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Abstract 

In this contribution we study the behavior of the classical Gras implication index as a 

random variable, when applied to a couple of Bernoulli variables ),( YX , independent 

or not. We also show the effect of the conditional probability XYp | on its probability 

distribution, and specially on its mean value and quartiles.  

Keywords : Binomial Model, Classical Implication Index, Conditional Probability, 

Multinomial Model. 

 

Résumé 

Dans cette contribution nous étudions le comportement de l'indice d'implication 

classique de Gras comme une variable aléatoire quand celui-ci est associé à un couple 

de variables de Bernouilli ),( YX . Nous montrons également l'effet de la probabilité 

conditionnelle XYp | sur sa distribution de probabilité, plus particulièrement sur sa 

moyenne et ses quartiles.  

Mots-clés : Modèle Binomiale, Implication Classique, Probabilité Conditionnelle, 

Modèle Multinomiale. 

 

Introduction 

Statistical Implicative Analysis (SIA) provides the practitioner with several tools 

allowing to analyse and find patterns of the kind association rules and cluster analysis 

into samples of multivariate data. It was initiated in the PhD dissertation Gras (1979) 

and developed in Gras and Larher (1993) and Gras et al. (1996), in the context of 

Didactics of Mathematics. Since then, this topic has been growing in methodology, 

widening in scope from binary variables to categorical, discrete and continuous 

numerical, and even to fuzzy and vector-valued variables, and in applications areas, 
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see : Gras et al. (1996), Gras et al. (2008), Orús et al. (2009), Régnier et al. (2012) and 

Gras et al. (2013). Most of these functionalities are implemented in CHIC in 

Couturier (2008). 

We focus on one of the major topics of SIA: implication, and restrict ourselves to the 

analysis of the Gras implication (intensity) index in the classical version and under the 

binomial modelisation. 

Two binary random variables X and Y can be seen as a couple of Bernoulli trials that 

can be independent or not. Both marginal success probabilities Xp and Yp , plus the joint 

success probability XYp are the three parameters required in order to specify completely 

the joint distribution of ),( YX .  

The implication intensity )( YX  can be seen as a random variable: for each 

realization of ),( YX a value of )( YX  is obtained, as a function of the number of 

successes observed in X, Y, and the number of counterexamples of the scrutinised rule 

YX  . 

We have found in Barbu (2007), sect. 3, an interesting analysis of the distribution of the 

implication intensity (Poisson, classic and entropic) as well as the conditional 

probability for samples of several sizes. Therein, all possible values of )( YX  were 

computed taking into account all the possible distributions of the individuals of the 

samples in the four cases )0,0(  YX , )1,0(  YX , )0,1(  YX and )1,1(  YX . 

This procedure corresponds to the case of two independent Bernoulli trials, both with 

parameter 0.5. Then the distribution )( YX  (classical, Poisson and entropic 

versions) has been numerical and exactly computed for 3 sample sizes (n = 100, 200, 

2000). After that, goodness of fit tests to normal and lognormal distributions have been 

performed. 

In this contribution we write down the formula of the probability function 

of )( YX  and its expectation for general sample size and marginal and joint success 

probabilities, as well as R scripts for its practical computation. We also give hints on 

how to simulate a bivariate binary random variable with known marginal success 

probabilities and a given value (in the long run) implication index. We consider that this 

is an important result since it allows the consideration of )( YX  as a populational 

statistic, not only a mere sample statistic, which is, as far as we know, a new conception 

up to our knowledge. 
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Notation and definitions 

The joint distribution of a binary random variable ),( YX is completely determined by 

the joint probability table (completed with the marginal probabilities) shown in Table 1.  

For instance, it is enough either to fix only three joint probabilities or the two marginal 

probabilities plus one joint probability. Another possibility is giving the two marginal 

probabilities Xp and Yp plus the conditional probability
X

XY
XY

p

p
p :| , which is related to 

the degree of association between X and Y. An individual for which X = 1 and Y = 0 is 

considered to be a counterexample to the rule YX  , since it holds the hypothesis of 

the rule, but not the thesis.  

Table 1. Notation for the joint probability table for the bivariate binary random 

variable ),( YX . 

  Y  

  0 1 Margin X 

X 

0 
YX

p  
YX

p  
X

p  

1 
YX

p  XYp  Xp  

 Margin Y 
Y

p  Yp  1 

 

If we consider the process of sampling from ),( YX with size n, we can consider the 

random frequency table given in Table 2. The symbol
YX

N denotes the random number 

of counterexamples to the rule, found in the generic sample of size n.  

Table 2. Notation for the random joint frequency table for generic samples of size n of the bivariate 

binary random variable ),( YX . 

  Y  

  0 1 Margin X 

X 

0 
YX

N  
YX

N  
X

N  

1 
YX

N  XYN  XN  

 Margin Y 
Y

N  YN  n 
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One particular realization of the random joint frequency table is denoted as shown in 

Table 3. Hence, the symbol
YX

n denotes the observed number of counterexamples to the 

rule, found in the particular sample of size n.  

Table 3. Notation for a particular realization of the frequency table of a sample of size n of the bivariate 

binary random variable ),( YX . 

  Y  

  0 1 Margin X 

X 

0 
YX

n  
YX

n  
X

n  

1 
YX

n  XYn  Xn  

 Margin Y 
Y

n  Yn  n 

 

The classical Gras implication index )( YX  is a sample statistic, which aims at 

measuring the interest of the rule YX  : it accounts for how surprisingly small is the 

observed number of counterexamples
YX

n found in the particular sample given by the 

frequency table shown in Table 3, when the statistical independence is taken for 

granted. In particular we consider the classical implication index for binary variables, 

which can be defined as 

)(:)(
YXYX

nNPYX  . 

 

Distribution of the classical Gras implication index 

Our modelisation of the random binary variables, with a fixed sample size n, leads us to 

use the binomial model for 
YX

N , i.e. ),(~
2n

nn
nBinN YX

YX
. 

Therefore, the four random variables in the random joint frequency table shown in 

Table 2 form a random vector (
YX

N ,
YX

N ,
YX

N , XYN ) which follows the multinomial 

distribution of parameters (n,
YX

p ,
YX

p ,
YX

p , XYp ). Consequently, )( YX  varies at 

every sample (of size n) from ),( YX , thus it is a random variable. 

An approach to the analysis of the distribution of )( YX  under uniform random 

sampling of individuals falling at the four cases of the joint frequency table (i.e., 

YX
p =

YX
p =

YX
p = XYp = 0.25) has been performed in Barbu (2007). In that work several 
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hypothesis tests on the goodness of fit to Gaussian and logGaussian distribution were 

conducted on the different implication indices (classical, Poisson and entropic). 

Here we derive the general formula of the probability function of )( YX  and of its 

expectation, and give R scripts for fast numerical computation. 

On the one hand, and conditioned to a sample of size n, the probability function for the 

vector of absolute frequencies is: 

),,,( XYXYYXYXYXYXYXYX
nNnNnNnNP   

XYYXYXYX
n

XY

n

YX

n

YX

n

YX
XYYXYXYX

pppp
nnnn

n

!!!!

!
  (1) 

The value of )( YX  conditioned to (
YX

N =
YX

n , 
YX

N =
YX

n , 
YX

N =
YX

n , XYN = XYn ) 

is: 

))(,(1)(
2 YX

YX
n

n

nn
nFYX   

where ),( pnF  represents the cumulative distribution function of the binomial model with 

parameters Nn and )1,0(p . Hence, the probability function for the random 

variable )( YX  can be written as: 

))((:)( 00   YXPf  





nnnnn

n

XY

n

YX

n

YX

n

YX
XYYXYXYXXYYXYXYX

XYYXYXYX pppp
nnnn

n

!!!!

!
 (2) 

where the summation corresponds to every vector (
YX

n ,
YX

n ,
YX

n , XYn ) of nonnegative 

integers such that 
YX

n +
YX

n +
YX

n + XYn = n and such that ))(,(1
20 YX

YX
n

n

nn
nF . 

For the computations, all partitions of n into four integers (where one or several of them 

might be null) are listed. For each partition, the value of 0 and its probability are 

calculated. Finally, probabilities are aggregated for repeated values of 0 . 

For the expectation of )( YX  , one can use the expression of )( YX  conditioned 

to values (
YX

n ,
YX

n ,
YX

n , XYn ), and the definition to get: 

))(( YXE   



















nnnnn

n

XY

n

YX

n

YX

n

YX
XYYXYXYX

YX

YX

XYYXYXYX

XYYXYXYX pppp
nnnn

n
n

n

nn
nF

!!!!

!
))(,(1

2
 

(3) 
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where the summation corresponds to every vector (
YX

n ,
YX

n ,
YX

n , XYn ) of nonnegative 

integers such that 
YX

n +
YX

n +
YX

n + XYn = n. 

Let us note that these formulae can be written in terms of the size n and any three 

independent parameters of the joint probability table of the bivariate binary random 

variable ),( YX . For instance, the triplet ( Xp , Yp , XYp )or the triplet ( Xp , Yp , XYp | ). If 

the marginal probabilities Xp and Yp  and the sample size n are to be fixed, then one can 

see the effect of the parameter XYp |  (confidence of the rule YX  ) on the complete 

distribution of )( YX  and on its expected value ))(( YXE  , giving a wider 

picture than the one pointed out in the foundational papers of SIA (where a graph shows 

how both the implication index and the conditional probability decrease as the number 

of counterexamples increase). We shall show these graphical relations in the next 

section, as well as provide the R scripts in the appendix. 

 

Graphics and conclusions 

The first fact that we have found is the atypical behavior of the distribution 

of )( YX  . It is obviously a discrete variable with values in [0,1], with a sample 

space with size increasing with n, and its distribution behaves in an unusual way: it is 

more or less bell shaped and it is not piecewise monotone, in the sense that there is one 

mode (maximum probability) and the values which are the farthest from the mode have 

lower probability. The plot is reminiscent of some kind of chaotic behavior or fractal 

structure (more easily seen for large values of n such as 100). We think it is caused by 

the partitions of the integer n, which show a recurrence structure, and if each of the four 

numbers in the partition has an effect of different order of magnitude on the 

probabilities, it can explain the result, as can be seen on any plot of Figure 1. 

A second interesting point is a more thorough description of the relation between 

conditional probability and implication intensity, that can be seen only through 

particular values of the parameters. Until now, only simulated samples did this job: for 

each sample, the values were computed and plotted one against the other. Now we can 

plot the true distribution of )( YX  as a function of the true conditional 

probability XYp | .  
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We show those features in Figure 1: the distribution of )( YX  for fixed marginal 

probabilities Xp = 0.5 and Yp = 0.5, and we move the dependence parameter XYp | and the 

sample size n, in order to show the effects of each of these values.  

Barbu (2007) has performed some goodness-of-fit test to normality, with some positive 

results. Here we can see that it must be done with caution, since even for large n, the 

shape of the probability function is highly peaked. 

 

Figure 1. Distribution of )( YX  for Xp =0.5, Yp =0.5. From left to right, XYp | =0.25, 0.5, 0.75. 

(i.e. We move from low to high confidence). From up to down n = 10, 30, 100, we move from smaller to 

larger samples. Thus we show the effect of these two parameters on the distribution of )( YX  . 

 

This is a surprising feature of )( YX  , since the study of topics like confidence 

intervals is based on the fact that distributions are bell shaped or have monotone density 

functions, and in those cases the sets of most likely values are really intervals. In this 

case the set of most probable values cannot be included in intervals, and if one wants to 

give estimations of the true value of the mean, i.e. ))(( YXE  , it is not easy to 

consider more than point estimations.  

Another useful plot is to simplify the previous plot (of the complete distribution 

of )( YX  ) and show the effect of the conditional probability on the expected values 
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and quartiles of the implication index. We show in Figure 2 some examples for different 

parameter values.  

Focusing on the expectation, Equation 3, if Xp , Yp and the sample size n are to be 

fixed, ))(( YXE  remains as a function of XYp . If one is able to solve, at least 

numerically, the equation ))((0 YXE   , with unknown XYp , then the simulation 

problem of producing samples of couples of Bernoulli variables with fixed marginal 

parameters and fixed size, and with a prescribed classical Gras implication index in the 

long run, is solved. In this case, one can see the implication index as another parameter 

of the distribution, together with the joint probabilities.  

 

Figure 2. Effect of the conditional probability XYp | on the mean value (continuous line) and quartiles  

(dashed lines) of )( YX  for fixed Yp =0.5 and varying Xp from left to right 

( 0.5 0.25, 0.1,Xp ), and the sample size from up to down ( 30,10,5n ). 

 

The problem of conducting hypothesis tests on the true value of the classical Gras 

implication index between two binary variables remains a difficult one, because of the 

behavior of the distribution. We shall devote our future efforts in this direction. 
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Appendix 

Here is the R code. Long lines have been cut for the printing. 

 

Listing 1. Code for computing the density of )( YX  . 

phi0 = function(x) { 

  # computes the value of phi0 for a particular sample 

  # with x[1] in nXnY, x[2] in nXY, x[3] in XnY and x[4] in XY 

  return(1-pbinom(q=x[3], size=sum(x),  

      prob=((x[3]+x[4])*(x[1]+x[3]))/((sum(x))^2))) 

} 

rvgrasphi = function(pX=0.5, pY=0.5, pXY=NULL, pYgivenX=NULL, n=10) { 

  # density (actually probability function) and expectation for the  

  # Gras implication index of two Bernoulli variables  

  # X and Y of parameters pX and pY and joint success  

  # probability pXY (or conditional probability pYgivenX). 

  # It returns a list of two components: 

  # $f = the values of phi and their probability 

  # $E = the expected value 

  require(partitions) # needs the package 

  if( is.null(pXY) ) { 

    pXY = pX * pYgivenX 

  } else { 

    pYgivenX = pXY/pX 

  } 

  pnXnY = 1 - pX - pY + pXY 

  pnXY = pY - pXY 

  pXnY = pX - pXY 

  # PROBABILITY FUNCTION FORMULA f(x) := Pr(Phi=x) 

  # f(x) = sum_[nn : phi(nn)=x] prob(NN=nn) 

  # where nn are all the possible 4 joint absolute frequencies 

  # Compute all phi.nn, and sum probabilities of  

  # repeated values 

  nn = compositions(n,4) 

  # computation of prob(NN=nn) 

  pr.nn = apply(X=nn, MAR=2, FUN='dmultinom', size=n,  

                      prob=c(pnXnY, pnXY, pXnY, pXY)) 

  # computation of phi(nn) 

  phi.nn = apply(X=nn, MAR=2, FUN='phi0') 

  phi.values = sort(phi.nn)[c((1:(length(phi.nn)-1)) 

                [as.logical(sign(diff(sort(phi.nn))))], length(phi.nn))] 
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  phi.prob = diff(c(0,cumsum(pr.nn[order(phi.nn)])[c((1:(length(phi.nn)-1)) 

                [as.logical(sign(diff(sort(phi.nn))))], length(phi.nn))])) 

  Ephi = sum(phi.nn * pr.nn) 

  result = list( f=data.frame(phi=phi.values, fphi=phi.prob), E=Ephi ) 

  return( result ) 

} 

 

 

 

 

 

 

 

 

Listing 2. Code for computing the conditional probability on the mean and quartiles. 

pX1=0.5; pY1=0.5 

n1=c(10,30,100) 

par(mar=c(3, 2, 1, 1) + 0.1 ) 

layout(matrix(1:9, 3, 3)) 

pX = c(0.1, 0.25, 0.5) 

pY = 0.5 

n = c(5, 10, 30) 

for( i in 1:3) { 

  # range of P(Y|X) 

  pXYmin = max(c((pX[i] + pY)-1, 0)) 

  pXYmax = min(c(pX[i],pY)) 

  pYgivenXmin = pXYmin/pX[i] 

  pYgivenXmax = pXYmax/pX[i] 

  p = seq(fr=pYgivenXmin, to=pYgivenXmax, len=20) 

  for( j in 1:3 ) { 

    # sample size 

    Ephi = numeric(0) 

    f25 = numeric(0) 

    f50 = numeric(0) 

    f75 = numeric(0) 

    for( pYgivenX in p ) { 

      pXY = pX[i] * pYgivenX 

      pnXnY = 1 - (pX[i] + pY) + pXY 

      pnXY = pY - pXY 

      pXnY = pX[i] - pXY 

      nn = compositions(n[j],4) 

      thismultinom = function(x) { 

        return( dmultinom(x=x, size=n[j], prob=c(pnXnY, pnXY, pXnY, pXY)) ) 

      } 

      # prob(NN=nn) 

      pr.nn = apply(X=nn, MAR=2, FUN='thismultinom') 

      thisphi = function(x) { 

        return(1-pbinom(q=x[3],size=n[j], prob=((x[3]+x[4])*(x[1]+x[3]))/((n[j])^2))) 

      } 

      # phi(nn) 

      phi.nn = apply(X=nn, MAR=2, FUN='thisphi') 

      Ephi = c(Ephi, sum(phi.nn * pr.nn)) 

      f25 = c(f25, sort(phi.nn)[  

                which( cumsum(pr.nn[order(phi.nn)]) > 0.25 )[1] ]) 

      f50 = c(f50, sort(phi.nn)[ which( cumsum(pr.nn[order(phi.nn)]) > 0.50 )[1] ]) 
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      f75 = c(f75, sort(phi.nn)[ which( cumsum(pr.nn[order(phi.nn)]) > 0.75 )[1] ]) 

    } 

    plot(x=p, y=Ephi, type='l', ylim=c(0,1), xlab='P(Y|X)', ylab='Phi') 

    points(x=p, y=f25, type='l', lty=2) 

    points(x=p, y=f50, type='l', lty=2) 

    points(x=p, y=f75, type='l', lty=2) 

    legend(x='bottomright', legend=paste('n=',n[j], collapse='')) 

    legend(x='topleft', legend=c(paste('pX=', pX[i], collapse=''), 

                paste('pY=',pY, collapse=''))) 

  } 

} 

 


