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Abstract: Peirce’s Existential Graphs provide a geometrical understanding of a variety of 
logics (classical, intuitionistic, modal, fi rst-order). The geometrical interpretation is given 
by topological transformations of closed (Jordan) curves on the plane, but it can be extended 
to other surfaces (sphere, cylinder, torus, etc.) The result provides the appearance of new 
logics related to the shapes of the surfaces. Going beyond, one can draw existential graphs 
over general Riemann Surfaces, and, introducing tools from algebraic geometry (Sheaves, 
Grothendieck Toposes, Elementary Toposes), one can try to capture both the logics and the 
geometrical shapes through a new Topos of Existential Graphs over Riemann Surfaces, 
and through the classifi er subobject of the topos. We off er new perspectives (concepts, 
defi nitions, examples, conjectures) along this road.
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Resumo: Os Grafos Existenciais de Peirce oferecem uma compreensão geométrica 
de uma variedade de lógicas (clássica, intuicionista, modal, de primeira ordem). A sua 
interpretação geométrica é dada por transformações topológicas de curvas fechadas 
(Jordan) no plano, mas pode ser estendida a outras superfícies (esfera, cilindro, toro etc.). 
Além disso, é possível desenhar grafos existenciais sobre superfícies de Riemann gerais 
e, introduzindo ferramentas da geometria algébrica (Feixes, Toposes de Grothendieck, 
Toposes Elementares), é possível tentar capturar as lógicas nas formas geométricas por 
meio de um novo Topos de Grafos Existenciais sobre Superfícies de Riemann e por meio 
do subobjeto classifi cador do topos. Oferecemos novas perspectivas (conceitos, defi nições, 
exemplos, conjecturas) ao longo desse caminho.

Palavras-chave: Feixes. Grafos Existenciais. Logica. Peirce. Topos.

1 Introduction 

This work1 is situated in what we may call a “geometrization of 
mathematics”, or more concretely, a geometrization of logic Such a 
proposal lies in a mathematical panorama governed by Grothendieck 
toposes, which, after their transit to elementary toposes, open up the 
study of many particular logics. Independently, on another side, Peirce’s 
existential graphs off er a profound topological vision of logic, built on 
local transformations of Jordan curves over the complex plane. This 

1 This is a report of my Undergraduate Thesis, “Topos de Gráfi cos Existenciales sobre Superfi cies de 
Riemann”, Departamento de Matemáticas, Universidad Nacional de Colombia, Sede Bogotá, 2022, 
108 pp., under the orientation of Fernando Zalamea, whom I thank for his support in the construction 
and discussion of this thesis, not only in the ideas on which it was based, but also in his mathematical 
precision and accurate corrections.
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situation has been extended in the last decade, with the emergence of existential graphs on nonplanar 
surfaces (sphere, cylinder, torus), where the geometrical tools acquire higher preponderance. Using then 
techniques from sheaves and toposes, applied to concepts on Riemann surfaces, we obtain a wide vision 
of alternative existential graphs, related to intrinsic and extrinsic properties of geometrical logics.

2 Existential graphs (EG)

When we study Existential Graphs (EG) on the plane, their basic constructions, their rules and the 
uniqueness of their axiomatizations, we obtain a variety of associated logics, by means of an entirely 
diagrammatic, coherent and unitary presentation (Peirce, 1903). The Alpha and Beta models of (EG) 
constitute by themselves a complete (Roberts, 1992) and consistent treatment of elementary logic 
(classical and fi rst-order, respectively) (Roberts, 1963). Posterior developments propose a Gamma 
level associated with reasoning outside classical logic, covering not only the modal domain (Zeman, 
1964), but also some higher-order logics. With certain additional transformations in the syntax, the (EG) 
have been extended also towards intuitionistic logic (Oostra, 2010), according to the fact that a natural 
semantics for intuitionistic logic is given by topological spaces (Tarski, 1938).

Figure 1: (EG) - archetypal roots of logical calculi

Thus, with common rules and with slight variations in the signs, a broad view of geometry-based 
logic is obtained. Within this (EG) system, deductive reasoning occurs through the insertion or omission 
of propositional letters (Pietarinen, 2021) together with closed curves (cuts) understood as negations. 
The deformation of the diverse elements can be asserted through a continuous background (initially, a 
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complex plane) where the affi  rmations and modes of analysis are manifested under rules of writing or 
erasure, and dual pragmatic permissions such as iteration/deiteration or double cut, depending on the 
level and parity in areas associated to the cuts or enclosures present in the graphs. A precise form of 
reading provides an unambiguous interpretation, called endoporeutic method (Pietarinen, 2004), whose 
specifi city and technical power are obtained thanks to the operation of (de)iteration. 

Through topological thinking, the derived distinct Alpha, Alpha*, Beta, Gamma systems are guided 
by transversal conducts where the syntactic rules and their subsequent semantic clarifi cation are involved. 
This unifi es the diverse notions involved in the subsystems and gives them a universal signifi cance in 
a logical system as a whole (EG), which is consistent and complete. The mediations are guided by an 
integral motive clarifi ed in the signs involved (cut, curl, line of identity, and broken cut), following a 
uniform system of rules, which gives a coherent pragmatic sense to logical thought.

On the other hand, following the work of Oostra and his school in Ibagué, we obtain a description of 
the behavior of the inner logics associated to some nonplanar surfaces, through a technical unraveling of 
topological (geometric) properties, over and beyond negations as complex curves traced on the surface 
of each variety (Oostra, 2018). The unfolding of the formulas on two dimensions should be able to be 
completed, since 2-dimensionality is not reserved to the plane. For example, we may think of the sphere, 
the cylinder, the torus and, more generally, a Riemann Surface, over which we can elucidate new logical 
pathways, which would have remained invisible from the planar perspective. 

Thanks to all this, a natural transit between two or more areas of mathematics is confi gured, and a 
fundamental question of dual character is generated that engages in the syntax, semantics and pragmatics 
of the logics associated to Existential Graphs on surfaces: How can we associate to known logics, the 
result of the mutation of logical systems through the surface where they develop? and, reciprocally, 
How can we make correspond to a given logic an adequate system in Existential Graphs over a concrete 
surface? (Oostra, 2022). Thus, in the space which mediates between the study of Logical Systems and 
the understanding of the Nature of Surfaces, emerge the many Variations of Existential Graphs.

By placing negations in complex environments, these negations capture the geometric nature of 
the manifold, and we will need in some cases additional restrictions or rules to maintain the sense 
and consistency of the new Alpha graphs. For example, to preserve the notions of parity and leveling 
in areas which allow (de)iteration and the use of the inference rules of the system, we will need the 
addition of new concepts to make their interpretations possible. In this sense, a notion of opposition 
allows to logically distinguish two regions separated by a curve on the surface, which in principle are 
topologically indistinguishable (but whose truth content is the negation of what is on the other side of the 
curve), since such a curve can be deformed smoothly on the surface and confi gure a new enclosure, as 
in the case of the sphere. We notice that, if we do not delimit the setting, we can arrive at contradictory 
deductions from any graph, a fact illustrated in the following fi gure:

Figure 2: An example of (EG) on the sphere

Hence, by taking into consideration some necessary conditions, providing precise interpretations to 
certain classes of problematic curves, and adding new rules over surfaces (regarding non-contractible 
curves), the Alpha existential graphs can be modelled on the sphere, the cylinder, the Möbius band, or 
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the torus. In this last case, for example, 3 different classes of curves can be drawn on its surface except 
isomorphism; only one of them will be contractible, i.e., the map from the unit circle to the surface, 
which draws a curve homotopic to a constant function; these curves are compatible with the usual (EG) 
transformations, generating an alternative and equivalent version of classical propositional logic, such 
as with Alpha existential graphs in the plane (Oostra, 2018). There are several classes of curves on each 
surface, depending on their geometric nature, and each of these classes corresponds to a type of negation 
on the surface, characterized in terms of their contractibility and their locality at a topological level. In 
particular, a contractible curve is apparently associated with the classical domain, and a non-contractible 
curve is associated with realms beyond classical logic.  We can thus glimpse that, taking all negations 
(local and global, see below) associated to arbitrary curves present on surfaces locally homeomorphic to 
ℂ, we can open a way to new logics.

3	 Riemann surfaces (RS)

To formalize these extensions it is useful to pass through Riemann Surfaces (RS) (Riemann, 1851), since 
these incarnate the settings of smoothness and continuity necessary for an expansion of our graphs. In 
addition, the use of (RS) will be consistent with both the classical definitions of Peirce, and the posterior 
non-classical bibliography. We arrive to a context that contains local environments isomorphic to the 
plane, but at the same time admits singularities where the surface extends through its ramification points, 
or poles. The geometric fullness and power of the complex variable incites then an intuition towards the 
possibility of potentiating logical concepts through new geometries.

Some of these geometries correspond to the archetypes of geometries discovered in the 19th century: 
parabolic geometry (Euclidean model), hyperbolic geometry (Poincaré’s model) and elliptic geometry 
(Riemann’s model), which come from the application of quotient spaces on the plane, the disk and the 
sphere respectively (Wegert, 2012). These models are collected in the description made previously by 
means of graphs, and thanks to the Riemann Surfaces Uniformization Theorem, we know that they 
correspond to an exclusive alternative, since every Riemann Surface simply connected (“without holes”) 
arises, up to homeomorphism, from one of these three possibilities (Koebe, 1907; Poincaré, 1908).

A Riemann surface may be understood as the natural complexification of a topological surface 
(Zalamea, 2022), and defined through the following three steps:

I.	 A 2 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑  𝑋 is a Hausdorff topological space where every 
point has a neighborhood homeomorphic to an open set of ℝ2.

II.	 A 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 on 𝑋 consists of an “atlas”, or family of “charts”, {(Ui, φi): i 
∈ I}, such that 𝑈𝑖 is open in 𝑋, the atlas covers 𝑋 (⋃𝑖∈𝐼 𝑈𝑖 = 𝑋), the maps are faithful 
(φ𝑖: 𝑈𝑖 → φ(𝑈𝑖)𝑜𝑝𝑒𝑛 ⊆ ℂ is homeomorphism), and the transits are analytic (for each pair of maps 
(𝑈𝑖, φ𝑖 ), (𝑈𝑗, φ𝑗); φ𝑗 ∘ φ𝑖− 1:φ𝑖 (𝑈𝑖 ∩ 𝑈𝑗) → φ𝑗 (𝑈𝑖 ∩ 𝑈𝑗) is holomorphic); 

III.	 A Riemann Surface (RS) is then defined as a 2-dimensional connected topological manifold 𝑋 
with a complex structure on it.

Since the transition maps between the charts are analytic, they must satisfy the Cauchy-Riemann 
conditions  (Needham, 1997), and therefore their Jacobian is greater than zero. The fact that the charts 
are compatible forces then an orientation on the manifold: all (RS) result to be orientable  (Kumaresan, 
2002). Another fundamental notion of (complex variable) surfaces is the genus, defined as the minimum 
number of cuts (minus 1) that disconnect the surface (Ahlfors, 1953). The genus provides an intrinsic 
(geometrical-topological) invariant of the surface: it is obtained thanks to paths on the surface itself, 
without leaving it  (Griffiths, 2014). A deep mathematical result captured through such a concept is the 
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Riemann-Roch Theorem, which allows to reconstruct the genus of a (RS) as an extrinsic (differential-
complex) invariant of the surface: going out of the surface and comparing it in multiple ways (holomorphic 
and meromorphic data) with its environment  (Roch, 1865).

Once the complex and differential panorama has been elucidated, through a dual characterization of 
logical and geometrical properties of surfaces, we may now propose a new logical distinction. The local 
and global negations on a surface (see Definition 2.1 below), will depend on the nature of the associated 
curves, since on arbitrary surfaces locally homeomorphic to ℂ, Jordan curves allow to capture forms of 
negation in the (EG).

Definition 2.1 (Local-Global Negations). Given a Riemann Surface 𝑋, we will call a negation  (associated 
to a Jordan curve C) local if there exists an atlas for 𝑋 and a neighborhood 𝑉 in the atlas such that 
𝐶 ⊆ 𝑉 and 𝐶 is contractible (homotopically deformable to a point in the  neighborhood). Otherwise, we 
will call such a negation global.

After applying this definition to some simple (𝑅𝑆)
 
studied according to the models of graphs on 

surfaces, the following facts emerge:
a)	 In the plane and in the disk, the notions of locality and globality match, and every negation is 

both local and global.
b)	 In the cylinder, instead, the notions of locality and globality are separated; negations on the 

surface that do not surround the cylinder are local; a complete turn of the cylinder is instead a 
global negation, not a local one.

c)	 In the sphere, locality and globality are also distinguished; negations that are entirely embedded 
on one side of the atlas are local; on the other hand, a “maximal” negation (equatorial parallel 
type) is not localizable in a neighborhood, and is a global negation.

d)	 In the torus, of the three types of negations in scope, only one type is local, while the other two 
types (longitudinal and transversal cuts) are global. 

With such notions of locality and globality, the paradoxical behavior of negation in the sphere can 
be partially explained (see Figure 2). Indeed, in the deformations of a Jordan curve on the sphere, a local 
negation and a global negation can be mistakenly identified: when a small Jordan curve on one side of 
the atlas moves to the other side of the atlas, the negation goes from local to global, and then back to 
local again. A logical system that restricts these steps (e.g., accepting deformations only within the local) 
could then help to eliminate the contradictory behavior of the negation. 

We introduce now the concept of local and global logics (see Definition 2.2 below), to capture a 
variety of perspectives: classical, intuitionistic, or paraconsistent. Further, the appeararance of new logics 
related to the their number of non classical, alternative, negations, may capture the genus of the surface.

Definition 2.2 (Local-Global Logics). An (𝐸𝐺) logic over a (𝑅𝑆) is local if all of its negations  are local, 
and the logic is global if there is at least one global negation in the system.

From the facts recently considered on the negations in the various systems, we can formulate the 
following conjecture:

Conjecture 1 (Oostra-Zalamea-Hugueth).
•	 Every local (𝐸𝐺) logic over a (𝑅𝑆) is (super)intuitionistic.
•	 The global (𝐸𝐺) logic on the sphere is paraconsistent.
•	 The global (𝐸𝐺) logics over a (𝑅𝑆) of genus 𝑛 ≥ 1 are nonclassical, with exactly 3𝑛 associated 

notions of “negation”.
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In the genus 0 case (plane, disk or sphere, by the Uniformization Theorem), local logics contemplate 
negations always reducible to a point on the surface, as in the intuitionistic case. In the genus 1 case 
(torus) there appear exactly 3 notions of negation, 2 of which (longitudinal cuts) cannot be reducible to 
combinations of local negations.

A brief sketch of this situation is also visualized in the following Figure 3. The example situates 
us better in the proposed environment and may perhaps serve as motivation for future work. We notice 
that on a two-hole toroid (genus 2 surface), there are 6 classes of negations, none of them deformable 
into each other, of which 5 will not be reducible to a point (since they are of non-contractible type), and 
therefore will not only be bound to combinations of local negations.

Figure 3: 6 classes of cuts over a (RS) of genus 2, the toroid with two holes

4 Toposes (T)

Analytical continuation in complex variables shows how  the domains of a given analytic function are 
extended, defi ning additional values that allow to escape from possible divergences  (Beltrametti, 2009). 
We have then a double dialectic between analytic univalued functions (in local neighborhoods) and 
analytic multivalued functions (in the global variety considered). This step can be solved if the gluing 
of the functions is independent of the paths by which they are glued, i.e., if one has an expectation 
of invariance beyond multiplicity, something which can be realized if the region is simply connected 
(Monodromy Theorem)  (Zalamea, 2022). The sheaves (which are an abstract extension of analytical 
continuation), provide us with a ductile view to link the local and the global, traversing not only the 
precise foundations in topology required by our proposal, but also some needed tools of complex 
analysis and categories. This perspective reconstructs the understanding of a topological manifold or 
diff erential manifold on the basis of its projections on lower manifolds and the coherent information of 
its fi bers  (Morita, 2001).

It becomes then natural to transit to a Grothendieck Topos (GT) by taking all the sheaves  over a 
site, where one obtains an abstract extension of the notion of topology, and therefore also  of space 
(Caramello, 2018). A topos represents a strong connection between two tendencies of  mathematical 
thought (space and number), delving into the oldest defi nitions of mathematics  around the continuous 
and the discrete. A “sophisticated study of the interactions between space  and number” appears, on the 
one hand the geometry that captures space, and on the other hand  the arithmetic that captures number 
(Zalamea, 2024). Extending the classical situation of  topology, a Grothendieck  topos will be precisely,  
by defi nition, a category equivalent to a category of sheaves 𝑆ℎ(𝐶 , 𝐽) over  a  site (𝐶 , 𝐽), where a site  is  
a category 𝐶  together  with a Grothendieck topology 𝐽 on it, that is, a synthetic rendering of covering 
properties of open sets in  usual topology (the space covers itself, a covering of coverings is a covering, 
a pullback of a  covering is a covering) (Artin, 1983). A sheaf over the site is, intuitively, a presheaf 
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that “glues  well” the overlapping sections (Mac Lane, S. and Moerdijk, I., 1992). This good gluing can 
be  described in terms of covering properties on “locals” (complete Heyting algebras, which codify  the 
properties of the lattice of open sets of a topology), coverings which, in turn, can be characterized by 
good extension properties.

Links between algebraic geometry and logic are also better captured through an  Elementary Topos 
(ET), by considering the subobject classifier of the topos, a tool that  describes, formally and precisely, the 
behavior of the logic inherent to the topos in question. A category ℰ is an elementary topos if it possesses 
finite limits, is Cartesian closed (i.e., exponential objects  exist, with good naturalness properties, or, 
what is the same, the product functor possesses right adjoint), and furthermore, the subobjects functor 
𝑆𝑢𝑏: ℰℴ𝓅 → 𝑆𝑒𝑡 is representable (or, what is the same, there exists a subobject classifier Ω such that 
𝑆𝑢𝑏(𝐴) ≈ ℰ(𝐴, Ω) is a natural isomorphism)  (Lawvere, 1963). A fundamental intuition behind toposes 
is that they act at the intersection of  geometric (Grothendieck) and logical (Lawvere) concepts. 

In a topos of presheaves ℰ = 𝑆𝑒𝑡𝐶𝑜𝑝 the subobject classifier is forced via Yoneda: 
𝑆𝑢𝑏(ℎ𝐴) ≈ ℰ(ℎ𝐴, Ω)  =  𝑁𝑎𝑡(ℎ𝐴, Ω) ≈ Ω(𝐴) . Therefore, Ω: 𝒞𝑜𝑝  →  𝑆𝑒𝑡 can be defined by a correspondence   
(in objects) 𝐴 ↦ 𝑆𝑢𝑏(ℎ𝐴)  and (in morphisms) (𝐴 →  𝐵) ↦ (Ω𝑓: 𝑆𝑢𝑏(ℎ𝐴) → 𝑆𝑢𝑏(ℎ𝐵)). A lemma on pullbacks 
(Mac Lane; Moerdijk, 1992) ensures that Ω𝑓 is a functor, the transformations turn out to be natural, and 
Ω is well-defined. Since the Yoneda embedding is dense (i.e., every presheaf is a limit  of representable 
functors, 𝐹 = 𝑙 𝑖𝑚→ ℎ𝐴), the description 𝑆𝑢𝑏(−) ≈ 𝑁𝑎𝑡(−, Ω) extends to all presheaves in the topos.

The internal logic of a topos is derived from certain elementary exactness properties in   
the topos. At the outset, everything depends on showing that, for all 𝑎 in the topos, 0 ↣ 𝑎 is monic. This 
follows from the following three facts (which hold in any closed Cartesian category with initial object 
0 ): (i) 𝑎 × 0 ≈ 0 (using the fact ℰ(𝑎 × 0, 𝑏) ≈ ℰ(0, 𝑏𝑎) , that is, the  exponential property, it turns out that 
the unique emergent morphism of 𝑎 × 0 forces  isomorphism with 0), (ii) if there exists 𝑓: 𝑎 → 0 then 
𝑎 ≈  0 (by properties of projection and  composition in products), (iii) every arrow entering 0 forces an 
isomorphism (by (ii)), thus the  arrow is monic. 

Taking characteristic functions (χ) of monos (𝑚), provided by pullbacks in the subobject  classifier, 
from the fact that 0 ↣ 1 is mono we can perform a natural construction of connectives  on the topos. See 
items (i)-(v) below, constructed recursively over each emergent monic at each level: 

(i)	 Falsity: ⊥ = 𝜒0↣1 
(ii)	 Negation: ¬ = χ⊥

(iii)	 Conjunction: ∧ = χ<⊤,⊤>

(iv)	 Implication: ⇒ = χ𝑒𝑞(∧,π1)

(v)	 Disjunction: ∨ = χ𝑖𝑚[𝑖𝑑×⊤,⊤×𝑖𝑑].

These constructions express, through morphisms, the usual constructions of connectives  as operators 
on {0,1}. Moreover, in every topos we will always have that 𝑆𝑢𝑏(Ω) is a Heyting  algebra, which points to 
an intuitionistic underlying logic. It can be proved in fact that  deducibility in intuitionistic propositional 
calculus is equivalent to validity in every Heyting  algebra, which is equivalent to validity in every topos. 

Sheaves are found at the intersection of a multitude of mathematical concepts: complex variable 
(coming from Riemann’s analytical continuation), differential geometry (coming from Leray’s work 
on differential equations), abstract algebra (coming from the formalizations of the French school, via 
Cartan, Lazard, Godement, Serre), algebraic geometry (coming from Grothendieck’s work on abelian 
categories, Riemann-Roch, schemes, topos), logic (coming from Lawvere’s first-order axiomatizations, 
up to Caicedo’s logic of sheaves), etc. Sheaves constitute therefore a truly central and primordial concept 
for our current understanding of the mathematical world. In what follows in this paper, we will now 
think of existential graphs as sheaves, not only on the plane but also on other Riemann surfaces, and we 
will delve into the collection (topos) of all these various sheaves of existential graphs.
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5 Combinatorial: Categorical Vision

The advantage of a categorical reading of any mathematical subject lies in the extension of the range of 
possibilities off ered by abstractness. In an elementary topos the notions of localization, topologization 
and intuitionistic systematization coincide. So, aiming at a structural translation of our system, which is 
the central proposal of our work, we appeal to some recent developments by Gangle and collaborators, 
whose recent contributions allow us to take the last step towards a consistent axiomatization of our 
model (Gangle, 2022). 

Gangle’s approach provides a combinatorial reading of Alpha-slice embeddings (model of classical 
logic) via trees, a view of trees as presheaves, and an intertwining of static and variable marks to 
capture occurrences of propositional letters. It allows to obtain a category of objects that syntactically 
represents Alpha existential graphs. A sharp logical notation, such as (EG), organizes relations between 
the components of its syntax, so that the logical properties and relations under a concrete interpretation, 
governed under simple processing rules, are precise and unambiguous. The diagrammatic syntax off ered 
in Peirce’s system provides a natural environment for distinguishing the relations between syntactic 
combinations of elements in an argument. Reconstructing this diagrammatic reasoning by means of 
an appropriate category of functors (more precisely, a category of presheaves), we can diversify the 
richness of the structure lying at the Alpha level. Here, the morphisms obey hierarchies in the structure 
according to the origin and destination of the arrows of the directed graphs which represent nests of cuts 
from the (EG). So we can view each element in the class of structures as a concrete contravariant functor 
that collects relations between cuts, and represents them conjunctively.

Precisely (Gangle, 2022) observe that embeddings (nests) of Alpha cuts can be put in correspondence 
(*) with fi nite trees, associating a node to a cut, and a branch to an embedding (following the endoporeutic 
method). An example of this correspondence (*) is shown in the following fi gure:

If 𝒞(𝒩,≤) denotes the category corresponding to the partially ordered set (𝑁, ≤), let
ℱ  =  𝑆𝑒𝑡𝒞ℴ𝓅    be  the  associated  presheaf category of forests. A subcategory ℰ ⊆ ℱ can  then be defi ned, 
whose objects are the functors 𝐹 : 𝒞

ℴ𝓅
 → 𝐹 𝑖𝑛𝑆𝑒𝑡 (i.e., fi nitary presheaves) that “terminate in fi nite steps” 

(i.e., for which there exists 𝑛 , with 𝐹 𝑛 = ∅). Thanks to the  correspondence (*), ℰ correctly models Alpha-
slice embeddings. The morphisms of ℰ = ℰ𝒢α∗ are  monic morphisms between the same objects in ℱ.

Going  further,  (Gangle,  2022)  reconstruct an Alpha graph as a nests of cuts with additional variables 
(“marks”). This addition is obtained by a new functor that records these  variable occurrences. Formally, 
if F ∈ ℰ is a nests of cuts, a “distinguished” Alpha graph over the “skeleton” 𝐹  (our terminology) is 
defi ned as a pair (𝐹 , 𝐹̂   ) where 𝐹 , 𝐹̂    ∈ ℰ are such that 𝐹  ↣ 𝐹̂    and one has an iteration and embedding 
control condition that captures the occurrence of  distinct propositional letters, which are replaced by 
empty Alpha cuts in the areas where the  variables appear (= pseudographs, in Peirce's terminology). 
Comparing the resulting embeddings  of both processes, when factored through the functor 𝐹̂   , we notice 
that 𝐹  is canonically injected  into 𝐹̂   . We can thus make correspond a graph with marks (letters or 
variables) to an ordered pair (𝐹 , 𝐹̂   ) , with 𝐹  and 𝐹̂     cut-only  graphs, described as some functor of 𝒞ℴ𝓅   on 
𝐹 𝑖𝑛𝑆𝑒𝑡 such that for some natural 𝑛, its image is empty. In order to be able to represent Alpha graphs in 
their  entirety (i.e., with repetitions of eventual letters), Gangle and collaborators introduce a monoidal 
action 𝑇 on the distinguished graphs (the orbits then give rise to a letter identifi cation). This fi nally gives 

(𝒩,≤)

(𝒩,≤)

(𝒩,≤)
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rise to a category ℰ𝒢α formed by triples (𝐹, 𝐹 ̂  , 𝑇(𝐹, 𝐹  ̂  )), a construction which fully captures, in a categorical 
language, the syntax of Alpha graphs.

6	 The topos of (alpha) existential graphs over Riemann surfaces 
(TEGRS)

The Gangle-Caterina-Tohme construction of ℰ𝒢α relies heavily on a property of “normality” (our  
terminology) of planar slice nests, where a leveling of areas (with well-defined notions of  evenness 
and oddness) is recorded. This corresponds to a branching of the associated trees: leveling, not only the 
levels (of the cuts), but also the branches (of the trees), shows an increasing progression in the finite 
segments of (ℕ, ≤), indicators of 𝐹𝑖𝑛𝑆𝑒𝑡𝒞ℴ𝓅 . However, the situation  can become entirely different in 
the case of (nonplanar) graphs on general (RS). An example of  this is how a double cut on the sphere, 
represented by a tree of type 2, can be deformed into two  separate cuts on the sphere, represented by a 
tree of type 1 + 1. In that case, the notions of  progression, leveling, branching are lost. These notions 
are only preserved in the case of systems  restricted to local negations, and in that case the logics of 
ℰ𝒢α (EG over the plane) and ℰ𝒢ℛ𝒮 (EG over RS) coincide.

Thanks to the notions of locality/globality and linearity/nonlinearity, the transit from Existential 
Graphs on the Plane to Existential Graphs on Riemann Surfaces, can be understood as a complex/
differential/homological transit between the local linear and the global nonlinear, which emerges 
naturally in differential equations, complex variable and sheaf theory. Here we record this transit, for the 
first time, with logical tools and by means of purely structural properties (generations and adjunctions) 
of the categories and immersions at stake.

To attempt to describe then, in general, an (EG) environment over a (RS), one must  
modify  the  construction ℰ formed by finitary presheaves 𝐹:  𝒞ℴ𝓅   → 𝐹𝑖𝑛𝑆𝑒𝑡. The embedded records of 
cuts captured by the order (𝑁, ≤) may not work in a general (RS), when global negations (cuts) appear. 

To allow for “alternative  deformations” that break the linearity (and its consequents: progression, 
leveling, branching), a new binary relation 𝑅 must be introduced on a set A that  needs not be a linear 
type order. The category of (EG) over (RS) would then arise from a new construction  consisting of (not  
necessarily finitary) presheaves 𝐹:  𝒞ℴ𝓅  → 𝑆𝑒𝑡, where the algebraic properties of the relation 𝑅 would 
capture the logical properties of (EG) over (RS). 

The combinatorial construction of the category ℰ𝒢α (Gangle-Caterina-Tohme), and the conceptual 
view of its eventual extension ℰ𝒢ℛ𝒮 to nonplanar (RS) environments (Zalamea-Hugueth), emphasize 
an extrinsic descriptive character, in order to syntactically capture (EG) via subfunctors of presheaves. 
From the point of view of the natural environment of toposes, in which these constructions are immersed, 
we have that:

ℰ𝒢α ↪ 𝐹𝑖𝑛𝑆𝑒𝑡𝒞ℴ𝓅  × 𝐹𝑖𝑛𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝑇 (∗)

Where the three categories on the right are toposes of presheaves. Similarly, one would have another 
immersion for the case of our proposal:

ℰ𝒢ℛ𝒮  ↪ 𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝑇 (∗ ∗)

Where the three categories on the right are still toposes of presheaves.
An intrinsic study of (EG), on the plane or on an arbitrary (RS), should be able to  characterize ℰ𝒢α 

and ℰ𝒢ℛ𝒮. In that sense, we postulate that the general construction corresponds to an intermediate topos 
𝑇(𝐸𝐺𝑅𝑆) associated to Existential Graphs on Riemann Surfaces (closed under limits and exponentials), 
in such a way that one has an injection of the logical  system into the topos, described by a nonlinear 

(𝒩,≤)

(𝒩,≤)

(𝒜,ℛ)

(𝒩,≤) (𝒩,≤)

(𝒜,ℛ) (𝒜,ℛ)
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universal product of categories (toposes of not  necessarily finitary presheaves). These are endowed 
with an algebraic action 𝑇, not necessarily  linear, which allows deformations necessary to preserve 
the leveling, progression and branching  in the leveling of the graphs, unlike the Topos of Alpha graphs 
on the plane, which is described  under the topos of the linear universal product of Finite Sets. In this 
general setting, we may then  present the following conjecture:

Conjecture 2 (Zalamea-Hugueth).
•	 There exists an intermediate topos 𝑇(𝐸𝐺𝑅𝑆) associated with the category ℰ𝒢ℛ𝒮´, such that one 

has ℰ𝒢ℛ𝒮  ↪  𝑇(𝐸𝐺𝑅𝑆)  ↪  𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝑇, and it “characterizes” in a sense the 
category of Existential Graphs on Riemann Surfaces. The topos could be the  “generated topos” 
by ℰ𝒢ℛ𝒮 (closure under limits and exponentials) within the “nonlinear universal” product topos 
𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝑇.

•	 The 𝑇(𝐸𝐺𝑅𝑆) classifier, to be described via products and Yoneda (presheaves, and ideal 
subfunctors of a monoid), encodes the logic of (EG) over (RS).

•	 Local and global logics over a (RS) (Section 2) can be characterized via exactness properties on 
the topos 𝑇(𝐸𝐺𝑅𝑆).

•	 In the case of graphs over the plane, one would obtain a topos 𝑇(𝐸𝐺α) generated by ℰ𝒢α inside 
the “linear universal” topos product 𝐹𝑖𝑛𝑆𝑒𝑡𝒞ℴ𝓅  × 𝐹𝑖𝑛𝑆𝑒𝑡𝒞ℴ𝓅  × 𝑆𝑒𝑡𝑇.

Exploring the situation further, it is to be hoped that the local and global logics over (RS) may be 
characterized through good properties of the associated fundamental group (FG) emerging in the topos 
(Artin, 1983). In this way, relations between the genus of (RS), the homological/homotopical properties 
of the fundamental group (FG) (Grothendieck, 1968), the internal logical properties of the classifier 
(T), and the local/global characteristics of the external logics involved (EG), would provide new and 
profound bridges between many central areas of mathematics (logic, algebra, complex geometry, 
topology, categories), offering fertile ground for future research.
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