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Abstract 

This paper discusses praxeologies available at different levels of schooling in view of a 

problem, which permits multiple solutions ranging from elementary to more advanced 

mathematical approaches. Solutions of the problem produced by mixed groups of K-12 

teachers included numerical, pictorial and algebraic methods, and allowed observing 

possible paths within a finalized activity of study and research.  They also gave some 

insights regarding teachers’ readiness to support the continuity of students’ praxeological 

development, and more generally, the potential within teachers’ educational backgrounds 

to pursue the new paradigm of questioning the world. 

Keywords: Teacher education, Praxeological development, Mathematical 

problems with multiple solutions. 

Résumé 

Ce texte discute les praxéologies disponibles à différents niveaux de la scolarité pour 

résoudre un problème qui permet des résolutions multiples, depuis des approches 

élémentaires aux plus avancées. Les résolutions proposées par un groupe mixte 

d’enseignants de l’école élémentaire jusqu’au lycée ont employé des méthodes 

numériques, graphiques et algébriques, et permettent d’observer les parcours possibles 
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d’une activité finalisée d’étude et de recherche. Elles nous laissent aussi percevoir la 

capacité des enseignants pour soutenir la continuité du développement praxéologique des 

élèves, et plus généralement le potentiel résultant de la formation des enseignants à 

poursuivre le nouveau paradigme du questionnement du monde. 

Mots-clés: formation des enseignants, développement praxéologique, problèmes 

mathématiques aux solutions multiples. 
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Detecting and sharing praxeologies in solving interconnecting problems: some 

observations from teacher education viewpoint 

The paradigm of questioning the world. 

While mathematical content is present at all levels of education, mathematics 

“suffers cultural rejection” and the majority of “people flee away from the subject as long 

as they no longer obliged to do it.” (Chevallard, 2012). Chevallard proposed that the cause 

of this phenomenon is the dominance of the didactic paradigm of “visiting monuments”, 

where curriculum is defined in terms of work O that students need to study, while they 

often have little motivation to do so, particularly when they see no relevance of 

mathematics to real life and no connections within the subject. He put forward the new 

paradigm of “questioning the world”, in which the work O, (and mathematical 

praxeologies, consisting of praxis blocks  and logos blocks , that is, theory justifying 

related practices ), is studied in the consequence of inquiring into some deliberately 

selected questions Q. These questions produce motivation for the learner and thus 

generate activities and even programs of study and research within which their individual 

study and research path is not defined and not known ahead of time. 

Chevallard (2011) distinguishes between open and finalized programs of study 

and research. In the latter case the questions Q are selected in order to give students an 

opportunity to meet specific mathematical praxeologies, still leaving some freedom for 

the choice of possible study paths. While the idea of using guiding questions is not foreign 

for teaching of mathematics, Chevallard (2012) warns that “in too many cases, the so-

called inquiry-based teaching resort to some form of ‘fake inquiries’, most often because 

the generating questions Q of such inquiry is but a naïve trick to get students to meet and 

study work O, that the teacher will have determined in advance”. 

For the open programs of study and research, neither answers nor methods are 

known in advance. This vision requires of students “to be receptive towards yet 
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unanswered questions”, “be ready to study from scratch” and have “the capacity to locate 

resources and the knowledge necessary to take advantage of them”.  Since the studies 

may not be limited to a single domain of human knowledge, the following question is 

essential for the learning of mathematics: “What are the mathematics of the matter?”  

Depending on mathematical background, available mathematical praxeologies 

and the degree of creativity of the inquirer, the answer to the above question could be 

attempted at different levels of sophistication and by various means including explicit 

observation, physical experimentations, pictorial, algebraic or pure logical reasoning. 

Several ideas may contribute to the answer and thus produce meaningful connections, 

including the ones within mathematics itself.  

Consistent with the idea of gradual mathematics curriculum development, there 

exist different praxeologies within different educational institutions such as primary, 

secondary and tertiary schools.  In principle, each level of education prepares the learner 

for the following one, however the links and relationships between them sometimes are 

not as obvious. For example, praxeologies that are present at the primary level are not 

necessarily a subset of the ones found at the university level, while the processes of 

explicit observation and physical experimentation occur at the levels beyond the 

elementary one. Despite the theoretical existence of links between different educational 

institutions, teachers practicing at just one level may forget about various connections 

with both previous and forthcoming material. This concern about connectivity of the 

subject in its teaching in view of students’ praxeological development, could be addressed 

particularly by the approach presented in the next section.  

Problems with multiple solutions and interconnecting problems. 

If what Chevallard (2012) called ‘fake inquiry’, defines the work that needs to be 

studied with fake or no motivation at all, ‘real inquiry’ naturally allows several passages 
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to come to an answer. In this respect problems with multiple solution paths could be 

viewed as a proper didactic tool for training students.  Indeed, any solution defines the 

work O that students could meet during their activity of study and research with the view 

that there exist a broader work O' for a given problem and thus work O ⊂ O' has a potential 

to be extended. Observing learners involved in a finalized activity that allows multiple 

solution paths might give an insight of what potentially could happen in an open program 

of study and research.  

The value of tasks that allow multiple solutions has been recognized in 

mathematics education (Leikin & Levav-Waynberg, 2008; Sun & Chan, 2009). Inspired 

by other works on multiple solution tasks and own practices, Kondratieva (2011) 

proposed to consider a special class of such tasks, namely, interconnecting problems. The 

latter are defined as problems that obeys the following conditions: (1) allow a simple 

formulation; (2) allow various solutions at both elementary and advanced levels; (3) may 

be solved by various mathematical tools from different mathematical branches, which 

leads to finding multiple solutions, and (4) can be used in different grades and courses 

and understood in various contexts. 

 Within problems to solve that call to find an answer, problems to prove the 

answer, play a special role because many aspects of proofs such as “explanation, 

exploration, justification of conjectures and definitions, empirical reasoning, 

diagrammatic reasoning, and heuristic devices” (Hanna & De Villiers, 2012, p. 3) are in 

the core of mathematical thinking. Proofs essentially constitute the logos that corresponds 

to mathematical practices. The ability of students to prove is a developing skill “beginning 

with the perceptions, actions and reflections”, and building on “physical, spatial and 

symbolic aspects of mathematics” eventually enabling the learner to possess “more 

sophisticated thinkable concepts that have a rich knowledge structure” (Tall, 
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Yevdokimov, Koichu, Whiteley, Kondratieva & Cheng, 2012, p. 45). Consequently, 

theoretical part of praxeologies develops along with students’ engagement in more 

sophisticated practices from proper reflection on them and the desire to “know why”, 

converging finally to logical necessity of certain conclusions. 

Interconnecting proving problems may be used as means to identify and compare 

praxeologies specific to different grade level, including verbal, visual, empirical, generic, 

inductive, symbolic and deductive reasoning. Influenced by daily practice, primary and 

secondary teachers might have distinct views on the appropriate ways and means of 

mathematical argumentation (Lin, Yang, Lo, Tsamir, Tirosh, Stylianides, 2012). Teachers 

dealing with very young students use little symbolism and may be reluctant to accept 

other modes of argumentation (Simon & Blume, 1996). In contrast, secondary teachers 

often reject verbal and visual proofs as being invalid (Biza, Nardi & Zahariades, 2009) as 

they believe that all proofs must be formal algebraic (DREYFUS, 2000).  

The goal of this paper is to discuss praxeologies available at different levels of 

schooling in view an interconnecting problem that was offered to K-12 teachers, and get 

some insight regarding their readiness to question the world.  

Data Collection and Findings 

Since 2007 I had been teaching a graduate course at Memorial University 

(Canada), designed for in-service K-12 teachers and focusing on mathematical thinking 

(Mason, Burton & Stacey, 1982). One assignment is to discuss given interconnecting 

problem in groups. Participants are required to construct at least 3 different solutions at 

various levels of sophistication. The instructor produces a summary of all solutions and a 

whole class discussion follows aiming at re-connection of different areas of mathematics 

in terms of the problem in hands. Randomly formed groups combine primary and 

secondary teachers registered for the course. I hypothesized that the mixed group 
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discussions would allow the participants to learn from and reflect on each other’s 

praxeologies and beliefs (Kondratieva, 2013). 

The following is an example of an interconnecting problem: Fred runs half the 

way and walks the other half. Frank runs for half the time and walks for the other half. 

They both run or walk at the same speed. Who finishes first? Explain your answer (Mason 

et al, 1982).  

The data was collected in five different years. The class size varied from 12 to 18 

students. Participants’ on-line discussions, final solutions and individual journals have 

been analyzed. The types of solutions proposed by teachers varied from numerical 

examples and actual experimenting with walking and running to various graphical 

representations, algebraic and pure logical derivations. A possible scenario within one 

mixed group of top students consisted from the following stages: (1) answering the 

question using concrete numerical values; drawing corresponding graphs, reasoning with 

them and agreeing upon the answer; (2) expressing concerns about the validity of these 

methods to reach the conclusion and introducing a partly algebraic approach; (3) 

searching for algebraic expressions for total time in each case; comparing two expressions 

for time; (4) claiming that the algebraic approach is  “the most certain but least human” 

and calling for logical/structural reasoning.  

Some groups’ study paths contained an evidence of connections between the 

secondary school approaches (algebraic, graphical, logical) and primary level activities 

(experimental and numerical), however, this required presence in the group of a good 

student familiar with secondary school practices and a good student with similar 

knowledge of the primary level. Some groups focused on concrete approaches (see 

Solution 1 below), treating examples with different sets of values for the length of race 

and speeds of running and walking as being different solutions. On the other hand, some 
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groups of secondary teachers (10-12 grades) had hard time to go beyond an algebraic 

approach (Solution 2) and saw little value in looking at concrete numerical situations or 

their visual representations.  

Praxeologies available at different levels of schooling 

Analysis of two typical solutions and related praxeologies 

Let us take a look at the two most typical solutions proposed by the teachers.  

Solution 1. Consider the following example. Let the speed of the running be 4 

miles per hour and the speed of the walking be 2 miles per hour. Let Frank run for 2 hours 

and walk for 2 hours. The total distance he covers in 4 hours is 4×2+2×2=12 miles.  Then 

the time, that Fred needs to cover the same distance, is  
6

4
+

6

2
= 4.5 hours.  Thus, Frank 

finishes first.  

Solution 2. Let d be the length of the race and 𝑣1 ≠ 𝑣2 be the speeds of running 

and of walking respectively. Since Fred moves with each of the speeds an equal amount 

of distance, 
𝑑

2
,, we have  𝑣1𝑡1 = 𝑣2𝑡2 =

𝑑

2
, and so his total time of walking and running is  

𝑡1 + 𝑡2 =
𝑑

2
(

1

𝑣1
+

1

𝑣2
) =

𝑑

2
(

𝑣1+𝑣2

𝑣1𝑣2
). Let Frank move with each of the different speeds an 

equal amount of time, t.  Then we have 𝑣1𝑡 + 𝑣2𝑡 = 𝑑, so his total time is 2𝑡 =
2𝑑

𝑣1+𝑣2
.  To 

compare the times we look at the ratio  
𝑡1+𝑡2

2𝑡
=

(𝑣1+𝑣2)2

4𝑣1𝑣2
. One can observe that  (𝑣1 + 𝑣2)2 −

4𝑣1𝑣2 = (𝑣1 − 𝑣2)2 > 0, and so 
𝑡1+𝑡2

2𝑡
> 1, that is the time of Frank is always less than the 

time of Fred. 

Let us single out theoretical elements available at each level and related to the 

above solutions. At the Elementary (pre-algebraic) level, the theory required in this 

problem consists in defining (constant) speed as a ratio of the distance to the time spent 

to cover this distance (given as numerical values). This requires attention to the units of 

measurements: if du is a distance unit (e.g. km or mile) and tu is a time unit (e.g. hour, 
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minute, second) then the speed will be measured in the compound unit su=du/tu. 

Rearranging numbers is the definition of speed, we see that the distance is a product of 

speed and time, and time is a ratio of distance and speed. Solution 1 gives an example of 

reasoning with concrete values. From the mathematical point of view, students perform 

arithmetic operations with numbers and justify their actions referring to facts such as 

“division is the inverse operation to multiplication”.   

This concrete reasoning may be supplemented by a picture (see Figure 1), where 

speed of each sportsman is plotted as a function of time. Here we have another theoretical 

element at the pre-algebraic level: if one side of a rectangle is equal to a constant speed 

and another side is equal to the time traveled with such speed then the distance travelled 

is represented as the area of this rectangle. The length of a race travelled with two different 

speeds is represented by the area of two rectangles. 

Figure 1 

Speed as a function of time for Frank’s and Fred’s courses. 

 

In our problem, rectangles representing Franks’ journey have equal width (along 

the time axis), while rectangles representing Fred’s journey have equal area.  The 

following observation is an attempt to generalize the situation available at the elementary 

level: Assuming that the running speed is greater that the walking speed, the rectangle 

which represents running will always be taller than the rectangle that represents walking. 

Since in Frank’s case both rectangles have the same width, the taller rectangle will always 

be bigger (Fig 1, left). When we redistribute the area from the bigger rectangle to the 
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smaller one (in Frank’s case) to make the areas of the two rectangles equal (in Fred’s 

case) the width of the part that we remove is always smaller than that of the part we add, 

so the time of Fred will always increase compare to the time of Frank (Fig 1, right). 

Figure 2 

Distance as a function of time for Frank’s and Fred’s courses. 

 

Figure 2 utilizes another theoretical component and its geometrical representation: 

For a constant speed, the graph of the distance as a function of time is a straight line with 

the slope equal to the speed. This pictorial representation again illustrates the fact that 

Frank finishes first. These graphical approaches along with logical attempts to generalize 

concrete numerical situations lead to the following structural insight: “Frank runs for over 

half of the course, while Fred only a half. Since Frank runs a further distance than Fred, 

he will finish the race first.” We conclude that working with concrete numbers even at 

the elementary level may lead to solutions that fully justify the answer.  

At the secondary (algebraic) level, working with concrete numbers no longer 

suffice for the theory, which now consists in algebraic manipulations of formulas. At this 

level working with concrete numbers rather belongs to students’ praxis, while the 

algebraic approach is a way to build a theoretical explanation based on this praxis. 
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Solution 2 gives an example of an algebraic approach available at the secondary school 

level. One surprising discovery can be made by analysing this derivation: Regardless 

whether the running speed is less than or greater than the walking speed, the answer will 

be the same.   

The continuity of praxeological development 

At the tertiary level, algebraic calculations become the field of praxis, while 

theory may include the reference to general inequalities such as AM > GM > HM, where 

AM, GM and HM stand respectively for arithmetic, geometric and harmonic means of a 

set of (n ≥ 2 ) distinct numbers.  In this case the problem situation itself could be 

generalized in the following way. Let d be the total distance. Suppose Fred moves with 

each of n different speeds an equal amount of distance, 
𝑑

𝑛
, while Frank moves with each 

of n different speeds an equal amount of time, t. Then for Fred we 𝑣1𝑡1 = 𝑣2𝑡2 = ⋯ =

𝑣𝑛𝑡𝑛 =
𝑑

𝑛
,, and so his total time is 𝑡1 + 𝑡2 + ⋯ + 𝑡𝑛 =

𝑑

𝑛
(

1

𝑣1
+

1

𝑣2
+ ⋯ +

1

𝑣𝑛
) =

𝑑

𝐻𝑀(𝑣1,𝑣2,…,𝑣𝑛)
. 

For Frank we have 𝑣1𝑡 + 𝑣2𝑡 + ⋯ + 𝑣𝑛𝑡 = 𝑑, so his total time is 𝑛𝑡 =
𝑛𝑑

𝑣1+𝑣2+⋯+𝑣𝑛
=

𝑑

𝐴𝑀(𝑣1,𝑣2,…,𝑣𝑛)
.  Now, since for distinct numbers 𝑣1, 𝑣2, … , 𝑣𝑛, the harmonic mean 

𝐻𝑀(𝑣1, 𝑣2, … , 𝑣𝑛) is always less than arithmetic mean  𝐴𝑀(𝑣1, 𝑣2, … , 𝑣𝑛), we conclude that 

Frank is finishing first. 

We summarize praxeologies available at each level in the following table: 

Table 1:  

The continuity of praxeological development. 

Level / 

Praxeologies 

Primary/elementary 

(Pre-algebraic) 

Secondary 

(Algebraic) 

Tertiary 

(Analytic) 

Praxis Physical action; 

specific arithmetic and 

pictures. 

Specific and 

generic 

arithmetic and 

pictures. 

Symbolic 

calculations, use 

of algebraic 

rules, equations 

and inequalities. 

Logos Generic arithmetic and 

pictures. 

Symbolic 

calculations, use 

General analysis 

of equations and 
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of algebraic 

rules, equations 

and inequalities. 

inequalities; 

axiomatic 

approach. 

Development 

of 

sense of generic 

structure. 

symbolism. formalism. 

Source: The author 

The last line in Table 1 indicates the major direction of praxeological 

development. Observe that what may count as an explanation (theoretical element) at a 

lower level becomes part of students’ praxis at the next level. Thus, at the elementary 

level, generic arithmetic and figures may “explain” the results obtained in any concrete 

case if the students start to see more general structure of many concrete examples.  Note 

that some algebraic formulas (in our case, from basic kinematics, i.e. 𝑑 = 𝑣𝑡, 𝑣 = 𝑑/𝑡, 𝑡 =

𝑑/𝑣 may appear even at the elementary level, and students use them to make explicit 

calculations while sensing their more generic structure. Then at the secondary level, these 

generic arithmetic calculations become a part of the praxis that at its tern is “explained” 

by symbolic calculations and the use of algebraic rules. At the tertiary level, algebraic 

calculations become a part of practical tools, and then the theory involves elements of 

analysis, in particular, the study of more general inequalities. We suggest that the 

continuity of praxeological development described above, in addition to an advance from 

punctual to local, regional and global praxeologies (Chevallard, 1999), could be critical 

for students’ grasp (with understanding!) of mathematics.  

Some observations with implications for teacher education 

In order for teachers to support a continuing development of their students they 

need to be familiar with the range of praxeologies at least at the level adjacent to the level 

of their primary expertise (as a part of their horizon knowledge).  Based on my 

observations, this was not always the case in the first place, and moreover, the teachers 

did not always possess a sufficient understanding of this need. However, when they 
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collaborated on solving interconnecting problems in mixed groups, it was often evident 

that an exchange of different praxeologies occurred.  

Note that pictorial and structural explanations discussed above are available at any 

of the three levels and may provide a common ground for the group discussion and lead 

to some interesting discoveries such as geometric interpretation of the AM-HM inequality 

(due to the fact that Figure 1 basically represents the algebraic Solution 2, which is a 

particular case of the method discussed for the tertiary level and involves this classical 

inequality). However, pictorial approach was not a popular solution, and if it occurred, 

many teachers stopped short of generalizing beyond concrete examples (e.g. of working 

with ‘generic’ units of measurement), confirming that people often tend to substitute 

empirical arguments for proofs (Lin et al, 2012). 

Further, teachers were not always strong in generalizing their solutions, which 

perhaps was a consequence of some ‘defective’ praxeologies that focus mostly on the 

praxis component at their grade level, such as, working with numbers without seeing more 

general algebraic and/or structural pattern, or working with formulas without observing 

their relations to other representations.  

My data illustrate that indeed a good question (such as a problem with multiple 

solution paths) in principle allows students to reason using tools of their own choice and 

employ mathematics in order to explain their answer. Being typical for a research setting, 

this behaviour is not common for school mathematics where the focus is on learning 

specific techniques to solve certain types of problems rather than on finding and justifying 

one’s own solutions, let alone comparing and generalizing them or arriving to new 

questions. An exposure to the inquiry paradigm triggered the following teacher’s 

revelation:  
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I think that the beauty in problem solving is that there are so many ways a problem 

can be solved. It is evident in our different approaches that we may be teaching 

math at different levels which I feel will enhance our learning experiences. This 

is how problem solving should be happening in our classrooms: in collaboration 

not in isolation. 

However, it remains to be seen what percentage of mathematics teachers really 

welcomes this opportunity to “question the world”, and if their existing praxeologies are 

developed enough to meet this challenge.  If teachers’ justification deficiencies show up 

so clearly in this finalized version of inquiry, their success seems to be problematic in 

case of open programs of study and research.  
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