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Abstract: We investigate the properties of a modal algebra, more specifi cally, a non-
distributive lattice with operators via Galois connections. Pairs of Galois are very common 
in mathematical environments, and, in this article, they appear as unary operators in lattices 
even without the distributivity. In a previous paper, Castiglioni and Ertola-Biraben studied 
the meet-complemented lattices with two modal operators for necessary □ and possible ◊. 
We observed that this pair of operators determines an adjunction. Then, we used Galois 
pairs on the meet-complemented lattices, showing some properties of this structure that 
were already been proved in their paper, and some new laws non presented. Lastly, we 
defi ne a new pair of operators that also constitute another Galois pair. 

Keywords: Algebraic logic. Modal algebra. Galois connections. Non-distributive lattices.

Resumo: Investigamos as propriedades de uma álgebra modal, mais especifi camente, 
uma rede não distributiva com operadores via conexões de Galois. Pares de Galois são 
muito comuns em ambientes matemáticos e, neste artigo, eles aparecem como operadores 
unários em redes mesmo sem a distributividade. Em um artigo anterior, Castiglioni e 
Ertola-Biraben estudaram as redes complementadas por encontro com dois operadores 
modais para necessário □ e possível ◊. Observamos que esse par de operadores determina 
uma adjunção. Então, usamos pares de Galois nas redes complementadas por encontro, 
mostrando algumas propriedades dessa estrutura que já haviam sido provadas em 
seu artigo e algumas novas leis não apresentadas. Por fi m, defi nimos um novo par de 
operadores que também constituem outro par de Galois.

Palavras-chave: Algebra Modal. Cocexões de Galois. Lógica Algébrica. Redes Não-
distributivas. 

1 Introduction

Castiglioni and Ertola-Biraben (2017) investigated the meet-
complemented lattices with two modal operators. In this structure, since it 
is a lattice, we have a notion of order and, additionally, a kind of pseudo-
complement operator defi ned, which is named meet-complement. Even 
with few elements, the tradition and the authors could introduce the modal 
operators and show a few numbers of laws to this structure.

As original contribution, we observed that this pair of modal 
operators determines an adjunction, a case of Galois pair. Since we 
have already developed logical investigations using the Galois pairs, 
we could apply this theory on the meet-complemented lattices, showing 
some of the properties already presented in Castiglioni and Ertola-
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Biraben (2017), but also new ones. Furthermore, we could define a new pair of operators that also 
constitute another Galois pair.

Thus, in a first moment, in Sections 2 and 3, we remember some algebraic concepts about lattices 
and Galois pairs, since these concepts are going to constitute the base of our developments. 

In Section 4, we take two modal operators in a meet-complemented lattice with 0 and 1, as introduced 
by Castiglioni and Ertola-Biraben (2017), and show that they compose a type of Galois connection. 
Using this connection and results about the theory of Galois pairs, we show some properties of the 
limited meet-complemented lattices. 

At last, Section 5, considering this same algebraic structure, we define new operators and show that 
these operators constitute a new Galois pair.

2 Lattices

In this section, we present some notions about lattices, some of which can be found in Birkhoff (1948), 
Dunn and Hardegree (2001), Miraglia (1987) and Rasiowa and Sikorski (1968).

Definition 2.1. A partial order on L is a binary relation ≤ which is reflexive, anti-symmetric and transitive.

Definition 2.2. A partially ordered set (poset) is a pair ⟨L, ≤⟩ such that L is a non-empty set and ≤ is a 
partial order on L.

Definition 2.3. If ⟨L, ≤⟩ is a poset and a, b ∈ L, then the supremum of {a, b}, case it exists, is the element 
c ∈ L such that:

(i) a ≤ c and b ≤ c
(ii) a ≤ d and b ≤ d ⇒ c  ≤ d.

Definition 2.4. If ⟨L, ≤⟩ is a poset and a, b ∈ L, then the infimum of {a, b}, case it exists, is the element 
e ∈ L such that:

(i) e ≤ a and e ≤ b
(ii) f ≤ a and f ≤ b ⇒ f  ≤ e.
It is usual to denote the supremum of {a, b} by sup{a, b} or a ⋎ b, and the infimum by inf{a, b} or 

a ⋏ b.
The supremum of {a, b} is the least upper bound of {a, b} and the infimum is the greatest lower 

bound of {a, b}.

Definition 2.5. A lattice is a mathematical structure L = ⟨L, ≤, ⋏, ⋎⟩ formed by a partially ordered set ⟨L, 
≤⟩ in which for any a, b ∈ L there is a ⋎ b and a ⋏ b in L.

Proposition 2.6. If L = ⟨L, ≤, ⋏, ⋎⟩ is a lattice, then for all a, b, c ∈ L:
L1 (a ⋏ b) ⋏ c = a ⋏ (b ⋏ c) and (a ⋎ b) ⋎ c = a ⋎ (b ⋎ c) [Associativity];
L2 a ⋏ b = b ⋏ a and a ⋎ b = b ⋎ a [Commutativity];
L3 (a ⋏ b) ⋎ b = b and (a ⋎ b) ⋏ b = b [Absorption];
L4 a ⋏ a = a and a ⋎ a = a [Idempotency];
L5 a ⋏ b = a ⇔ a ≤ b ⇔ a ⋎ b = b [Order].
An equivalent way to define a lattice is by the following one.
Lattice is an algebraic structure L = ⟨L, ∧, ∨⟩ such that L is a non-empty set, and ∧ and ∨ are two 

binary operations defined on L satisfying:
ℓ1 (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c) [Associativity];
ℓ2 a ∧ b = b ∧ a and a ∨ b = b ∨ a [Commutativity];
ℓ3 (a ∧ b) ∨ b = b and (a ∨ b) ∧ b = b [Absorption];
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In the lattice L = ⟨L, ∧, ∨⟩ we can define a partial order ≤ such that: a ≤ b if, and only if, a ∨ b = b, 
or equivalently, a ≤ b if, and only if, a ∧ b = a.

The mathematical structure L = ⟨L, ≤, ∧, ∨⟩ thus obtained is a lattice in the sense of the Definition 
2.5 above, with ∧ being the infimum and ∨ the supremum.
Proposition 2.7. If L = ⟨L, ≤, ⋏, ⋎⟩ is a lattice and a, b, c, d ∈ L, then:

L6 a ≤ a ⋎ b and b ≤ a ⋎ b;
L7 a ⋏ b ≤ a and a ⋏ b ≤ b;
L8 a ≤ c and b ≤ c ⇒ a ⋎ b ≤ c;
L9 c ≤ a and c ≤ b ⇒ c ≤ a ⋏ b;
L10 a ≤ c and b ≤ d ⇒ a ⋎ b ≤ c ⋎ d;
L11 a ≤ c and b ≤ d ⇒ a ⋏ b ≤ c ⋏ d;
L12 a ≤ b ⇒ a ⋏ c ≤ b ⋏ c;
L13 a ≤ b ⇒ a ⋎ c ≤ b ⋎ c.

Proposition 2.8. If L = ⟨L, ≤, ⋏, ⋎⟩ is a lattice, then:
L14 (a ⋏ b) ⋎ (a ⋏ c) ≤ a ⋏ (b ⋎ c);
L15 a ⋎ (b ⋏ c) ≤ (a ⋎ b) ⋏ (a ⋎ c).

Definition 2.9. Homomorphism between the lattices L1 = ⟨L1, ≤, ⋏, ⋎⟩ and L2 = ⟨L2, ≤, ⋏, ⋎⟩ is a function 
h from L1 into L2 such that:

h (a ⋏ b) = h (a) ⋏ h (b) and h (a ⋎ b) = h (a) ⋎ h (b).
Every homomorphism of lattices preserves ordering, that is:

a ≤ b ⇔ a ⋎ b = b ⇒ h (a ⋎ b) = h (b) ⇔ h (a) ⋎ h (b) = h (b) ⇔ h (a) ≤ h (b).

Definition 2.10. An isomorphism of lattices is a bijective homomorphism of lattices.

Definition 2.11. A lattice L = ⟨L, ≤, ⋏, ⋎⟩ is distributive if the following distributive laws are valid 
for all a, b, c ∈ L:

L16 (a ⋏ b) ⋎ c = (a ⋎ c) ⋏ (b ⋎ c) and (a ⋎ b) ⋏ c = (a ⋏ c) ⋎ (b ⋏ c).
These are distributive laws at right-hand side and, due to the commutative property, also the 

distributive laws at left-hand side are valid. Besides, only one of these two distributive laws would be 
enough to characterize the distributive property (Miraglia, 1987).

Definition 2.12. If the lattice L = ⟨L, ≤, ⋏, ⋎⟩ has the least element by the ordering ≤, then this element 
is the zero of L and is denoted by 0. If L has the greatest element relative to the ordering ≤, then this 
element is the one of L and it is denoted by 1.

If the lattice L has the elements 0 and 1, then for every a ∈ L:
L17  a ⋏ 0 = 0 and a ⋎ 0 = a;
L18  a ⋏ 1 = a and a ⋎ 1 = 1.
We denote a lattice with 0 and 1 by L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩. Such lattice is limited by 0 and 1.

Definition 2.13. If L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ is a poset with 0 and 1, then L has an involution ‘ if for all a, 
b ∈ L:

L19  a = a ′ ′;
L20  a ≤ b ⇒ b ′ ≤ a ′.
We denote a lattice with 0, 1 and involution ′ by L = ⟨L, 0, 1, ≤, ′, ⋏, ⋎⟩.

Proposition 2.14. If L = ⟨L, 0, 1, ≤, ′, ⋏, ⋎⟩ is a poset with involution, then the De Morgan’s laws hold:
L21  (a ⋏ b)′ = (a′ ⋎ b′ );
L22  (a ⋎ b)′ = (a′ ⋏ b′ ).



4/11 Galois connections and modal algebras

Cognitio, São Paulo, v. 25, n. 1, p. 1-11, jan.-dez. 2024 | e67779

Indeed, in the presence of L20 in L = ⟨L, 0, 1, ≤, ′, ⋏, ⋎⟩ the conditions L20, L21 and L22 are equivalents.
Besides, in this case, sup{a, b} is defined if, and only if, inf{a, b} is also defined.

Definition 2.15. If L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ is a lattice with 0 and 1 and for a ∈ L there exists the element ∼ 
a = max{y ∈ L : a ⋏ y = 0} in L, then ∼ a is the pseudo-complement of a.

Definition 2.16. A lattice L is pseudo-complemented if every element a ∈ L has a pseudo-complement 
∼ a ∈ L.

The ps0eudo-complement comes from the tradition of intuitionistic logic and algebra (Rasiowa, 
1974). This pseudo-complement characterizes a type of negation in intuitionistic logic and algebra.

Of course, this negation is different from the classical negation.

Definition 2.17. Let L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ be a lattice with 0 and 1. If a ∈ L, then the complement of a a 
in L is an element −a ∈ L such that:

L23 a ⋏ −a = 0 and
L24 a ⋎ −a = 1.
Every complement −a is a pseudo-complement ∼a, however, for example, the intuitionistic pseudo-

complement of Intuitionistic Logic is not a complement.
The complement is an involution, but the pseudo-complement is only an almost involution, because 

for this concept it holds only a ≤ ∼∼ a and L20.

Definition 2.18. The lattice L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ is complemented if every element of L has a complement 
in L. If every element of L has exactly one complement, then the lattice L is uniquely complemented.

If the complement of a is unique, we denote its complement by −a. This case we denote this lattice 
by L = ⟨L, 0, 1, ≤, −, ⋏, ⋎⟩.
Lemma. 2.19. If L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ is a distributive lattice with 0 and 1, and there exists a complement 
of a, then it is unique.
Proof. If y and z are two complements of a, then a ⋏ y = 0, a ⋎ y = 1, a ⋏ z = 0, and a ⋎ z = 1. As z = 0 ⋎ 
z = (a ⋏ y) ⋎ z = (a ⋎ z) ⋏ (y ⋎ z) = 1 ⋏ (y ⋎ z) = y ⋎ z, that is, y ≤ z. Analogously, z ≤ y and, hence, z = y.

Definition 2.20. A Boolean algebra B is a distributive and complemented lattice.
As is well known, the Boolean algebras are model for classical propositional logic, Brouwer 

(Heyting) algebras are models for intuitionistic propositional logic.
We are interested in a type of algebraic structure less specific than these algebras.

3 Galois pairs

In this section, we present the Galois connections and other pairs of functions associated with the Galois 
connections, named in general as Galois pairs.

We mainly follow the book of Dunn and Hardegree (2001), but there are so many variations on the 
definitions and notations about the Galois pairs. We also suggest the Herrlich and Husek (1990), Ore 
(1944) and Orlowska and Rewitzky’s (2010) and Smith’s (2010) papers.

We start with some preliminaries notions about functions that will be used in the development of 
theory.

Definition 3.1. Let f : (A, ≤A) → (P, ≤P) a function between two partial ordered sets. Then:
(i) the function f preserves the orders if: a ≤A b ⇒ f(a) ≤P f(b);
(ii) the function f inverts the orders if: a ≤A b ⇒ f(b) ≤P f(a).
Sometimes these functions are called increasing and decreasing, monotone, isotone and antitone.
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Definition 3.2. If f : (A, ≤A) → (A, ≤A), then:
(i) the function f is idempotent if f ∘ f = f;
(ii) the function f is extensive or inflationary if for every a ∈ A, a ≤ f(a);
(iii) the function f is deflationary if for every a ∈ A, f (a) ≤ a.

Definition 3.3. If f : (A, ≤A) → (A, ≤A), then:
(i) the function f is a Tarski operator (deductive closure) if f is idempotent, inflationary, and preserves 

orders;
(ii) the function f is an interior operator if f is idempotent, deflationary, and preserves orders.

Definition 3.4. Given two partial ordered sets (A, ≤A) and (P, ≤P), and the functions f : A → P and g : P 
→ A, then the pair (f, g) is a Galois connection if, for every a ∈ A and every p ∈ P:

a ≤A g(p) ⇔ p ≤P f(a).
From this definition, we have that if (f, g) is a Galois connection for the partial orders (A, ≤A) and (P, 

≤P), then the pair (g, f) is also a Galois connection for the partial orders (P, ≤P) and (A, ≤A).
Example 3.5. Considering A = P = ℤ, with the natural order of integers, g = f, and the function f : ℤ 
→ ℤ, defined by f(x) = - x, then (f, g) is a Galois connection for (ℤ, ≤), because a ≤ g(p) ⇔ a ≤ - p ⇔ p 
≤ - a ⇔ p ≤ f(a).
Example 3.6. If A = P is a set of mathematical sentences, the order is given by the classical conditional 
φ → ψ, and f = g is the operator of negations, that is, f(σ) = g(σ) = ¬σ, then (f, g) is a Galois connection, 
φ → ψ ⇔ ¬ψ → ¬φ.

We quote without proof the following proposition.
Proposition 3.7. Let (A, ≤A) and (P, ≤P) two partial orders, f : A → P and g : P → A functions. The pair 
(f, g) is a Galois connection if, and only if, for every a, b ∈ A and for every p, q ∈ P are valid the items:

(i) a ≤ b ⇒ f(b) ≤ f(a);
(ii) p ≤ q ⇒ g(q) ≤ g(p);
(iii) a ≤ g(f(a));
(iv) p ≤ f(g(p)).
Thus, we have an alternative way to characterize any Galois connection. The pair (f, g) is a Galois 

connection if the functions f and g invert the orders, the composition f ∘ g is extensive, and the composition 
g ∘ f is inflationary.

When we look for the definition of Galois connection, four permutations can occur and theses cases 
generates other pairs of functions with some similitude, which are named, in the collective, as Galois pairs.

Definition 3.8. If (A, ≤A) and (P, ≤P) are partial ordered sets, a ∈ A and p ∈ P are random elements and f 
: A → P and g : P → A are functions, then:

(i) the pair (f, g)d is a dual Galois connection if: g(p) ≤A a ⇔ f(a) ≤P p;
(ii) the pair [f, g] is an adjunction if: a ≤A g(p) ⇔ f(a) ≤P p;
(iii) the pair [f, g]d is a dual adjunction if: g(p) ≤A a ⇔ p ≤P f(a).
The name adjunction comes from the theory of categories. Sometimes the pair [f, g] is also called 

residuated.
As in the case of Galois connections, we have a proposition that give us equivalent conditions to 

describe an adjunction.
Proposition 3.9. Let (A, ≤A) and (P, ≤P) two partial orders, f : A → P and g : P → A functions. The pair [f, 
g] is an adjunction if, and only if, for every a, b ∈ A and for every p, q ∈ P, the following items are valid:

(i) a ≤ b ⇒ f(a) ≤ f(b);
(ii) p ≤ q ⇒ g(p) ≤ g(q);
(iii) a ≤ g(f(a));
(iv) f(g(p)) ≤ p.
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Now, we present some properties of adjunctions.
Proposition 3.10. If the pair [f, g] is an adjunction, for the partial orders (A, ≤A) and (P, ≤P), then: f(a) = 
f(g(f(a))) and g(p) = g(f(g(p))).
Proposition 3.11. If the pair [f, g] is an adjunction for (A, ≤A) and (P, ≤P), then the compositions g ∘ f and 
f ∘ g are operators of Tarski and interior, respectively, over A and P. 
Example 3.12. Given two sets E and F, let’s consider a relation R between E and F, that is, R ⊆ E × F 
and the following order relations (𝒫(E), ⊆) and (𝒫(F), ⊆).

Now, we define the following functions: f : 𝒫(E) → 𝒫(F) by Af = {y ∈ F : (∃x ∈ A)(xRy)} and g : 
𝒫(F) → 𝒫(E) by Bg = {x ∈ E : (∀y)(xRy → y ∈ B)}.

We will show that [f, g] is an adjunction. For this, we must observe that: (i) A1 ⊆ A2 ⇒ A1
f ⊆ A2

f; (ii) 
B1 ⊆ B2 ⇒ B1

g ⊆ B2
g; (iii) (Bg)f ⊆ B; and (iv) A ⊆ (Af)g, in according with Proposition 3.9.

(i) Let A1 ⊆ A2. If y ∈ A1
f, then (∃x ∈ A1)(xRy). From hypothesis, (∃x ∈ A2)(xRy) and, hence, y ∈ A2

f. 
So A1

f ⊆ A2
f.

(ii) Let B1 ⊆ B2. If x ∈ B1
g, then (∀y)(xRy → y ∈ B1). From hypothesis, (∀y)(xRy → y ∈ B2) and then 

x ∈ B2
g. So B1

g ⊆ B2
g.

(iii) If y ∈ (Bg)f, then exists x ∈ Bg such that xRy. Now, if xRy and x ∈ Bg, then y ∈ B. So, (Bg)f ⊆ B.
(iv) Let A ⊈ (Af)g. Then exists x ∈ A such that x ∉ (Af)g. From that, it is not the case that (∀y)(xRy → 

y ∈ Af). Thus, there exists y such that xRy and y ∉ Af. If y ∉ Af, then it is not the case that exists x such 
that xRy, and this contradicts the affirmation above.
Example 3.13. As a particular case of previous example, let’s consider E = F and R as a partial order ≤ 
on E.

Then f : 𝒫(E) → 𝒫(E) is defined by Af = {y ∈ E : (∃x ∈ A)(x ≤ y)}, that consists of all elements of A 
and elements of E that are greater than some element of A; and g : 𝒫(E) → 𝒫(E) is defined by Bg = {x 
∈ E : (∀y)(x ≤ y → y ∈ B)}, that consists of all elements of B and elements of E that are not greater than 
any element of B.
Example 3.14. Let h : E → F a function and let’s consider the order relations (𝒫(E), ⊆) and (𝒫(F), ⊆).

So we define the direct image via h by f : 𝒫(E) → 𝒫(F) with Af = {y ∈ F : x ∈ A and h(x) = y} and 
the inverse image via h by g : 𝒫(F) → 𝒫(E) with Bg = {x ∈ E : y ∈ B and h(x) = y}.

This way, we show that [f, g] is an adjunction.
Of course the functions f and g preserve the orders.
If y ∈ (Bg)f, then there exists x ∈ Bg such that h(x) = y. Now, as h(x) = y and x ∈ Bg, then y ∈ B. Hence, 

(Bg)f ⊆ B.
If x ∈ A, like h is function, then for y = f(x) we have that y ∈ Af. So x ∈ (Af)g, that is, A ⊆ (Af)g.

Proposition 3.15. If the pair [f, g] is an adjunction for the lattices (A, ⋏, ⋎) and (P, ⋏, ⋎) then:
(i) f(x ⋎ y) = f(x) ⋎ f(y);
(ii) g(x ⋏ y) = g(x) ⋏ g(y).

Proposition 3.16. If [f, g1] and [f, g2] are adjunctions for (A, ≤A) and (P, ≤P), then g1 = g2. If [f1, g] and 
[f2, g] are adjunctions for (A, ≤A) and (P, ≤P), then f1 = f2.
Proposition 3.17. If [f, g] is an adjunction for (A, ≤A) and (P, ≤P), then:

(i) a ∈ g(P) ⇔ g(f(a)) = a;
(ii) p ∈ f(A) ⇔ f(g(p)) = p;
(iii) f(A) = f(g(P));
(iv) g(P) = g(f(A)).
This way, each point a ∈ g(P) is a fix point of the function g ∘ f and each point p ∈ f(A) is a fix point 

of the function f ∘ g.
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Considering that g ∘ f is a Tarski operator over A, then the set g(P) = {a ∈ A : a = g(f(a))} contains 
all closed elements of A relative this operator. Dually, the set f(A) = {p ∈ P : p = f(g(p))} contains all 
open elements of P relative to the operator of interior f ∘ g.
Proposition 3.18. If [f, g] is an adjunction for (A, ≤A) and (P, ≤P), then:

(i) f(a) = min{p ∈ P : a ≤ g(p)};
(ii) g(p) = max{a ∈ A : f(a) ≤ p}.

Proposition 3.19. If [f1, g1] is an adjunction for (A, ≤A) and (B, ≤B), and [f2, g2] is an adjunction for (B, 
≤B) and (C, ≤C), then [f2 ∘ f1, g1 ∘ g2] is an adjunction for (A, ≤A) and (C, ≤C).

Each Galois pair presents similar results to these associated with the adjunctions.

4 Adjunctions on meet-complemented lattices

In the work of Castiglioni and Ertola-Biraben (2017) there is a definition of meet-complemented lattices 
with several properties and examples of them. On this algebraic structure, the authors introduced two 
unary operators and showed so many properties of this new algebraic structure.

In the following, we detach these definitions and show that these unary operators there defined 
determine an adjunction.

So, considering the developments in Section 3, we establish many properties of these meet-
complemented lattices with operators, many of them proved by Castiglioni and Ertola-Biraben (2017), 
but we show some others else.

Definition 4.1. If a is an element in a lattice L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩, then its meet-complement, when it 
exists, is the element in L, denoted by ∼a, such that

∼a = max{b ∈ L : a ⋏ b = 0}.
The meet-complement is a pseudo-complement. A meet-complemented lattice is a lattice in which 

each element has a meet-complement. Also, in this structure, there is no distributivity for L. Indeed the 
most interesting cases are non-distributive.
Definition 4.2. Let L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ a meet-complemented lattice. The operator of necessity □ : L 
→ L is defined by:

□a = max{b ∈ L : a ⋎ ∼b = 1}.
For any a ∈ L, as the maximum is unique and 0 always belong to {b ∈ L : a ⋎ ∼b = 1}, then the 

operator □ is well defined.
Besides, this definition is equivalent to say that, given a ∈ L, the □a is the unique element in L for 

which are valid the following conditions:
(1) a ⋎ ∼□a = 1;
(2) a ⋎ ∼b = 1 ⇒ b ≤ □a.
The equivalence is trivial since the condition (2) tells us that □a is the greatest element satisfying 

the condition (1).
Definition 4.3. Let L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ a meet-complemented lattice. The operator of possibility ◊ : L 
→ L is defined by:

◊a = min{b ∈ L : ∼a ⋎ b = 1}.
Again the operator is well defined, since 1 ∈ {b ∈ L : ∼a ⋎ b = 1}.
Besides, this definition is equivalent to the following together conditions:
(3) ∼a ⋎ ◊a = 1;
(4) ∼a ⋎ b = 1 ⇒ ◊a ≤ b.
The condition (4) tells us that ◊a is the least element satisfying the condition (3).
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Now, we can observe these two operators as an adjunction.
Proposition 4.4. For any a, b ∈ L: a ≤ b ⇒ □a ≤ □b.
Proof. Let a ≤ b. From (1) we have a ⋎ ∼□a = 1. Then b ⋎ ∼□a = 1 and by (2) we have that □a ≤ □b.
Proposition 4.5. For any a, b ∈ L: a ≤ b ⇒ ◊a ≤ ◊b.
Proof. Let a ≤ b. Thus ∼b ≤ ∼a. From (3) we have ∼b ⋎ ◊b = 1. Then ∼a ⋎ ◊b = 1 and by (4) we have 
that ◊a ≤ ◊b.
Proposition 4.6. Let a ∈ L, then ◊□a ≤ a.
Proof. From (1) we have ∼□a ⋎ a = 1. Then using (4) we have ◊□a ≤ a.
Proposition 4.7. Let a ∈ L, then a ≤ □◊a.
Proof. From (3) we have ◊a ⋎ ∼a = 1. Then using (2) we have a ≤ □◊a.

Now, from these four propositions and with Proposition 3.9, we conclude that the pair [◊, □] is an 
adjunction as in Definition 3.8 (ii).

From the fact that [◊, □] is an adjunction, we can show some results over L.
Proposition 4.8. In the algebraic structure L = ⟨L, 0, 1, ≤, ⋏, ⋎, ◊, □⟩ are valid:

(i) a ≤ □b ⇔ ◊a ≤ b;
(ii) ◊a = min{p ∈ L : a ≤ □p};
(iii) □p = max{a ∈ L : ◊a ≤ p};
(iv) a ∈ □(L) ⇔ □(◊(a)) = a;
(v) a ∈ ◊(L) ⇔ ◊(□(b)) = b.

Proof. From Definition 3.8, Proposition 3.18 and Proposition 3.19.
Proposition 4.9. In L = ⟨L, 0, 1, ≤, ⋏, ⋎, ◊, □⟩ we have:

(i) □◊□a = □a;
(ii) ◊□◊a = ◊a;
(iii) ◊(a ⋎ b) = ◊a ⋎ ◊b;
(iv) □(a ⋏ b) = □a ⋏ □b;

Proof. From Proposition 3.10 and Proposition 3.15.
From the Proposition 3.11, we can define one operator of Tarski ▽ and another of interior △ as 

bellow.

Definition 4.10. Let L = ⟨L, 0, 1, ≤, ⋏, ⋎, ◊, □⟩ be a meet-complemented lattice with ◊ and □. The 
operators of Tarski (closure) ▽ and interior △ are defined in the following way:

(i) ▽a = □◊a;
(ii) △a = ◊□a.

Proposition 4.11. In the algebra L = ⟨L, 0, 1, ≤, ⋏, ⋎, ◊, □⟩ we have:
(i) △a ≤ a;
(ii) a ≤ b ⇒ △a ≤ △b;
(iii) △a ≤ △△a;
(iv) △△a = △a;
(v) △a ≤ △a ⋎ △b ≤ △(a ⋎ b);
(vi) △(a ⋏ b) ≤ △a ⋏ △b ≤ △a.
Since ▽ is an operator of closure, then:

Proposition 4.12. In the algebra L = ⟨L, 0, 1, ≤, ⋏, ⋎, ◊, □⟩ we have:
(i) a ≤ ▽a;
(ii) a ≤ b ⇒ ▽a ≤ ▽b;
(iii) ▽▽a ≤ ▽a;
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(iv) ▽▽a = ▽a;
(v) ▽a ≤ ▽a ⋎ ▽b ≤ ▽(a ⋎ b);
(vi) ▽(a ⋏ b) ≤ ▽a ⋏ ▽b ≤ ▽a.
Therefore, we have two more unary operators.

5 More operators for meet-complemented lattices

Besides the two operators of previous section, we can define more operators on meet-complemented 
lattices that act as a Galois pair.

In this section, we introduce this new pair that perform another adjunction.

Definition 5.1. Let L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ a meet-complemented lattice. The operator ⨀ : L → L is 
defined by:

⨀a = min{b ∈ L : a ⋏ ∼b = 0}.
As the minimum is unique and 1 always belongs to {b ∈ L : a ⋏ ∼b = 0}, for any a ∈ L, then the 

operator is well defined.
Besides, this definition is equivalent to the following together conditions:
(5) a ⋏ ∼⨀a = 0;
(6) a ⋏ ∼b = 0 ⇒ ⨀a ≤ b.
The condition (5) says that ⨀a exists and (6) that ⨀a is the minimum.

Definition 5.2. Let L = ⟨L, 0, 1, ≤, ⋏, ⋎⟩ a meet-complemented lattice. The operator ⨁ : L → L is defined by:
⨁a = max{b ∈ L : ∼a ⋏ b = 0}.

This operator is well defined too.
Besides, this definition is equivalent to the following together conditions:
(7) ∼a ⋏ ⨁a = 0;
(8) ∼a ⋏ b = 0 ⇒ a ≤ ⨁b.
The condition (7) says that ⨁a exists and (8) that ⨁a is the maximum.
Now, we can observe these two operators forming an adjunction.

Proposition 5.3. For any a, b ∈ L: a ≤ b ⇒ ⨀a ≤ ⨀b.
Proof. Let a ≤ b. From (5) we have b ⋏ ∼⨀b = 0. Then a ⋏ ∼⨀b = 0 and by (6) we have that ⨀a ≤ ⨀b.
Proposition 5.4. For any a, b ∈ L: a ≤ b ⇒ ⨁a ≤ ⨁b.
Proof. Let a ≤ b. Thus ∼b ≤ ∼a. From (7) we have ∼a ⋏ ⨁a = 0. Then ∼b ⋏ ⨁a = 0 and by (8) we have 
that ⨁a ≤ ⨁b.
Proposition 5.5. Let a ∈ L, then a ≤ ⨁⨀a.
Proof. From (5) we have ∼⨀a ⋏ a = 0. Then using (8) we have a ≤ ⨁⨀a.
Proposition 5.6. Let a ∈ L, then ⨀⨁a ≤ a.
Proof. From (7) we have ⨁a ⋏ ∼a = 0. Then using (6) we have ⨀⨁a ≤ a.

Now, from these four propositions and the Proposition 3.7, we conclude that the pair [⨁, ⨀] is an 
adjunction.

So, every property established for an adjunction holds for the pair [⨁, ⨀] and we have several new 
properties over these two new operators.

6 Final considerations

We have been interested in Galois pairs (connections) and its properties. From these concepts very 
frequent and useful in the logical and mathematical context, we could explicate some results involving 



10/11 Galois connections and modal algebras

Cognitio, São Paulo, v. 25, n. 1, p. 1-11, jan.-dez. 2024 | e67779

operators that were introduced in the paper of Castiglioni and Ertola-Biraben (2017) and explore new 
results over them.

But, besides that, we could introduce new operators and show some of their properties too. As 
every property established for an adjunction holds for the new pair [⨁, ⨀], then we have several new 
properties over these two new operators.

We have also the interior and closure operators defined from the adjunctions [◊, □] and [⨁, ⨀], with 
all consequences of them.

In this way, we have considered the Galois pairs as a methodological approach to explore mathematical 
and logical structures. And, with this, we were able to glimpse some new results, in a certain sense, for 
what was already in the literature.
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