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Abstract 

The aim of this paper is to develop and synthesise ideas about probabilistic thinking and 

highlight the considerations by illustrating how the concept of probability is entrenched 

with the concept of risk. We use a hermeneutic way of argument, relate the ideas to the 

mathematical and philosophical background of probability, and illustrate our ideas by 

examples that relate probability considerations to risk. Special features of competing 

intuitions and strategies link probabilistic thinking to its roots in psychology, to the 

paradigm of causality, to its empirical expressions, and to thinking and decisions. 

Higher-ordered probabilistic thinking is described by the categories of the theoretical 

character of probability, conditional probability, and by the construct of probabilistic 

evidence. The robustness of probabilistic misconceptions is explained by an archetypical 

way of thinking. The peculiar logic of decisions adds to probabilistic thinking. Finally, 

the purpose of probability is declared as central issue for teaching and understanding 

probability. Throughout, the connection of probability to risk enhances probabilistic 

concepts and reveals a twin-character of probability and risk. 

Keywords: Probabilistic thinking, Probability literacy, Risk literacy, Mathematical 

thinking, Theoretical character of probability, Probabilistic evidence, Conditional 

probability, Archetypical strategies, Logic of decisions, Insurance contract. 

 

Resumo 

O objetivo deste artigo é desenvolver e sintetizar ideias sobre o pensamento 

probabilístico e destacar as considerações apresentadas ilustrando como o conceito de 

probabilidade está enraizado no conceito de risco. Utilizamos argumentação 

hermenêutica, articulando as ideas com o quadro teórico matemático e filosófico da 

probabilidade, e ilustramos nossas ideas por meio de exemplos que relacionam 

probabilidade e risco. Características especiais de intuições e estratégias concorrentes 

ligam o pensamento probabilístico às suas raízes na psicologia, ao paradigma da 

causalidade, às suas expressões empíricas, ao pensamento e às decisões. O pensamento 

probabilístico de ordem superior é descrito pelas categorias de caráter teórico da 

probabilidade, probabilidade condicional e pela construção da evidência probabilística. 

A robustez dos equívocos probabilísticos é explicada por um modo de pensar arquetípico. 

A lógica peculiar das decisões é adicionada ao pensamento probabilístico. Finalmente, 

o propósito da probabilidade é declarado como questão central para o seu ensino e 

compreensão. Assim, a conexão da probabilidade ao risco realça conceitos 

probabilisticos e revela um caráter dialético da probabilidade e do risco. 
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Introduction 

More than with other mathematical concepts, controversies play an essential role with 

probability; see, e.g., Batanero, Henry, and Parzysz (2005). There are several ways to 

conceptualise probability; from the diversity, only three have received a wider 

acknowledgement and outreach in applications. We will shortly describe these 

approaches and use acronyms to denote them with the intention to clarify and separate 

ideas (for the notation see also Borovcnik and Kapadia, 2014): 

i. Frequentist theory of probability (FQT). The idea in the background is that relative 

frequencies converge (in a sophisticated way) towards the underlying probability if 

the random experiment is independently repeated under the same conditions infinitely 

many times. This perceived empirical regularity is mirrored in the Law of Large 

Numbers that can be derived from the mathematical setting of the theory, which is the 

usual axiomatic approach that goes back to Kolmogorov (1933). 

ii. Subjectivist theory of probability (SJT). The lead idea in the background is a 

preference system of a person, from which a degree of confidence (a probability) may 

be derived for certain statements (the analogue of events); this is justified by the 

axiomatic approach of de Finetti (1937). Key is also the exchange of money for 

security as is done in an insurance treaty where the client can buy (financial) security 

from the insurance company. The central law in this approach is the Bayesian formula, 

which clarifies how data (FQT information) can be formally integrated to provide a 

new probability. SJT probability should not be confused with an arbitrary probability 

judgement; it is a qualitative form of knowledge on statements that has to fulfil certain 

conditions. 

iii. A priori theory of probability (APT). The Laplace assumption of equal probabilities 

for all elementary events provides a unique probability measure on a finite sample 

space. The approach mirrors the idea of fairness; a decision is fair if it is made by an 

ideal chance device. Such devices may also be used to communicate values of 

probability and also to calibrate one’s own scale of probability. There has been some 

debate whether APT as a priori theory may be confused with prior probabilities (used 
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in the Bayes formula); alternative suggestions might be equiprobability theory (EQT) 

or Laplace theory (LPT). Yet, we advocate APT as it expresses the fact that within 

this approach probabilities are given a priori, which historically played a great role 

(one only has to know all possible cases). 

 

The other basic concept we use in this paper is risk. By risk we understand a situation 

with inherent uncertainty about (future) outcomes, which are linked to an impact (cost, 

damage, or award). For the comparison of several options sometimes the expected value 

of the impact is taken as a criterion to evaluate the options, on other occasions other 

criteria are used for that purpose (like minimising the maximum cost). The usage of the 

term risk varies greatly between the two following extremes: Risk may refer to the 

probability of an adverse event without consideration of impact, or risk may only refer to 

the impact (damage) without any consideration of the related probability. The reader may 

find a detailed analysis of the logic of risk in Borovcnik (2015). With respect to the 

stakeholders that are involved in a risk situation, we see the following cases: 

 The decision relates only to the person who decides. A person might consider going 

for a dangerous climbing tour. 

 The decision is shared between two stakeholders situated at different levels. A person 

might consider taking out an insurance policy from an insurance company. Or, the 

doctor has to suggest therapies (an operation) to a patient. 

 The decision relates to a societal risk. A screening scheme for early detection of a 

disease might be implemented or not.  

The perception and judgement of risk might differ completely between various 

stakeholders and a decision that involves risk might have different implications to those 

who are involved. If, for example, a single person encounters an institution, the 

implications differ greatly. While a patient suffers personally from any treatment, a doctor 

or the institution may be liable for what they do. For details see Borovcnik and Kapadia 

(2011a, 2011b). 

1. Mathematical thinking  

Thinking is something human beings do all the time; of course, thinking is influenced by 

people’s experiences and the theoretical frameworks they have acquired in their schooling 

and elsewhere. Mathematical thinking is influenced by a mathematical background. It can 
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be formal if the mathematical relationships are used precisely. Fischbein (1987) describes 

two ways of thinking that also apply for mathematicians: an intuitive, yet mathematical 

way of thinking and a way of thinking shaped by mathematical concepts they have 

acquired. In this latter case, thinking is guided by the so-called secondary intuitions that 

emerge from learning the mathematical concepts and replace the primary intuitions that 

existed already prior to formal education. Secondary intuitions form a strong tool that 

allows solving a mathematical problem without knowing all technical details (this aspect 

makes it also attractive for teaching as the technical details are known as obstacle to 

learning). Thinking mathematically comprises finding a suitable model to adequately 

represent the situation. Of course, in problems of applied mathematics, the constituents 

of the modelling process are wider and also comprise – beyond mathematics – knowledge 

of the context as well as criteria for assessing how well models match a situation. Literacy 

may be defined as the ability to find, read, interpret, analyse, and evaluate written 

information, and to detect inconsistences, errors, or biases within this information.  

1.1 The role of probability 

With respect to probability, Borovcnik (2011) states that randomness is a concept that 

allows one to think about the world. We have a strong affinity with other types of 

thinking, which might lead us to reinterpret the situation by concepts different from those 

predesigned by probability theory. This creates special challenges for teaching 

probability. Of the nine reasons in Borovcnik (2011) to support a stronger role of 

probability within statistics curricula, only one deals with statistical inference and random 

samples, which otherwise cannot properly be understood. There seems more on 

probability that points beyond its role as companion to statistics. We will develop ideas 

on probabilistic thinking and probability literacy and relate them to risk. Batanero and 

Borovcnik (2016, pp. 4) summarise the role of probability in a curriculum of probability 

and statistics in the following way: 

In recent years, there has been a shift in the way probability is taught at school 

level, from a classical Laplacean (or “axiomatic”) approach (common until the 

1980s) towards a frequentist conception of probability, that is, an experimental 

approach where probabilities are estimated from long-range relative 

frequencies […]. Simulations and experiments are used to support students in 

understanding the Law of Large Numbers and grasping the sophisticated 

interaction between the notion of relative frequency and the frequentist 

conception of probability.  

[Historically, t]he subjectivist view of probability, which is widely used in 

applied statistics, has been developed hand in hand with the frequentist view 
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so that the two complement each other […]. Their interplay is relevant, 

especially for conditional probability. Bearing this in mind, we suggest a 

combination of both approaches in the teaching of probability. 

 

1.2 Statistical literacy and statistical thinking 

Statistics is generally associated with its role to generate evidence from data. Statistical 

knowledge comprises to apply proper models in specific situations, considering the 

validity and impact of assumptions, deriving the results and interpreting them in the 

context of the given task. As such a type of knowledge is essential for a modern data-

driven society and science in the empirical paradigm (with evidence-based rules for 

generating new knowledge and insights), statistical literacy is highly esteemed. 

Consistently, there are many descriptions of statistical literacy and this literacy has found 

its explicit expression in curricula world-wide (see Batanero and Borovcnik, 2016, pp. 

12). To be statistically literate, people need a basic understanding of statistics (including 

terms and symbols, graphs, and the basic logic of statistics) and the context. Batanero and 

Borovcnik (2016, p. 13) state that:  

Statistical literacy should also enable people to question the thinking 

associated with a specific method, to understand certain methods and their 

limitations, or to ask crucial questions to experts and understand their answers. 

 

Gal (2002) identifies the ability to interpret and critically evaluate statistical information 

in diverse contexts and the ability to communicate opinions on such information. Of 

course, mathematical skills are required to process and communicate that information but 

may also hinder that people understand that kind of information. The ideas about 

statistical thinking are well-embedded in the statistical investigation cycle of Wild and 

Pfannkuch (1999) who – according to Batanero and Borovcnik (2016, p. 16) specify 

the complex thought processes involved in solving real-world problems using 

statistics. They used the modelling cycle described by the modelling group 

within mathematics education […] and filled its components with statistical 

ideas. They mainly focused on the process of empirical research with little 

reference to probability […]. Solving statistical problems involves a complete 

research cycle of Problem, Planning, Data, Analysis, and Conclusion 

(PPDAC). 

2. Probability literacy and probabilistic thinking 

Stochastic thinking has been delineated by different authors; as with statistical thinking, 

which are isolated within statistics with sparse connections to probability, stochastic 
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thinking remained isolated on the probability side. For example, Heitele (1975) described 

a list of fundamental ideas related to understanding probability that reads like the headings 

of a mathematical textbook of probability. Other descriptions of stochastic thinking 

before the millennium followed Heitele closely. See also Borovcnik (1997) for a critical 

review of these ideas and an early attempt to focus on conceptions about the peculiar 

character of probabilistic information. 

Gal (2005) expanded his view of statistical literacy also to probability. In his model, he 

includes the capability to interpret and critically evaluate probabilistic information and 

random phenomena and focuses on the importance of the context, in which such 

information is embedded. Essential for such literacy are the abilities to understand the 

meaning and language of basic probability concepts and to use probability arguments 

properly in private or public discussions. Gal also introduces dispositional elements in his 

model of probability literacy; appropriate beliefs and attitudes have to be controlled; 

personal feelings (such as risk aversion) should always be supported by defensible 

reasons. Again, mathematical competencies play neither an obvious nor a substantial role 

in Gal’s model of probabilistic literacy. 

Beyond, little is published on an explicit description of probabilistic thinking and the 

mathematical competencies that are related to it. Borovcnik (2006) presents examples that 

illustrate probabilistic thinking, Borovcnik (2011) describes some aspects of it in more 

detail, Batanero and Borovcnik (2016) amend the list with higher-order thinking in 

probability. We will extend these considerations and try to synthesise them by relating 

the ideas to the context of risk. 

2.1 Thinking probabilistically: competing intuitions and strategies 

In this section, we synthesise ideas of probabilistic thinking. Borovcnik (2011) described 

five aspects of probabilistic thinking as  

a. probability as index of surprise;  

b. feedback from probabilistic situations is indirect; 

c. the causal alternative to randomness; 

d. the conflict between actions and reflections; 

e. non-probabilistic criteria for decisions; 

We comprise, rename, and reorder these categories of intuitive probabilistic thinking in 

the form of the following abilities: 
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1  the ability to balance between psychological and formal elements (a, e));  

2  the understanding that direct criteria for success are missing (b);  

3  the ability to separate between randomness and causality (c); and  

4  the ability to separate reflecting on a problem and making a decision (d). 

In the following, we describe these abilities and establish connections to risk to 

corroborate how interrelated probability and risk are and how literacy in probability is 

entrenched by literacy in risk.  

1 The ability to balance between psychological and formal elements arises when using 

a personal scale of probability.  

The psychological factors behind human behaviour seem to be of an archetypical 

character (see Section 3). Already Fischbein (1975) noticed that after schooling some raw 

strategies revert as pupils either did not understand the formal elements so that they ignore 

them or re-interpret them to fit to their deep-seated patterns of behaviour.  

Randomness may be linked to surprise in the sense, the more surprising events are, the 

less probable they are judged. With highly surprising events, individuals are inclined to 

think about alternative explanations such as “God’s interference” (the argument in 

statistical tests resumes this pattern). The formal assignments of probability and structural 

elements of dealing with probability are due to an intellectual approach to randomness. 

That can only provide unstable interrelations. Intuitive, simplifying short-cuts are much 

more convincing to the majority of people. With respect to risk, in many situations there 

is a combination of low probability and either high negative impact (negative 

implications) or high win (positive implication). The first part is associated with the idea 

of insurance and hedging, the last marks the ever-growing sector of games of chance and 

betting. In both cases, great emotions are involved, either fear or hopes. We know from 

psychology that there are deep-seated patterns of behaviour that let people flight or fight 

in such situations. There remains hardly a margin for reflective consideration of the 

situation under scrutiny. People tend to use idiosyncratic knowledge and personal views 

and re-interpret the given information and the problem situation using archetypical 

strategies (see Section 3). 

2 The understanding that there are no direct success criteria in random situations.  

The single case of applying any method is not simply repeated. Different from the 

standard situation in mathematics, people refuse (yes, it is emotionally laden) to perceive 

their situation as only one exemplar of many comparable cases. The single case is vividly 

described and it is part of real life. Any consideration of what else can or could happen is 
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much less convincing. In such a single case, with chance, everything is possible. 

However, once people have decided about their approach and strategy, and the outcome 

is known to them, they start to re-interpret the course of action. Depending on their 

character, some claim that whatever they do, they get it worse (if they suffered from 

failure or negative impact), others claim that their specific strategy they had used made 

them win. Of course, a person with an idiosyncratic strategy for the decision can have 

success in a random situation. For example, dream of the numbers in the state lottery, tick 

them, and win. Who would be able to convince that person of the inadequacy of the used 

strategy? This personal re-interpretation of reasons for decisions and coping with the 

outcome of the decisions made is part of our life.  

The theoretical answer usually is to face the single case with the repeated cases and 

compare the success of strategies in the long run. That does not work in most of personal 

situations. The main reason is that there is a different logic in the single case and in 

repeated decisions (see the variation of Kahneman and Tversky’s task in Section 4) and 

the persons perceive their situation as unique. There is also a strong tendency to re-invent 

reality, which overrides monetary calculations for evaluating the rationality of the 

decision in favour of the insurance; Borovcnik and Kapadia (2017) state: 

A common example is the prevalent habit to take out an insurance policy on 

almost every aspect of our life. Part of the success criteria is that the person 

would say that the adverse event did not affect him as he has taken out the 

policy as if the policy would be a protection shield; it is like saying ‘it did not 

rain today because I took an umbrella’. 

 

3 The ability to discriminate randomness and causality.  

The emergence of probability has been accompanied by the twin concepts of randomness 

and causality. Causal approaches deliver a simple mechanism: once it is known how a 

specific cause establishes the effect one can predict the future. In his definition of 

probability, Laplace restricted the field of applications to such cases where we do not 

know the exact causes. While his famous demon would know these causes and therefore 

not need probability, probability remains for those who remain ignorant about the true 

background of the phenomena. The Laplacean demon expresses a primitive determinism. 

Since Laplace, randomness has been introduced into thermodynamics of the 19th century 

as an irreducible element of physical views. The consequences of randomness in form of 

the laws of thermodynamics hold whether such a demon would still know everything and 

thus make causality obsolete. In fact, in the 20th century, theoretical physicists re-wrote 
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physics from a pure random basis eliminating causality (Styer, 2000). However, causality 

comes back by more recent work on quantum mechanics (introducing hidden variables) 

so that a deterministic view on theoretical physics and the interplay between the twin 

concepts is revived (Dürr, Goldstein, Tumulka, and Zanghi, 2004). 

Most people follow a causal approach to the world, based on simple interrelations 

between cause and effect. They have not understood all the changes of paradigms. 

Frequently, results (probabilities) are only acknowledged if a causal connotation can be 

attached to them. One specific example for that is conditional probability, which 

represents various meanings: it may represent timely forward and timely backward 

relations between the involved events (statements); it may represent causal and indicative 

relations. Timely forward may be interpreted causally, backwards in time cannot stand 

for a causal relation. A connection between a status of a disease and the result of a medical 

test has also two distinct directions: a disease may be seen to cause some changes in the 

metabolism so that some biometric values get higher or lower. However, there is no clear 

cause-effect relation between the biometric variable and the disease as the involved 

variables may vary in healthy persons and as other reasons might increase or decrease 

these values. Therefore, the probability to have this disease given that the medical test is 

positive (indicating the disease) lacks a causal interpretation and it can only be perceived 

as indicative. The simple reaction to that is – as may often be seen – either a neglect of 

indicative conditional probabilities or a transfer from the reverse direction, which is 

causally associated. 

For risks, the situation would be simpler if hazards (exposition to potential dangerous 

situations) are causally related to outcome. Usually, there is also a considerable lag in 

time between the exposition to a risk and the occurrence of damage so that incidents of 

damage are not easy to link to the hazard. For the perception of risks, the extremes from 

above are to observe: either the expert’s numbers are taken for granted and over 

interpreted or they are completely ignored as irrelevant and substituted by personal 

considerations. Already children learn fast if there is a direct connection between action 

and reaction so that – in the sense of causal relations – a connection is established and the 

action revised. Such learning follows a causal-like pattern. 

4  The ability to discriminate criteria for reflecting on a random situation from those, 

which may be applied for selecting a decision.  

For example, if the probabilities of two options are the same (and choosing the right 

option would be awarded by a prize), one might still have a strong preference for one. 
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Assume that there is a tendency for people to focus on such information from the context 

of tasks (or to add such information), which allows a direct choice of an action while 

neglecting other information. So far nothing is wrong with it. To conclude that this person 

has an inadequate perception of probability or of the situation is premature. To ask the 

person for reasons, to justify the first choice may confuse him completely as he would 

know that the chances are the same (at the level of reflection). As the situation leaves no 

suitable criterion for a good choice (level of decision), there can be no justification for 

his decision except his preference. Only if this person is prepared to accept a further 

“payment” to be able to freely choose (and select the preferred action), this introduces an 

irrational element into the situation. 

To summarise: the criteria that are good to reflect on a probability value and those to 

select a decision what to do are different and may lead to irreconcilable results. To ask 

for a reason for something, where no reason can be given, may lead to an exchange of 

nonsensical statements (both think that the other one reacts irrationally). For risk, the 

probability might have an acknowledged small value and a decision has to be made (it 

does not suffice to have a reflective estimation of a probability). Yet, the person might 

opt for an inferior decision as for this decision the maximum loss seems much more 

important than anything else (see also Section 4) – any abstract probability cannot balance 

for the vivid impact. 

2.2 Probabilistic thinking – secondary intuitions influenced by learning 

We perceive probabilistic literacy as the ability to use relevant concepts and methods in 

everyday context and problems. We synthesise ideas of Batanero and Borovcnik (2016, 

pp. 20) who included the following components within probabilistic thinking:  

a. Influence of prior probability judgement. 

b. Asymmetry of conditional probabilities. 

c. Theoretical character of independence. 

d. The problem of small probabilities. 

e. Correlation as probabilistic dependence. 

Again, we combine some categories to facilitate an overview and to structure the 

components of probabilistic thinking in the following way: 

1  Theoretical character of probability (c. and d.; combining SJT, APT and FQT 

aspects including the case of small probabilities);  
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2  Conditional probability (a. and b.) based on their dependence on prior judgments, as 

well as the asymmetry of probabilities relating to the direction of conditioning;  

3  Concepts building on probabilistic evidence (e.) such as probabilistic dependence as 

conceptualised by the correlation coefficient or relative odds.  

We expand on each of these aspects below and relate them to risk. 

1 Theoretical character of probability and independence.  

Steinbring (1991) characterises probability and independence as theoretical concept and 

elaborates on the development of suitable task systems to illustrate this theoretical 

character indirectly. Steinbring (pp. 142-144) states: 

As a basic concept, the concept of relative frequency is not free of such 

circularities either. Relative frequencies, or the limit of relative frequencies, 

can be interpreted as probability only if they refer to a stochastic object such 

as a stochastic collective. The definition of such a collective, however, assumes 

that concepts like chance and independence, for instance, are used 

simultaneously. […]  

The concept of probability is thus not just a result of abstraction and 

idealisation of empirical properties, […]. [We] use the term theoretical 

character of mathematical knowledge to denote this dependency of the concept 

and its meaning on the theory’s level of development. In this view, the concepts 

are not simply the foundation of the theory, but conversely, it is only the theory 

which explains and develops the meaning of fundamental mathematical 

concepts. 

 

Spiegelhalter (2014) speaks of probability as a metaphor. Probability is essentially non-

empirical. To perceive the probability of a six on a die as an empirical property and keep 

rolling the dice expresses only a thought experiment. For the casino, the FQT conception 

gives more clues to understand the situation and design a game that will provide a long-

term profit. However, for a player, often the situation is perceived as one-off (SJT, 

including the impact). Many chance situations and other more general situations (like that 

on health) are one-off so that a long-run interpretation as frequencies neither helps nor 

convinces people.  

The repetition of the same experiment is less crucial in the context of games but all other 

incidents are questionable. For example, for a random sample (the basis of information 

in statistical inference situations), the elements have to be drawn independently and with 

the same probabilities from a population. Mostly, random sample is a wish and the term 

is used as a metaphor to indicate the care that has been taken to achieve a random sample. 

However, a check of this assumption can only be done by heuristic arguments such as 

there is no obvious bias to observe in known variables (all the quotas with respect to 

gender, age, etc. are well-represented).  
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In many other situations, applying independence (the other constituent of probability in 

an FQT conception) is an inherent requirement of probabilistic models. When, for 

example, two pieces of circumstantial evidence are applied before court, independence is 

often inappropriately applied (see, e.g., Gigerenzer, 2002).  

For risk considerations in technical environments, an independence assumption is the 

only way for calculating the risk of failure for a system that is built up from several units. 

For example, to deal with redundancy (i.e., several units are built in a device in parallel 

so that the device fails only if all units fail), independence of the failure behaviour of the 

redundant items is a mere assumption (see also Borovcnik, 2006, for an example). 

Frequently, only with hindsight, one may recognise a violation of such an assumption as 

in the Fukushima plant accident of 2011 when all emergency systems were destroyed by 

one and the same cause (the tsunami) as they were hosted in the same building. 

The quality of methods of statistical inference is usually measured by (conditional) 

probabilities: type-I or type-II errors of statistical tests, or confidence levels of confidence 

intervals. Basically, the inferential methods are intended to preserve an FQT conception 

of probability so that these entities are interpreted in a frequentist sense. For a frequentist 

interpretation, however, a repeatable situation of such tests (or application of confidence 

intervals) has to be assumed. A situation, which again reflects a thought experiment as 

such an inferential situation (comprising all steps of modelling including the errors to 

capture the real-world situation) is only repeatable on a production belt in mass 

production of items (where the concepts in fact have their origin). It might be better to 

leave these indices as they are as indices of quality that follow an ordinal (and not a 

metric) scale, void of a frequentist interpretation. 

Connected to the theoretical character are small probabilities. Small probabilities are 

often related to risks and are calculated on the basis of mathematical models involving 

many assumptions and complex calculations. They have no empirical equivalent as, e.g., 

the independence between technical units of a complex system is a mere claim, not even 

an assumption, so that the whole model and the probabilities derived from it have more 

or less the character of a scenario in the sense of what-if. Furthermore, if we had data on 

small probabilities, they would not be sufficient. For a probability of 10-5, a (random!) 

sample of 10000 is not enough to provide a sufficiently precise estimate of this probability 

so that is not possible to validate such small probabilities by data (see Batanero and 

Borovcnik, 2016). Historical approaches such as Borel in 1908 have been to ignore 

probabilities smaller than a threshold (such as 10-8, see Borovcnik and Kapadia, 2014). 



Educ.Matem. Pesq., São Paulo, v.18, n.3, 1491-1516, 2016 1503 

For risk, such small probabilities are not rare. For considering personal risks, a 

comparison of several actions might still orientate. If risks are shared among different 

stakeholders as is done in the health system, the difficulties to share the risk calculation 

increase considerably (see Borovcnik and Kapadia, 2011a, 2011b). If the risks are a 

projection into the future – something that might occur – considerations of risk in society 

get cumbersome. We illustrate matters by an example: The case of bovine spongiform 

encephalopathy (BSE) or mad cow disease is really serious and has aroused much public 

attention in the early 2000’s. However, its background lacks any empirical justification; 

in fact, the prior probability of BSE is very small and it emerges simply from a speculation 

and not from data (see also Beck and Bornholdt, 2010). The difficulty with such societal 

risks is that small probabilities are combined with threats of an enormous damage. On the 

one side, the small probability has no empirical validation, on the other hand, the 

catastrophic scenario for the future raises fears and several stakeholders play with that but 

are also responsible in case that the negative outcome occurs. About the probability of 

many of the ubiquitous risks, we have no reliable data (that would emerge from 

independent experiments) so that we only can speculate about their relevance. 

2 Conditional probability.  

Conditional probabilities are not symmetric. The direction between the condition and the 

statement of interest is essential. While there is a qualitative symmetry in the sense “the 

more the statement A increases the probability of B, the more B increases the probability 

of A”, the quantitative interrelation is not symmetric: there is no such relation as 

)|()|( ABPBAP  ; there is no general rule about the value of the reversed direction of 

the conditional probability )|( ABP  that would relate it to )|( BAP . For example, the 

probability of a positive result of the mammogram T+ is high given that a woman has 

breast cancer (C): e.g., 96.0)|(  CTP . However, neither is the reverse conditional 

probability )|( TCP  equal to 0.96 nor is there a fixed value for it; in fact, this probability 

depends on the so-called prevalence of the disease, i.e., on )(CP .  

It is paradoxical that the probability for a person depends on the subgroup to which it 

belongs and may differ by the decision to which group the person is attributed so that 

there is no probability for that person at all. For example, the probability to have a specific 

disease after a positive medical test (indicating the disease) depends on the circumstance 

whether this person can be perceived as average (as if it had been selected randomly from 
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the population for the medical test) or if it belongs to a subgroup with a special risk (age, 

gender, behavioural risk, genetic risk, etc.).  

For many people, this dependence is motive to re-interpret the probability to conceive 

some disease as a consequence of something they do or are: a smoker might invoke that 

he belongs to a subgroup that is not affected as his grandfather was a heavy smoker who 

became very old and did not die from lung cancer.  

Another consequence is that a systemic consideration whether to introduce a specific 

screening test for prevention of a disease (say mammography for breast cancer) can lead 

to an optimal solution that even would harm several individuals (by the collateral 

damage). What is good at the systemic level needs not to be optimal for individual 

persons. For example, the subgroups of 40 to 50 year old women as well as the 60+ 

women might not have a benefit of the screening: for the first subgroup, the false positives 

would lead to too much harm and damage while for the second group the detection of 

cancer at an early stage would lead to an unnecessary operation as the cancer in situ 

(sleeping) would not have grown so fast that it would have affected the woman’s life (as 

cancer does not grow so fast in older people). 

Furthermore, conditional probabilities can be interpreted as having causal and random 

perceptions. The direction between events in )|( BAP  may be interpreted by time (earlier, 

later) by cause (cause, effect), or by indication (symptom, status). Depending on such 

connotations, the interpretation and the acceptance of the values of these probabilities 

may vary and be unstable in a person’s perception. It is a great step forward in statistical 

literacy to recognise that conditional probability covers all these aspects (for a thorough 

analysis of the concept of conditional probability, see Borovcnik, 2012). It is essential for 

probabilistic thinking to relate the reversed conditional probability to the prior probability 

of the various states (here to have or not to have breast cancer). 

To evaluate risks, it is much easier to compare relative risks, or relative outcomes; in the 

case of mammography, to compare the scenario of introducing the scheme for as many 

women as possible with the alternative of not introducing it. On the other end, there is the 

decision of a woman (of a specific subgroup such as age) to undergo screening or not. 

However, all the collateral damage that is possible has to be included in such a balanced 

calculation: effect of biopsy, unnecessary operation, follow-up what would happen if a 

positive test would be neglected (would the cancer really grow, at which speed, etc.). 

Such data are not provided and partially will just never be available so that a rational 

deliberation of the risks seems difficult. 



Educ.Matem. Pesq., São Paulo, v.18, n.3, 1491-1516, 2016 1505 

3 Concepts such as correlation building probabilistic evidence.  

Causal interrelations are easy to understand and accept. However, in the real world the 

connections between variables are less clear and tight. Correlation (and association) have 

been developed to measure a kind of degree of dependence, a non-causal dependence. 

The relationships that are modelled are described by mathematical functions with no 

intention to state that there is a functional or a causal relation between the variables under 

scrutiny. The historical context of correlation was heredity and the desire to prove that 

intelligence is hereditary (see Batanero and Borovcnik, p. 152). If tall fathers have tall 

sons and shorter fathers have shorter sons and if such a relation is empirically found, then 

it remains to have a convincing concept to measure that co-relation. Obviously, Pearson 

and Galton had to investigate body length rather than intelligence as at 1870 there have 

not been such construct variables to conceptualise intelligence. Correlation was designed 

to measure the strength of the connection between heights of fathers and sons in order to 

prove heredity of intelligence.  

If a correlation coefficient between variables is high, this does not show causal 

interrelations between these variables. It only indicates that connections between the 

variables may be found by a well-designed empirical study to detect either confounding 

effects (other variables blurring the co-relation) or to corroborate a hypothesis between 

the variables under scrutiny. It is very subtle how correlation (association) measures 

interrelations that are beyond causal or mathematical connotation. The complexity asks 

for simplification; rules of thumb would state that a correlation larger than 0.30 is at least 

intermediate, larger than 0.70 is strong. Thus, if a correlation coefficient is higher than 

0.70, this is “strong evidence that …”? Furthermore, there are many investigations done, 

which are not well-controlled. They are prone to encounter confounding variables, for 

which no data have been collected. However, correlation can be increased, generated, or 

even changed in sign by other variables; one famous example for such phenomena is the 

Simpson paradox (see also Batanero and Borovcnik, 2016). If one has no data about such 

other variables (that are potential confounders), no such follow-up investigation is 

possible. 

For risk issues, again, matters accumulate as generally hazards (potential causes of an 

adverse potential event) are not easy to measure and are often only open to investigation 

after the usually rare (!) adverse event has already happened. If the investigator would 

wait in an experiment for this event, it would never happen. That means, one has not the 

opportunity to design a balanced, randomised experiment (exposing the ones to the hazard 
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and controlling the others not to be exposed to the hazard, which would also be precluded 

for ethical reasons). Remains that one has only a retrospective analysis by correlation or 

by different odds for the hazard that are – like reversing cause and effect – reversed to 

conclude from a higher exposition to a specific hazard (heavy smoker, e.g.) among those 

who suffer from the adverse event (lung cancer) that the hazard (heavy smoking) is 

“causing” lung cancer: “there is strong empirical evidence that heavy smoking causes 

lung cancer”. That does not convince heavy smokers.  

With risk, the complexity of analyses and involved concepts again asks for simplification 

and from the not well-understood results of empirical investigations only those are 

“accepted” that fit to the personal needs of the individual or the benefit of the institution. 

That is, in health issues, for example, the stakeholder of the medical institutions urges for 

the installation of screening schemes for various diseases especially early detection for 

cancer while the individuals react to fear or carelessness rather than a deliberation and 

weighing of options and if they start to weigh their risks they do not get the required 

information. Remarkably, the health institutions do not provide more sophisticated 

recommendations (different for the various subgroups) and still underplay the role of 

adverse side effects of the screening measurements as the effects will only turn out much 

later (they may turn out after more than twenty years). 

3. Misconceptions and heuristics (strategies) in probability situations  

We refer to milestones in research on misconceptions and classify misconceptions 

intending to relate them to archetypical general strategies of human beings. 

Piaget and Inhelder (1951) is the earliest study on children’s understanding of probability. 

Their work focused completely on the APT theory of probability using tasks with 

traditional devices (spinners, urns) with a small number of children in a longitudinal 

study. Young children, they found out, cannot distinguish between certainty and 

uncertainty and adequate handling with probability is possible only if the children have 

reached the stage of formal operations (after age 12). Fischbein (1975, 1987) based his 

approach on FQT and SJT and showed that positive incentives in the learning process 

would bring the pupils to a deeper understanding, especially when the barrier of verbal 

understanding is lowered. In general, Fischbein noticed that pupils may decrease in 

understanding probability in favour of a primitive causal understanding; he explained this 

phenomenon by the focus on causality in science and schooling.  
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The next major development was by Kahneman and Tversky (1972). Their extensive 

experiments with adults revealed serious deficiencies, which they explained by ad hoc 

heuristics. The initial work also showed a weakness in dealing with Bayes problems 

where people tend to ignore base-rates. Their research has found that private conceptions 

are fragile; people change their views by various cues in the tasks. Many researchers have 

connected to the paradigm of Kahneman and Tversky. In-line with Batanero and 

Borovcnik (2016), we describe some of these strategies (heuristics) and relate them to 

archetypical ways of behaviour. That may also explain why such strategies are so robust 

to teaching so that soon after leaving education these strategies dominate the way the 

majority of people think and act rather than they would use ways of thinking alongside 

the concepts that they have learned. 

Availability. Probability is intuitively approximated to the ease of recalling relevant cases 

from memory. However, recording is biased (e.g., if adverse, an event is more likely to 

be registered) and the recall is biased (e.g., if emotionally laden, an incidence is more 

likely to be recalled). Archetypical here is the unstructured way of recording and recall, 

free of a neutral framework. We claim to use rational frames but is seems that we are 

much stronger associative thinkers than we would confess or like to be. 

Equiprobability bias. According to this bias, people tend to judge cases as equally likely. 

Lecoutre (1992) was one of the first to name that tendency in people. The idea of fairness 

meets a deep desire in human nature (equity, equal chance); to attribute equal probabilities 

is another way to express fairness. The other way round, randomness is used to make a 

decision fair to all that are involved. From ancient times, we see a tendency to get rid of 

the responsibility for a decision by handing it over to a random device, which in turn 

corresponds to God’s decision (Borovcnik and Kapadia, 2014). Using randomness seems 

to have a great overlap with being fair so that randomness is often erroneously matched 

with equal probabilities. 

Control of the future. Probability deals with uncertain situations relating to the past and 

to the future. To predict the future (and to decrease the uncertainty of it) seems to be a 

basic archetype of thinking that is met by models of causal connections as investigated in 

physics. Probability is a competing view on such situations, which is less direct and 

convincing. The history of science is signified by a mutual relation between causality and 

randomness. A different approach to foresee the future is to explore God’s will by 

divination. Konold’s (1989) outcome orientation fits to this deep human desire to control 
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the future: people reinterpret given probabilistic information as a direct tool to predict 

(with certainty) the exact outcome of the next experiment.  

Representativeness. The probability of a single outcome is equated to the probability of 

the group of similar outcomes (of which the specific outcome is a representative member). 

According to an archetypical human desire, group features are transferred to individuals 

that belong to that group. Fashion is one example; group features may let the individual 

member benefit from the group (team spirit, e.g.). This “group transfer” relates the 

representativeness heuristics to an archetypical strategy. The following example is from 

Batanero and Borovcnik (2016, p. 106) 

For the state lottery, some combinations of numbers have many similar 

combinations and “belong” to a large group; others have only a few and belong 

to a small group. In selecting one, some people believe that it increases their 

chances to win if they take a combination from a large group as if it would 

inherit the greater probability from the group, to which it belongs. […] 

However, in doing so they ignore that they win only if their specific 

combination is drawn. 

 

Anchoring. Probability judgements are influenced by additional (possibly irrelevant) 

information given or highlighted recently. Anchoring is a fast-and-frugal way for 

processing information without analysis, which helps to react faster than others. And 

generally, the first determines the pace whether this is good or not. To be the motor of 

action seems to be more important than to analyse situations in a lengthy manner. This 

coincides with the capacity of leading a group and the leadership would get doubtful if a 

reaction takes too long.  

Patterns. People perceive regularities, geometric or arithmetic patterns, or the cycle of 

the sun and generalise these patterns. It comes to no surprise that people focus so much 

on patterns of random sequences and draw awkward conclusions from them. If the 

sequence is random, any pattern may be seen if the series is short. The randomness means 

that specific patterns do not occur. With hindsight, a pattern may be recognised and taken 

as proof that randomness is violated. However, it is a difference to notice a pattern in 

given data and to formulate a pattern and then observe it in data.  

Personal experience and information. People like to speak about individual cases and 

draw upon their personal experience. That anecdotal information is vivid compared to the 

general distribution of data about a (random) variable. The difficulty may be located in 

the point of time when to use personal information and when statistical information is 

better. There is no general rule for switching and, by no means, is statistical information 
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always relevant for a person as it might belong to a special subgroup (e.g., low or high-

risk group) or it might differ from the collective.  

4. Probability and utility 

The experiments of Kahneman and Tversky (1979) show how people are influenced in 

their perception of probability by the impact of the outcome. We discuss and re-interpret 

the experiments and add a long-run version to illustrate the logic of risk. We complete the 

exposition on risk by an example of Borovcnik (2015) to highlight the criteria that are 

useful for deciding between several options. 

In experiment 1, Kahneman and Tversky (K/T) let people choose between options a1 ($ 

1000 for sure) and a2 ($ 2500 or $ 0 with probability ½ each); experiment 2 compared the 

same amounts but with negative sign for losses. In the “winning” situation of experiment 

1, people preferred the 1000 (a1) while in the “losing” situation of experiment 2, they took 

(a4). However, according to the expected value of the options, they should choose options 

a2 respectively a3 (cells in grey in Chart 1, with an expected value of 1250 and –1250). 

Chart 1: Win and loss of the options in both Kahneman & Tversky experiments, its reformulations, and 

the repeated single decisions version of it. 

Source: Kahneman and Tversky (1979) 

 

Kahneman and Tversky became famous for their interpretation of the deviation from the 

optimal choice: in winning situations, people are risk-aversive while in losing situations 

they are risk-seeking.  

We explain the behaviour with a different view (experiments 1* and 2*): in experiment 

1*, the person already has the amount of 1000 (do nothing, option a1
*). The additional 

amount to win is only 1500 but the person faces the risk to lose all. It may not pay for 

many persons to risk the fortunes (of 1000) for the little extra. A person that has already 

 K/T view A different view Many single decisions 

 Experiment 1: Experiment 1*: Experiment 1s: 

F
u

tu
re

 [
$

] Option a1  Option a2  a1
* Do nothing  Option a2

*  Option b1  Option b2  

1000 
2500 with ½ 

0 with ½ 
1000 

For sure 

1500 with ½ 
1 

2.5 with ½ 

–1000 with ½ 0 with ½ 

 Experiment 2: Experiment 2*: Experiment 2s: 

F
u

tu
re

 [
$

] Option a3 Option a4 a3
* Do nothing   Option a4

*  Option b3 Option b4 

1000 
2500 with ½ –1000 

For sure 

–1500 with ½ 
–1 

–2.5 with ½ 

0 with ½ 1000 with ½ 0 with ½ 
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1000 has to be paid more to seek the risk to lose all. That explains the observed behaviour 

much better by reference to utility. In experiment 2*, the person has debts of –1000; the 

person wants to get rid of these debts and, therefore, seeks the risk. It does not matter that 

by the end, he could have even –2500 as debts (this does not seem to be really worse than 

the initial situation); he seeks the chances to get to 0 balance. Again, this explains the 

observed behaviour much better as one can see that it makes sense to seek the risk in the 

second experiment but to avoid the risk in the first. 

Much worse. If we split the decision in 1000 single decisions as is done in the s-version 

of the experiments (last column of Chart 1), the clear optimal decisions coincide with the 

best decisions in the original experiments according to the expected value criterion. 

Option b1 delivers 1000 if applied a thousand times. With b2 we can calculate the 

probability to get more than 1000 (i.e., win more than 400 times), which is 1–10-10, which 

is nearly certain. That means if a person makes comparable decisions repeatedly, the logic 

changes. What is even more striking, the separation between the options is much easier. 

There is nearly a probability up to certainty that the chosen decision is better than the 

other one while the one-off decision always makes difficulties. 

The following task from Borovcnik (2015) highlights the risks inherent in a decision 

under uncertainty: Find an optimal number of copies to produce for a new weekly journal. 

The demand depends on random factors; the distribution of it is supposed to be 

sufficiently well known by market research and is displayed in Chart 2, which also refers 

to the production cost. The price of one issue is $ 1.60. How many copies should be 

produced if there is only an option between aj = 1000, 2000, ..., and 5000? 

Chart 2: Distribution of the demand and the cost of the several options related to the number of copies. 

Source: Borovcnik (2015) 

 

For each decision, we can calculate the probability distribution for the profit. For aj = 

2000, we can sell all of them (per 1.60) if the demand is greater equal 2000 (which has a 

probability of 0.60; if we subtract the cost of 2200, we get a return of 1000; however, 

with 0.40 we sell only 1000 so that we lose –600. We take a risk of such a loss; in 

exchange for that, we have an expected return of 360. If we want to avoid the risk, we can 

investigate what happens if we only produce 1000 copies. However, this does not seem 

Demand di 1000 2000 3000 4000 5000 

Probability pi 0.40 0.30 0.20 0.06 0.04 

No of copies aj  1000 2000 3000 4000 5000 

Cost C(aj) 2000 2200 2400 2600 2800 
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to be attractive at all as we would be able to sell only 1000 copies, which leaves us with 

a sure loss of –400 whatever the demand will be.  

On the other hand, if we produce 3000, then we risk an even greater loss of –800 in case 

that only 1000 copies are sold, which happens with probability 0.40! Yet, in the other 

cases, we have a net return of 800 (2000 copies sold) and 2400 (3000 copies sold). That 

makes all in all an expected return of 640, which is much higher than for 2000. See 

Borovcnik (2015) for a matrix representation of all the calculations and the details. The 

decision for 3000 copies yields the maximum for the expected net return. The attempt to 

minimise maximum loss, on the other hand, leads to 1000 copies as the best decision; a 

decision that brings a loss whatever the demand will turn out. 

There are several things to learn from this task: Firstly, the best decision depends on the 

criterion that is used. Useful criteria are the expected value of a decision and the 

maximum loss of a decision; the first is to maximise, the second to minimise. Secondly, 

sometimes, a decision is clearly inferior. Thirdly, to win more “on average” asks to accept 

a higher risk in the sense of facing a potentially higher loss; the probability of such losses 

need not be negligible as our task shows. The features of risk discussed here have a 

general validity. 

5. Clarifying the purpose rather than the character of probability 

To make probability meaningful is a challenging task for teaching. Too many diverging 

conceptions dominate the way students think, which may lead a deliberate discussion on 

the features of probability to contribute to confusion rather than it could clarify the nature 

of the concept. Spiegelhalter and Gage (2015) suggest using metaphors to carry the 

meaning. Borovcnik and Kapadia (2017) focus on paradigmatic issues where probability 

can be used rather than clarifying what probability really is. They state: 

The axiomatic foundation left the true character of probability open with 

regards its application, as in other areas of mathematics. For example, a line in 

geometry may be straight as in the plane or curved as in space. Perhaps it helps 

to understand the concept of probability and probabilistic thinking by 

analysing the purpose of applications of probability, i.e., highlighting the key 

features of specific situations where probability is used to solve a problem.  

 

According to Borovcnik (2006), probability can serve the following five purposes. 

1  To make decisions under uncertainty transparent.  

To understand a simple probability statement P(A), it takes quite a lot of conceptual 

understanding. To evaluate such a probability in a specific application, not only one has 
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to understand the character of probability but also to find a value that fits to the situation. 

The information on this probability may be FQT-based, it may be derived on equally 

likely cases in the sense of APT, or it may be arbitrarily guessed (it should form some 

kind of knowledge so that it could be placed under SJT). Regardless of the character of 

probability, once one has a value for it, it could be used for making a decision transparent. 

For example, in taking out full-coverage insurance for the car, one has to evaluate the 

various possibilities (extent of damage) and their probabilities (see Borovcnik, 2015). If 

only no accident and total wreckage are considered in a first model and if these two 

possibilities are compared by probabilities, then an expected value of the decision of 

taking no insurance can be calculated. This value can then be compared to the premium 

in order to find the better (less costly) option. The benefit of this approach is that the 

influential parameters become transparent: if the probability of total wreckage is 0.05, 

then taking out the insurance is better, if it is 0.01, no insurance is better. The final 

decision gets transparent.  

2  To express qualitative knowledge by probabilities and update it by data.  

Probabilistic information is always temporary. If it is qualitative (SJT), then data should 

be sought and integrated into a revised judgement of the probability under scrutiny. The 

Bayesian formula is the proper algorithm for calculating such updates. The example of 

the medical diagnosis paradigmatically shows the inherent features of judgments under 

uncertainty: a prior knowledge in the form of a probability (for a disease) has to be 

updated to provide a posterior probability when the result of a medical diagnosis becomes 

known. For a decision what to do, it is essential that the errors are somehow controlled. 

To understand the rationale of diagnosing, to judge the used method of diagnosing, a 

deeper understanding of the formalism and the character of its components is essential. 

Only this gives a clear view on what empirical evidence is and that indicative knowledge 

can be used for improved judgements. 

3  To judge risks.  

To judge risks requires to combine the probabilities and the implications of the outcomes 

(be it measured in utility or in money) in order to derive an expected value of a risk. While 

it is difficult to attach a proper meaning to this absolute value, the comparison of the risk 

of two actions would reveal relevant differences. Anyway, for a decision, it suffices to 

know which one is better (relative to some further assumptions) regardless of the value 

of the risk (see Borovcnik, 2015). While it is easier to compare risks than to interpret a 

single risk, there are still more complications: first, comparisons need additional criteria 
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(expected value is only one); second, people are not consistent in such comparisons as 

the experiments of Kahneman and Tversky have shown.  

4  To use resources better.  

If we use a technical device for a mission to a comet, a reliability calculation might reveal 

that its lifetime does not suffice for the whole time of the mission. We could think of 

taking two or even more. How many we take with the spacecraft depends on the weight 

we can allow for and on the cost. There should be a balance between a large reliability 

that the device is functioning throughout the mission and the cost of redundancy. We can 

use probability calculations based on qualitative initial values of the probability of one 

device to survive the mission to find a solution. Another example is to sell more tickets 

than one has places as airlines do; for details, see Borovcnik and Kapadia (2017). 

Borovcnik and Kapadia (2011c) give a series of examples where probability can be used 

to find a better solution for a practical problem by introducing a probabilistic perspective 

into the model. 

5  To fix prices in the exchange of certainty and uncertainty between two partners.  

The exchange of money and security seems to provide a basic paradigm for probability. 

Insurance is signified by the exchange of two different situations (for details see 

Borovcnik, 2015). The insurance company has no insecurity about the future (potential 

accidents) of a person’s car while the person faces an unsecure future (such as an 

accident). The insurance contract implies that the two stakeholders change their position 

with respect to insecurity: the company takes over the monetary impact of a potential 

accident; the person is freed of the possible financial implications of an accident. The 

exchange, however, costs money. Using probability allows us to fix a price for the 

exchange of uncertainty for certainty by a contract. 

Conclusions 

Spiegelhalter (2014), a renowned specialist in risk, agrees that probability is difficult: 

I often get asked why people find probability so unintuitive and difficult. After 

years of research, I have concluded it’s because probability really is unintuitive 

and difficult. 

One can find guidelines for risk in Borovcnik (2015) or Borovcnik and Kapadia (2017):  

Historical struggles provide a valuable orientation. While empirical research 

about how people think and how successful teaching programmes have been 

helpful to improve teaching plans, we should not lose sight of key concepts 

and strategies from the past. One key lesson from history is that probability has 

always been a pluralistic concept and has drawn its meaning from the interplay 
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of its interpretations. Simplification is a basic ingredient of teaching. However, 

sometimes it may undermine the complexities for certain concepts. The rather 

narrow focus on the frequency interpretation ignores some facets of 

probability. Simulation provides a solving technique but does not help to model 

a situation and discourages probabilistic thinking. 

 

To consolidate probabilistic education, the ten assertions from Chance Encounters 

(KAPADIA and BOROVCNIK, 1991) still provide an essential orientation. From the 

perspective of risk, we should note that people tend to simplify matters once they get too 

complicated. Teaching approaches meet the challenge to build probabilistic literacy and 

stochastic thinking without going too far in the educational compromise to replace a 

theoretical concept of probability by material visualised icons. After all, probability 

literacy is tightly connected to literacy in risk. 
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