D-algebra of sets BB = (B, , ∩, ∪, C, π)
(iv) v0(ϕ) = 1, for the canonical valuation in AA(KD).

Proof: (i) ⇒ (ii): from the Soundness Theorem.
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(ii) ⇒ (iii): is immediate.
(iii) ⇒ (iv): as every D-algebra is isomorphic to a D-algebra of sets BB = (B, ∅, ∩, ∪, C, π) and 

AA(KD) is a D-algebra, the result follows.
(iv) ⇒ (i): if  ∈ For(KD) and it is not derivable in KD, by Corollary 3.11, [ϕ] ≠ 1 in AA(KD) and then 

v0(ϕ) ≠ 1. Therefore  is not a valid formula. 	 ■

Corollary 3.15: (Completeness) For each ϕ ∈ For(KD), if ϕ is valid, then ϕ is derivable in KD. 

5	 Strong completeness

In this subsection we show the strong adequacy of the algebraic models given by D-algebras. 

As usual, Γ ⊨ ϕ denotes that every model of Γ is also a model of ϕ.

Proposition 4.1: (Strong soundness) For Γ ⊆ For(KD), if Γ ⊢ ϕ, then Γ ⊨ ϕ.
Proof: Let v: Var(KD) → DD be an algebraic model for Γ. As in Theorem of Soundness, the rules of KD 
preserve validity and if vDD(γ) = 1, for every γ ∈ Γ, then vDD() = 1.	 ■

Proposition 4.2: Let Γ ⊆ For(KD) and DD a D-algebra. If there is a model v: For(KD) → DD for Γ, then 
Γ is consistent.
Proof: Suppose that Γ is not consistent. Then Γ ⊢ ϕ and Γ ⊢ ¬ ϕ. Hence there is a valuation 
v such that vDD(ϕ) = 1 and vDD(¬ ϕ) = 1. If vDD(¬ ϕ) = 1, then ~ vDD(ϕ) = 1 and vDD(ϕ) = 0. This 
way, we have a contradiction.	 ■

Definition 4.3: A model v: For(KD) → DD is strongly adequate for Γ when: 
Γ ⊢ ϕ iff Γ ⊨ ϕ.

Proposition 4.4: If Γ ⊆ For(KD) is consistent, then the canonical valuation is an adequate model to Γ.
Proof: Considering the canonical valuation v0: For(KD) → AA(KD), that maps v0(ϕ) = [ϕ], 
by Corollary 3.11 and Proposition 4.1, v0() = 1 if Γ ⊢ ϕ. Therefore, we have that v0 is an 
adequate model for Γ.

Theorem 4.5: For Γ ⊆ For(KD), the following conditions are equivalent:
(i) Γ is consistent
(ii) there is an adequate model to Γ
(iii) there is an adequate model to Γ in a D-algebra of sets 

BB = (B, ∅, ∩, ∪, C, π)
(iv) there is a model for Γ.

Proof: (i) ⇒ (ii) It follows of the previous proposition.
(ii) ⇒ (iii) As AA(KD) is a D-algebra and every D-algebra is isomorphic to a D-algebra of sets BB = 

(B, , ∩, ∪, C, π), then the result follows.
(iii) ⇒ (iv) Immediate.
(vi) ⇒ (i) It results directly by Proposition 4.2.

Corollary 4.6: (Strong adequacy) Let Γ∪{ϕ} ⊆ For(KD). If Γ is consistent, the following conditions 
are equivalent:

(i) Γ ⊢ ϕ
(ii) Γ ⊨ ϕ
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(iii) every model of Γ in a D-algebra of sets B = (B, , ∩, ∪, C, π) is a model 
       for ϕ
(iv) v0() = 1 for the canonical valuation v0.

6	 D-algebra of filters

Now, we show that the mathematical structure of proper filters characterizes D-algebras, and they are 
models for KD.

Definition 5.1: A filter on a set E is a nonempty collection F ⊆ P(E) such that:
(i) if A, B  F, then A ∩ B ∈ F
(ii) if A  F and A ⊆ B, then B  F.

Since F is nonempty, then E ∈ F.

For the set E, the collections P(E) and {E} are trivial cases of filters.

Proposition 5.2: Any intersection of filters over E is a filter over E.

Definition 5.3: A proper filter on E is a filter F such that F ≠ P(E).

If F is proper, then ∅ ∉ F.

An intersection of proper filters is a proper filter, for the set ∅ does not belong to any one of them.

Definition 5.4: The filter F is free if ∩ F = ∅.

Example 5.5: For each nonempty subset A ⊆ E, the set [A] = {C ⊆ E : A ⊆ C} is a filter on E. This filter 
is called the principal filter generated by A, and it is the least filter on E that contains A.

If A = {x}, the principal filter generated by A is the set [A] = {C ⊆ E : x ∈ C}.

Example 5.6: If E is infinite, then a subset A ⊆ E is co-finite if its complement on E, AC is finite. The 
family of all co-finite subsets of E is then a filter on E. This filter is called the Fréchet filter on E.

Each Fréchet filter is an example of a free filter.

Proposition 5.7: If the filter F is free, then it is not principal.
Proof: Let F be a filter on E. If F is principal, then F = [A], A ≠ ∅ and A  F. Thus  F = A and so F is 
not free. ■

Proposition 5.8: If E is finite, then every proper filter on E is principal.
Proof: Let F be a proper filter on the finite set E. Thus P(E) is finite too and B = ∩ F  F. Thus F = [B] 
and as F is proper, then B ≠ ∅. So, F is principal. ■

Proposition 5.9: If F is a filter on E, then it is free if, and only if, it contains the Fréchet filter on E.
Proof: If F is free, the intersection of all sets in F is empty. Thus, for each x ∈ E there is a set Bx ∈ F 
such that x ∉ Bx, Bx ⊆ E-{x} and E-{x} ∈ F.

Considering that each co-finite set is an intersection of sets of the type E - {x}, then all co-finite sets 
are in F. Hence, F contains the Fréchet filter on E.
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In the other side, let Ff the Fréchet filter on E and for an aleatory filter F, Ff ⊆ F. Then ∩ F ⊆ ∩ Ff 
= , for Ff is free. Hence, F is also free.  ■

Definition 5.10: A family A of subsets of E has the finite intersection property (fip) if every finite 
subfamily of A has a nonempty intersection.

The proper filters have the finite intersection property, for if:
A1, ..., An  F, then ∩1

n Ai ∈ F and ∩1
n Ai ≠ ∅.

Proposition 5.11: If A ⊆ P(E) has the fip, then there is a minimal filter FA that contains A.
Proof: Let FA = {B ⊆ E : B includes all finite intersections of A}. So, B is closed for finite intersections 
and super sets. 		  ■

Definition 5.12: The filter FA is the filter generated by A. 

Corollary 5.13: Let A ⊆ P(E). Then A is included in a filter on E if, and only if, A has the fip.

We can define a D-space by the following.

Definition 5.14: A D-space is a pair (E, F) such that E is a nonempty set and F is a proper filter on E.

Theorem 5.15: Each D-space (E, F) determines a D-algebra.
Proof: Given a D-space (E, F) we define π as the characteristic function of F, that is, π: F  {0, 1}, such 
that π(A) = 1 if, and only if, A ∈ F.

(i) Since E ∈ F, then π(E) = 1.
(ii) But, as F is proper, then π(∅) = 0.
(iii) If π(A) = 1 and (B) = 1, then A ∈ F and B ∈ F. As F is a filter, then A ∩ B ∈ F and π(A ∩ B) = 

1. In the other side, if π(A ∩ B) = 1, then A ∩ B ∈ F, A, B ∈ F and π(A) = 1 and π(B) = 1. 
Hence π(A) ∧ π(B) = π(A ∩ B). 	 ■

In addition to the D-algebras that are general algebraic models for TK, the D-spaces, which are 
very simple spaces with filters, are also adequate strong models for Standard Deontic Logic (FEITOSA; 
SOARES; LÁZARO, 2019).

7	 Final considerations

From a very general view of Modal Logic, we presented Standard Deontic Logic, KD, in three 
equivalent characterizations. Considering one of these presentations, we introduced D-algebras, which 
are Boolean algebras increased by one operator that formalizes the deontic aspects of the modal operator 
in that presentation. Then, we showed that the D-algebras are adequate strong models for KD. Finally, 
we demonstrated that each mathematical structure of proper filters characterizes a D-algebra and thus 
constitutes an adequate strong model for KD.

In the further steps, we plan to investigate the relations between these models for KD with the usual 
Kripke semantics for KD.
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