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Abstract 

In this paper, we use the generalized SIA distributions developed in Delacroix (2013) 

with the model described in Delacroix and Boubekki (2012). The aim is to develop an 

analysis based on SIA theory which allows a researcher in social sciences to suppress 

uninteresting pseudo-implications a priori in the analysis. More precisely, we look at 

relations between the success of students to the different questions in an exam, while 

taking into account a notion of student level in a multiple behavior analysis. 

Keywords: Statistical implicative analysis, Multiple behaviors, Probability matrix, Math 

education, Modelling. 
 

Résumé 

On applique, dans cet article, les distributions généralisées pour l'ASI développées dans 

Delacroix (2013) au modèle décrit dans Delacroix et Boubekki (2012). Il s'agit de 

développer une analyse de type ASI qui permette au chercheur en sciences sociales 

d'éliminer des pseudo-implications sans intérêt en amont de l'analyse. Plus 

particulièrement, on s'intéresse aux relations liant les réussites d'étudiants aux 

différentes questions d'un examen, en intégrant la notion de niveau d'un étudiant dans 

une ASI avec comportements multiples. 

Mots-clés : Analyse statistique implicative, Comportements multiples, Matrice de 

probabilités, Didactique des mathématiques, Modélisation. 

 

The notations used in this paper follow those from Delacroix (2013) and the reader is 

encouraged to read through that paper first. The different aspects from Delacroix and 

Boubekki (2012) that are used here are mostly recalled and are further developed. 

 

Using a SIA to analyze responses to an exam 

In the process of our research in Math Education, we have been looking for a way to 

reveal links between the different mathematical capabilities that students can have. If a 

student can solve a problem of type A, does this means he will be able to solve a problem 
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of type B? If the answer is yes, as we are dealing with human beings, we know it will not 

be a definite, 100%, yes. Therefore, we want to characterize positive answers and 

hierarchize them. For anyone who knows a little about SIA theory, these questions sound 

very familiar. If you could gather statistical data on whether a certain number of students, 

n, are capable of solving a certain number of problems, p, say by reporting information 

on success or failure at various questions in an exam, then this would seem to be a very 

good data set for a SIA. However, a problem will most surely arise while reading the 

results from such a SIA. It will appear that the harder questions are strongly linked 

together, the same being true for the easier ones. This is perfectly normal. Good students 

tend to be able to answer all the easier questions. Similarly, bad students are generally not 

capable of answering a single hard question. Though an SIA may make this obvious fact 

apparent, it is of little interest to a researcher in Math Education. What we really care 

about, is whether the fundamental nature of a problem is linked to that for another 

problem. Or if the necessary set of knowledge to solve one problem is contained in that 

same concept for a different problem. The fact that some questions are easier than others 

should be irrelevant. One way to palliate this problem, is to take student level and question 

difficulty into account in the SIA model. If we can model the fact that bad students can't 

manage the harder questions and good students can't fail the easier ones and if we can add 

this information to the SIA, then the results will not be disrupted by this trivial 

observation. Though this may not be possible in classical SIA theory, it can be done in 

multiple behavior SIA theory such as described in Delacroix (2013). For this, a 

probability matrix P corresponding to a probabilistic model for success and failure by 

each student to each question, based on the difficulty of each question and the level of 

each student, must first be defined. This is what we have started to work on in Delacroix 

and Boubekki (2012) and develop here. Note that if the model is well defined, it can 

automatically take into account another similar issue : the amount of non responses to 

certain questions. Indeed, if certain questions are skipped by many students, the 

information related to these questions in a classical SIA will be similar to that of hard 

questions, whether they are hard or not. This can be the case in very long exams with the 

questions that are at the far end of the exam, or when certain questions are not worth a lot 

of points. For the reader who has a specific interest in Math Education, or any educational 

field as a matter of fact, the construction we develop here is part of a larger perspective. 
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Indeed, we hope to adapt SIA theory to the construction of Learning spaces, as defined 

in Falmagne (2011), through the analysis of data collected from student exams. 

A probabilistic model for success to questions of known difficulty by 

students of known level 

Type of data and notations 

We consider a data set consisting of information on the success (1) or failure (0) of n 

students to p questions of an exam. We will denote by ni the number of students having 

successfully managed question i and pj the number of questions that have been 

successfully managed by student j (if all the questions are worth as many points this is 

proportional to the student's grade). For each student j and each question i, we will define 

the probability Pi,j that the student j successfully manages question i. This probability can 

be associated to a random variable Xi,j as in Delacroix (2013). Furthermore, Pi,j and Xi,j 

are both considered coordinates to p × n matrices P and X. However, as described in 

Delacroix (2013), it is technically impossible to make calculations on a large number of 

students without grouping these students together. Therefore, we will be considering 

behavior classes of students. These classes will each correspond to a different student 

level as defined in the next paragraph. Hence, we refer to these as level classes. We will 

define q to be the number of different level classes, tk to be the number of students in level 

class k, and tk =
tk

n
 the fraction of students in level class k. The probability that a student 

in level class k successfully manages question i will be denoted Pi, j
. 

Student level and question difficult 

Before we define the model, it is important to specify the notions of student level and 

question difficulty that we will be using as these do not necessarily correspond to a ‘real’ 

characterization of student level or question difficulty. A question's difficulty will be 

characterized by the number of people who have successfully answered this question and 

a student's level will be the number of questions a student has answered successfully. 

Though it is disputable that the number of students having successfully answered a 

question characterizes the real difficulty of a question, it is a good enough way to 

characterize difficulty and it serves the purpose of the model well. For example, if an easy 
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question is answered by only a small number of students because it is the last question of 

a long exam, then it will be considered a hard question nevertheless in this model. 

However, as the students answering this question will generally be good students who 

were capable of going that far, the fraction of the population having successfully 

answered the question is similar to that of a hard question. Thus the model will 

characterize a notion that is slightly different from real question difficulty but that actually 

serves the purpose of the model better than real question difficulty. On a similar notice, 

student level, as it is defined here, does not characterize fully the real level of a given 

student. It only tells us how many questions this student was effectively capable of 

successfully answering at the time of the given exam. But this is good enough for the 

purpose of the model, as it will help us define the probability that this student gives a 

successful answer to a question. In the following, we will refer to the fractions below as 

question difficulty and student level relative to question i and student j in level class k 

respectively:: 

di =
ni

n
   and   Lk = l j =

pj

p
 

i.e. the level Lk of a class k is equal to the level lj of any student j in the level class k. 

Probability matrices 

We will consider the following probabilistic model described in Delacroix and Boubekki 

(2012). The probability distribution on random variables X is a uniform probability 

conditional to knowing that:  

Pi, j

i=0

p

å = pj
   and   Pi, j

j=0

n

å = ni   

This means we consider a uniform probability where the expected value of a student's 

grade will be his actual grade (if all questions are worth the same number of points) and 

the expected value of the number of students having successfully answered a question 

will be equal to the actual value for this. In other words, expected student level and 

question difficulty are taken to be equal to empirical student level and question difficulty.  

If we denote by Cn
i
(n) the set of ni-combinations in a set of cardinality n, this gives :  
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Pi, j =

l jm
m=1

ni

Õ
j
1
= j , j2 ,..., jni( )ÎCni

(n)

å

l jm
m=1

ni

Õ
j
1

, j2 ,..., jni( )ÎCni
(n)

å

 

By grouping students into level classes, we get :  

Pi, j =

tk -1

sk

æ

è
ç

ö

ø
÷

s1+...+sq=ni -1

0£sk '£tk '  and sk£tk-1

å Lk

sk+1 tk'

sk'

æ

è
ç

ö

ø
÷

k'=1
k'¹k

q

Õ Lk'

sk'

tk'

sk'

æ

è
ç

ö

ø
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k'=1

q

Õ
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0£sk '£tk '
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A necessary approximation of the model 

One important issue is that it can take a very long time to calculate these probability 

matrices. This is exactly the same type of issue as it is for 1.1.6 in Delacroix (2013). The 

complexity of the problem is linear in :  

 

 

 

Which, if we only consider the number of level classes and total number of students, is at 

most:  

q
n

q
+1

æ

è
ç

ö

ø
÷

q

 

If the number of different levels and the number of students is very large, we will need to 

consider an approximated model to the theoretical model, which will not take so much 

time to calculate. For this two solutions have been envisaged. They are both detailed and 

applied in the next section.  

The first consists of approximating the model via a simpler model, with a smaller number 

of different level classes. Students with close enough level are grouped into larger level 

classes and the associated level for these new level classes will be the weighted average 

of the levels of the smaller level classes they group. This technique was tested in 

Delacroix and Boubekki (2012) for a variety of such approximations on the same data set 

as the one considered in the next section.  

q ti +1( )
i=1

q

Õ



 

800 Educ. Matem. Pesq., São Paulo, v.16, n.3, pp.795-812, 2014   

The second solution consists of finding a simple analytical expression to determine an 

approximate value for P. For the moment, we have not managed to define a satisfactory 

such function. We have built one which does present a certain number of necessary 

properties, however the justification of its construction is still mainly heuristic and the 

results it yields are not as good as those for the approximations. Further work on this may 

be pursued and is encouraged. 

An evaluation of the model's adequacy 

It is not our intention in this article to make a full evaluation of the presented model's 

adequacy to a type of study. It must be tested first in various contexts before such a study 

can be made. However, we can allow ourselves a few remarks. Firstly, the model satisfies 

usual requirements for statistical models such as identifiability and testability (see, for 

example, Bamber et al. (2000) for definitions of these notions). Secondly, as the model is 

made to explain part (the part we want to get rid of), but not all, of the observations, we 

don't expect it to stick perfectly to the observations. However, we do expect a better 

approximation of the model to stick closer to the empirical data than a lesser 

approximation. This is the case as we have shown in Delacroix and Boubekki (2012).  

Indeed, we calculated in this previous paper the distance (regular Euclidian distance) 

between the contingency tables for success and failure at two questions given by the 

empirical data and the same tables given by various approximations of the model. For a 

given approximation, two quantities where considered: 1) the average distance on all 

contingency tables and 2) the distance between the average contingency table for the 

empirical data and that for the approximation of the model. Both quantities decreased 

systematically as we tested increasingly better approximations of the model, raising the 

number of different level classes steadily by 1 from 3 to 12, hence contributing to 

evidence of the model’s adequacy. 

Application 

Presenting the data 

The data used here was initially collected by one of the authors of this article, Thomas 

Delacroix, for a study in Math Education, Delacroix (2012). It was collected from the 

examination sheets of 104 Math students in first year at the University Paris 7. This 

examination on linear algebra was taken on the 2nd of March 2012 (the date on the subject 
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is wrong). They were assessed by the researcher using the marking-scheme indicated in 

the following table. For each question, a minimum number of points for success was 

defined. The text of the examination (in French) is added as an appendix. 

Table 1.  Marking-scheme 

 

Approximating P 

As stated previously, calculating P exactly would take much too long: in Delacroix and 

Boubekki (2012) this was estimated to take 20 years using current home computer power!  

Grouping level classes 

The first approximations of P used here are obtained by grouping different level classes 

together. It can be noted that the level classes of students having succeeded in all 

questions, or none at all, have no influence on the complexity of the calculations for P. 

Therefore, we do not need to consider them for grouping with other level classes. 

Question  Points  Success  Contents 

Q1 1  .75  Exercise 1 (1)

Q2  .5  .5  Exercise 1 (2) reverse implication 

Q3  .5  .5  Exercise 1 (2) direct implication

Q4 3 2  Exercise 2

Q5  .5  .5  Exercise 3 (1) linearity 

Q6  .5  .5  Exercise 3 (1) inclusion 

Q7 2  1.5  Exercise 3 (2) 

Q8 1  .75  Exercise 3 (3) 

Q9 1  .75  Exercise 4 (1) 

Q10 2  1.5  Exercise 4 (2) 

Q11 1  .75  Exercise 5 (1) basis 

Q12 1  .75  Exercise 5 (1) equation 

Q13 1  .75  Exercise 5 (2) basis 

Q14 1  .75  Exercise 5 (2) equation 

Q15  .5  .5  Exercise 5 (3) belonging

Q16  .5  .5  Exercise 5 (3) linear combination

Q17 1  .5  Exercise 6 (1) belonging

Q18 1  .5  Exercise 6 (1) independence

Q19 1  .5  Exercise 6 (2) 

Q20 1  .5  Exercise 6 (1) first inclusion in the indication

Q21 1  .5  Exercise 6 (1) second inclusion in the indication
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Different ways of grouping students were presented in Delacroix and Boubekki (2012). 

We will only consider two here which are summarized in the following table of repartition 

of students by level class. These correspond to a grouping of different level classes into 

groups of equal range (excluding the two classes at the extremities as they do not add any 

computational complexity to the problem and therefore may be kept as such). Recall that 

the level of a given grouping of level classes is defined as the weighted average of the 

levels of the level classes it groups. The level of each class is given out of 21. 

 

Table 2.  Grouping into level classes 

 

An approximated formula  

The second type of approximation used here consists of the following formula:  

Pi,k » xi,k

1- f
ni

n

æ

è
ç

ö

ø
÷

yi,k

f
ni

n

æ

è
ç

ö

ø
÷

 

Lk (×21) tk Lk (×21) tk Lk (×21) tk

0 2 0 2 0 2

1 4

2 4

3 8

4 4

5 5

6 7

7 7

8 9

9 9

10 4

11 9

12 5

13 6

14 4

15 2

16 2

17 4

18 0

19 4

20 2

21 3 21 3 21 3

18.4 10

17 4

19.33 6

14 14

13.4 10

15.5 4

10.37 27

9.31 13

11.36 14

6.72 28

5.58 12

7.56 16

Initial data 7-class approximation 12-class approximation

2.6 20

1.5 8

3.33 12
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As stated previously, the justification for this formula and the formula itself must still be 

improved if it is to be used in any further work. We present it here to illustrate a type of 

approach to the problem and briefly explain how it was constructed.  

We noticed that the formula for Pi,k
 is similar to the formula for the probability in 1.1.6 

in Delacroix (2013). Working with the analogy between a generalized binomial multiple 

behavior SIA and a generalized Poisson multiple behavior SIA, we determined a first 

approximation for Pi,k
. This first approximation is xi,k. 

However, this approximation was good for low values of ni but bad for high values. It can 

be shown that these two functions are equivalent when ni goes towards 0. As there is a 

symmetry in the problem considered here (between looking at success at questions or 

looking at failure at questions), we built another approximation which would match Pi,k
 

when ni was close to n. This is yi,k.  

By taking a weighted geometric average between these two approximations, the weight 

depending on 
ni

n
, we obtain an approximation that is closer to xi,k when ni is small and 

closer to yi,k when ni is large. We started by taking f simply to be the identity function, but 

the results were closer to correct values for tests when taking a function with a more 

flattened curve around 0 and 1, hence the cosine. Note that these formulas have been 

applied to the population excluding classes where students had managed all questions 

successfully and where students had managed no question at all. Indeed as we already 

know the values of P for these classes, the approximation is better if we do not consider 
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them first for the calculations and complete the matrix with the information concerning 

them later. 

The SIAs 

For these SIAs, we use the generalized Poisson distribution analysis described in 1.2.3 of 

Delacroix (2013). This will be done for four different values of P , the first three 

corresponding to the approximations previously described and the last corresponding to 

the unique class of a standard SIA. Note that, as this method is a generalization of SIA 

theory, the last case will simply correspond to a classical Poisson SIA.  

For each of these four cases, we give the value of P3 with the corresponding classes, the 

implicative tree and the hierarchy tree. For the implicative trees, we chose to look at a 

threshold of 0.98. We then make a few crossed observations.  

The calculations for the implicative and the hierarchy trees have been gracefully provided 

by Pablo Gregori based on code by himself and Larisa Zamora. Their program can take 

as an input the implicative intensity matrix, rather than the initial data, allowing us to 

calculate the implicative intensity using the generalized Poisson distribution analysis.  

To calculate the p × p (here, p =21) implicative intensity matrix j
aÙb( ) , we start by 

calculating a matrix l
aÙb( )  corresponding to the different parameters for the Poisson 

distributions in 1.2.3 of Delacroix (2013). This matrix is given by:  

 l
aÙb( ) = PDiag t( ) J q, p( ) - PT( )  

Where Diag(t) is the diagonal matrix with diagonal coordinates (t1, ..., tq) and J(q,p) is the 

q × p matrix with all its coordinates equal to 1.  

Now, considering the matrix n
aÙb( ) , we determine j

aÙb( )  by:  

j
aÙb

= 0 if a= b

1- Pcdf n
aÙb

,l
aÙb( ) if a ¹ b

ì

í
ï

îï

 

Where Pcdf(·,) is the cumulative distribution function of a Poisson distribution with 

parameter . 

Multiple behavior SIA 7 level approximation 

                                                 
3 The value given is rounded to two digits, the value used in the calculations was, of course, much 

more precise. 
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For this approximation, the matrix P is a 21×7 matrix. 

Table 3.  Probability matrix for 7 level approximation 

 

Figure 1.  Implicative graph and cohesion graph for 7 level approximation 

 

 

Multiple behavior SIA 12 level approximation 

This time, the matrix P is a 21×12 matrix. 

Qi n i

0  0.29  0.51  0.62  0.69  0.75 1 Q1 56

0  0.27  0.49  0.6  0.67  0.73 1 Q2 54

0  0.09  0.21  0.29  0.36  0.43 1 Q3 27

0  0.8  0.91  0.94  0.96  0.97 1 Q4 92

0  0.74  0.88  0.92  0.94  0.95 1 Q5 89

0  0.23  0.44  0.55  0.62  0.68 1 Q6 49

0  0.1  0.23  0.32  0.39  0.45 1 Q7 29

0  0.14  0.29  0.39  0.46  0.53 1 Q8 35

0  0.06  0.14  0.2  0.25  0.31 1 Q9 19

0  0.04  0.09  0.14  0.18  0.23 1 Q10 14

0  0.27  0.49  0.6  0.67  0.73 1 Q11 54

0  0.27  0.49  0.6  0.67  0.73 1 Q12 54

0  0.35  0.58  0.68  0.74  0.79 1 Q13 62

0  0.2  0.39  0.5  0.58  0.64 1 Q14 45

0  0.31  0.54  0.64  0.71  0.76 1 Q15 58

0  0.19  0.37  0.48  0.55  0.62 1 Q16 43

0  0.28  0.5  0.61  0.68  0.74 1 Q17 55

0  0.31  0.54  0.64  0.71  0.76 1 Q18 58

0  0.06  0.14  0.2  0.25  0.31 1 Q19 19

0  0.17  0.35  0.46  0.53  0.6 1 Q20 41

0  0.02  0.06  0.09  0.12  0.16 1 Q21 10

0  2.6  6.71  10.37 14  18.4 21

2 20 28 27 14 10 3

 Lk (×21)

 tk
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Table 4.  Probability matrix for 12 level approximation 

 

 

Figure 2.  Implicative graph and cohesion graph for 12 level approximation 

 

 

Multiple behavior SIA analytical approximation 

Here, P is a 21×21 matrix. 

Qi n i

0  0.19  0.34  0.47  0.55  0.6  0.65  0.68  0.71  0.73  0.76 1 Q1 56

0  0.18  0.32  0.45  0.52  0.58  0.62  0.66  0.69  0.71  0.74 1 Q2 54

0  0.06  0.12  0.18  0.23  0.27  0.31  0.35  0.39  0.41  0.44 1 Q3 27

0  0.71  0.84  0.9  0.93  0.94  0.95  0.96  0.96  0.97  0.97 1 Q4 92

0  0.63  0.79  0.87  0.9  0.92  0.93  0.94  0.95  0.95  0.96 1 Q5 89

0  0.15  0.28  0.39  0.47  0.52  0.57  0.61  0.65  0.67  0.69 1 Q6 49

0  0.06  0.13  0.2  0.25  0.29  0.34  0.38  0.41  0.43  0.47 1 Q7 29

0  0.08  0.17  0.25  0.32  0.36  0.41  0.45  0.49  0.51  0.54 1 Q8 35

0  0.03  0.07  0.12  0.15  0.18  0.21  0.24  0.27  0.29  0.32 1 Q9 19

0  0.02  0.05  0.08  0.11  0.13  0.15  0.17  0.2  0.21  0.23 1 Q10 14

0  0.18  0.32  0.45  0.52  0.58  0.62  0.66  0.69  0.71  0.74 1 Q11 54

0  0.18  0.32  0.45  0.52  0.58  0.62  0.66  0.69  0.71  0.74 1 Q12 54

0  0.24  0.41  0.54  0.61  0.66  0.71  0.74  0.77  0.78  0.8 1 Q13 62

0  0.13  0.24  0.35  0.42  0.48  0.53  0.57  0.6  0.63  0.66 1 Q14 45

0  0.2  0.37  0.49  0.57  0.62  0.67  0.7  0.73  0.75  0.77 1 Q15 58

0  0.12  0.23  0.33  0.4  0.45  0.5  0.55  0.58  0.6  0.63 1 Q16 43

0  0.18  0.33  0.46  0.54  0.59  0.63  0.67  0.7  0.72  0.75 1 Q17 55

0  0.2  0.37  0.49  0.57  0.62  0.67  0.7  0.73  0.75  0.77 1 Q18 58

0  0.03  0.07  0.12  0.15  0.18  0.21  0.24  0.27  0.29  0.32 1 Q19 19

0  0.11  0.21  0.31  0.38  0.43  0.48  0.52  0.56  0.58  0.61 1 Q20 41

0  0.01  0.03  0.05  0.07  0.08  0.1  0.12  0.13  0.14  0.16 1 Q21 10

0  1.5  3.33  5.58  7.56  9.31  11.36  13.4  15.5 17  19.33 21

2 8 12 12 16 13 14 10 4 4 6 3

 Lk (×21)

 tk
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TABLE 5.  Probability matrix for analytical approximation 

 

Figure 3.  Implicative graph and cohesion graph for analytical approximation 

 

 

Classical SIA 

Qi n i

0  .24  .31  .36  .4  .43  .46  .48  .5  .52  .54  .56  .58  .59  .61  .63  .65  .67  .71  .74 1 Q1 56

0  .22  .29  .34  .38  .41  .44  .46  .48  .5  .52  .54  .56  .58  .6  .62  .63  .65  .7  .72 1 Q2 54

0  .06  .1  .13  .16  .19  .22  .24  .26  .28  .3  .32  .34  .35  .37  .38  .4  .42  .45  .46 1 Q3 27

0  .86  .87  .87  .88  .89  .89  .9  .9  .91  .91  .92  .93  .93  .94  .95  .95  .96  .97  .98 1 Q4 92

0  .79  .81  .82  .83  .84  .85  .85  .86  .87  .88  .89  .89  .9  .91  .92  .93  .94  .96  .97 1 Q5 89

0  .18  .25  .3  .34  .37  .4  .42  .44  .46  .48  .5  .52  .54  .56  .58  .6  .62  .66  .68 1 Q6 49

0  .06  .11  .15  .18  .21  .23  .26  .28  .3  .32  .34  .36  .37  .39  .41  .42  .44  .47  .49 1 Q7 29

0  .09  .14  .19  .22  .25  .28  .31  .33  .35  .37  .39  .41  .43  .45  .46  .48  .5  .53  .55 1 Q8 35

0  .03  .06  .09  .11  .13  .15  .17  .19  .21  .22  .24  .25  .27  .28  .29  .31  .32  .34  .35 1 Q9 19

0  .02  .04  .06  .08  .1  .11  .13  .14  .15  .17  .18  .19  .2  .22  .23  .24  .25  .27  .28 1 Q10 14

0  .22  .29  .34  .38  .41  .44  .46  .48  .5  .52  .54  .56  .58  .6  .62  .63  .65  .7  .72 1 Q11 54

0  .22  .29  .34  .38  .41  .44  .46  .48  .5  .52  .54  .56  .58  .6  .62  .63  .65  .7  .72 1 Q12 54

0  .31  .38  .43  .46  .49  .51  .53  .55  .57  .59  .61  .62  .64  .66  .68  .7  .72  .76  .78 1 Q13 62

0  .15  .21  .26  .3  .33  .36  .39  .41  .43  .45  .47  .49  .51  .53  .55  .56  .58  .62  .65 1 Q14 45

0  .27  .34  .38  .42  .45  .47  .5  .52  .54  .56  .57  .59  .61  .63  .65  .67  .69  .73  .75 1 Q15 58

0  .14  .2  .25  .29  .32  .35  .37  .4  .42  .44  .46  .48  .49  .51  .53  .55  .57  .61  .63 1 Q16 43

0  .23  .3  .35  .39  .42  .45  .47  .49  .51  .53  .55  .57  .59  .6  .62  .64  .66  .71  .73 1 Q17 55

0  .27  .34  .38  .42  .45  .47  .5  .52  .54  .56  .57  .59  .61  .63  .65  .67  .69  .73  .75 1 Q18 58

0  .03  .06  .09  .11  .13  .15  .17  .19  .21  .22  .24  .25  .27  .28  .29  .31  .32  .34  .35 1 Q19 19

0  .12  .18  .23  .27  .3  .33  .36  .38  .4  .42  .44  .46  .48  .5  .51  .53  .55  .59  .61 1 Q20 41

0  .02  .03  .04  .06  .07  .08  .09  .1  .11  .12  .13  .14  .15  .16  .17  .18  .18  .2  .21 1 Q21 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21

2 4 4 8 4 5 7 7 9 9 4 9 5 6 4 2 2 4 4 2 3

 Lk (×21)

 t k
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For a classical SIA, P is a 21×1 matrix. It is quite simply given by Pi,1 =
ni

n
 for all i. 

 

Figure 4.  Implicative graph and cohesion graph for classical SIA 

 

 

Comparing the SIAs 

Without going into a detailed comparison between all these various SIAs, we can still 

make a certain number of observations. We base our remarks on the idea that, having 

removed relations of quasi-implications due to various difficulties in questions, we expect 

relations of quasi-implications to be concentrated between questions within a same 

exercise. Firstly, we consider the method to be successful in its purpose for the first two 

approximations of P, not so much for the analytical expression of P . This was to be 

expected as the analytical expression is not based on sufficient mathematical grounds. 

Secondly, lets us consider only the two first approximations compared to the classical 

SIA. The purpose of the method is to suppress parasitical pseudo-implications between 

variables. We see that the implicative graphs for the approximations contain much fewer 

arrows than the implicative graph for the classical SIA, which is basically unreadable 

given the number of arrows. In the cohesion graph, this translates to the fact that for the 

classical SIA, the arrows are crammed at the top of the graph, whereas they are more 

spread for the two first approximations. This shows we have indeed suppressed a certain 

number of pseudo-implications. The clusters are roughly the same between the cohesion 
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graphs for the first two approximations (for which they are exactly the same) and the 

cohesion graph for the classical SIA. However, there are some irregularities in the 

classical SIA cohesion graph that disappear in the first two cohesion graphs. Question 18, 

which naturally belongs with question 17 and question 19, is in a separate cluster with 

these two questions for the first two approximations but is only in a common cluster with 

these two simultaneously with all questions from exercise 5 for the classical SIA. 

Furthermore, in the classical SIA graph, question 5 is grouped in a larger cluster with 

questions from exercises 4 and 5 rather than questions from exercise 3 to which it belongs. 

This is due to the fact that nearly every student managed question 5. Therefore any 

information relating to this question should be considered highly irrelevant. This is 

corrected in the graphs from the first two approximations where question 5 is separated 

from all other questions. Thirdly, comparing the two first approximations together, the 

implicative graphs are identical. It is only when considering a threshold around 0.975 that 

a difference between the two implicative graphs appears. Furthermore, it is hard to see a 

difference between the two cohesion graphs. By plotting these graphs on a same grid, we 

notice that the graph for the 12-level approximation is slightly more spread than the graph 

for the 7-level approximation. This is coherent with the idea that, with a better 

approximation, we continue to suppress pseudo-implications, which are of no interest to 

us. However, this difference is very small and the calculation time for P for the 7-level 

approximation was 3 seconds, whereas the calculation time for the 12-level 

approximation was 3 hours (see Delacroix and Boubekki (2012)). In such a case, it would 

therefore likely be more profitable to consider the 7-level approximation for practical 

reasons. Studying the convergence rate of the approximations towards P  when the 

number of levels increases could help us define a number of levels depending on the data 

for which we have a good enough approximation. To conclude, we can say that the model 

seems quite effective for removing parasitical pseudo-implications in certain SIA-based 

studies. And it is a well-known issue for researchers using SIAs that when the number of 

individuals considered is large (even for several hundreds) the graphs obtained are 

difficult to read as every variable seems to imply every other variable. Therefore, it is 

important for researchers to focus solely on the pseudo-implications that are interesting 

for their studies. The model that we have presented in this article can contribute to this 

and enhance SIAs in a certain number of studies. 
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