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Abstract 

The praxeological analysis of selected questions used in the Hungarian Pósa method is 

presented, focusing on a common element in their logos blocks, called recursive thinking. As 

part of a broader research with reverse didactic engineering methodology, aiming at theorizing 

the ‘intuitively’ developed Pósa method, the present findings are also compared to previous 

results and re-interpret the concepts of kernel and web of problem thread. Based on these results 

gained by using tools of the Anthropological Theory of the Didactic, the paper offers a partial 

description of the didactic strategy of the Pósa method for inquiry-based learning mathematics 

and raises questions for further research. 

Keywords: Anthropological Theory of the Didactic, praxeological analysis, web of 

problem threads, kernel of problem threads, Pósa method 

Résumé. 

Nous présentons l'analyse praxéologique de certaines questions utilisées dans la méthode 

hongroise Pósa, en nous concentrant sur un élément commun à leurs logos blocs, appelé pensée 

récursive. Dans le cadre d’une recherche plus large qui met en place une méthodologie 

d’ingénierie didactique inverse visant à théoriser la méthode de Pósa développée 

"intuitivement", les résultats actuels réinterprètent les concepts de noyau et de réseau de fils de 
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problèmes. Sur la base des résultats obtenus en utilisant les outils de la théorie anthropologique 

du didactique, l'article offre une description partielle de la stratégie didactique de la méthode 

Pósa pour l'apprentissage des mathématiques basé sur l'enquête, et soulève des questions pour 

des recherches ultérieures. 

Mots-clés : Théorie anthropologique du didactique, Analyse praxéologique, Réseau de fils 

problèmes, Noyau de fils problèmes, Méthode Pósa 

Resumen 

Se presenta el análisis praxeológico de algunas preguntas utilizadas en el método húngaro Pósa, 

centrado en un elemento común de su bloque del logos, llamado pensamiento recursivo. Como 

parte de una investigación más amplia basada en la metodología de la ingeniería didáctica 

inversa, cuyo objetivo es teorizar el método Pósa desarrollado “intuitivamente”, los presentes 

hallazgos también se comparan con resultados anteriores y reinterpretan el concepto de núcleo 

y red de hilos de problemas. Sobre la base de estos resultados obtenidos mediante el uso de las 

herramientas de la Teoría Antropológica de la Didáctica, se ofrece una descripción parcial de 

la estrategia didáctica del método Pósa para el aprendizaje de las matemáticas basado en la 

indagación, y se plantean cuestiones para futuras investigaciones.Research on the Pósa method. 

Palabras clave: Teoría antropológica de la didáctica, análisis praxeológico, red de hilos 

problemáticos, núcleo de hilos problemáticos, método Pósa 
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The Pósa method with ATD lenses: Praxeological analysis on math problems in 

Hungarian talent care education with ‘recursion’ in their logos blocks 

Reverse didactic engineering (RDE) on the Pósa method 

Lajos Pósa has been organising weekend mathematics camps for 12-18 year-old gifted 

students in Hungary since 1988, using the now called ‘Pósa method’ (Győri & Juhász, 2018). 

He has developed an ‘informal’ and supplementary talent-care curriculum, together with a 

corresponding pedagogical practise. And he has done this ‘intuitively’, that is, without any 

research or a complete and explicit theoretical background, and without a complete written 

record of this nationally widely respected practise either. 

In the frame of the current Content Pedagogy Research Program of the Hungarian 

Academy of Sciences (CPRP), as well of an on-going doctoral study at the Eötvös Loránd 

University, the author aims at the ‘a posteriori’ analysis, theorization and description of the 

method. Based on the result of these primary processes, the long-term goal is to modify the 

method for its use in public education and to contribute to potential national curricular changes 

in Hungary, that “may be carried out through the action of a charismatic leader” (Chevallard, 

1992, p. 220), in our case, Lajos Pósa. The research also aims at contributing to the on-going 

conceptualization of inquiry-based mathematics education (Artigue & Blomhøj, 2013; Bosch 

& Winsløw, 2016). 

This ‘a posteriori’ analysing and theorizing process is conducted through a research 

methodology called reverse didactic engineering (RDE). It is based on the conception of 

didactic engineering research methodology (Barquero & Bosch, 2015), in which didactic 

constructions are designed on the basis of a developed (though regularly modified) theory, and 

re-designed based on the re-formulated theory. In RDE, the implicit or even only partially 

existing theory shall be reconstructed through the analysis of the already developed didactic 

product, which may be re-designed at a later phase. During this process, already established 

intermediate-level theoretical frameworks are also used as research tools. 



262                                                            Educ. Matem. Pesq., São Paulo, v. 22, n. 4, pp. 259-281, 2020 

The Pósa math camps in Hungary: brief description of the context 

Students start they ‘Pósa camp life’ usually in the beginning of grade 7, when around 

30 of them are selected and grouped to meet during 2‒3 whole weekends (from Friday to 

Sunday afternoons) a year, with homework between the sessions, together with a leading 

teacher and 2‒7 assistant teachers (usually former camp students), until grade 12. 

During the camps, as segments of a coherent 6‒year‒long ‘building’ procedure, the 

main sessions consist of students thinking on and discussing mathematical problems in groups 

of 2‒4, in separate rooms. They approach 3‒4 problems at a time, which offer appropriate 

challenge for them, with the aim that they autonomously solve problems and discover 

connections, with a complete freedom of making mistakes and the overall aim of the joy for 

thinking. During these special team work sessions (for rules see Győri & Juhász, 2018, p. 95) 

teachers monitor students’ progress. Now and then, all the groups come together led by the 

leading teacher. They discuss students’ solutions, implications, the relationships between the 

solved problems, and ‒ as an important part ‒ may pose new problems they are interested on 

the basis of the solved ones, some of which may be integrated to the course of the study. 

However, perhaps the most decisive feature of the method is the structure of the 

problem set, the connection between the problems, which is to be partly revealed by the 

praxeological analysis that forms the essence of the present paper. 

In September 2017, within the framework of CPRP, experimental (9th grade) classes in 

two secondary schools have also been launched, with curricular constraints, but with basically 

the same methodology and to a considerable extent using the same problems that were 

developed for the math camps. 
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Web of problem threads (WPT) 

WPT and the concept of kernel ‒ previous research results 

The problems posed in the Pósa camps and in the experimental classes are connected 

to each other by some common elements, which have been considered as mathematical 

methods, problem solving strategies or ‘mathematical ways of thinking’ to be used during 

working with and solving them. A set of problems, in only a partially fixed order that are 

connected to each other this way is called a thread of problems (Katona & Szűcs, 2017; 

Győri & Juhász, 2018, p.100). 

As some different threads may have the same kind of connection, and also a thread may 

have a multiple way of connections, (Katona & Szűcs, 2017) introduced the concept of kernel 

to describe the connection, in order for differentiating it from the concept thread. Kernels are 

basically part of the a priori structure of the problems, which – as the whole WPT – are mainly 

pre-designed by the teacher. During this designing procedure, the problems are selected or 

constructed in order for giving birth to the kernels, and not (only) for their own sake. However, 

during particular implementations of the method, students’ unanticipated ideas may establish 

new connections, even new kernels. Therefore, understanding the connections between the 

problems and the ‘consideration of the whole’ are essential parts of the students’ work with the 

teachers’ assistance. 

ATD tools in the RDE research on the Pósa method 

The present paper focuses on the second phase of the RDE process: As part of 

theorizing, the problems used in the Pósa camps and in the experimental classes are analysed 

with tools of the Anthropological Theory of the Didactic (ATD) (Bosch & Gascón, 2014; 

Bosch et al., 2019). 

As a preliminary result, a praxeological analysis (Chevallard, 2006) on some selected 

Pósa problems is being presented in the present paper, concluding that one main characteristic 
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of the Pósa method originates in a task- and curriculum-design that is mainly guided by special 

common elements of the logos blocks of the used praxeologies, which may correspond or at 

least strongly related to the concept of kernel of problem threads. In that respect, the concept 

of praxeology is used to understand the nature of earlier introduced concepts and may also help 

to understand what is learnt and how learning happens during the Pósa sessions. 

The ‘praxeological analysis’ as theoretical background 

Praxeology is a central concept and an important tool in the anthropological theory of 

the didactic (ATD). ATD, besides its other missions, aims at offering a theory of human 

actions, for instance actions of learning and teaching, and praxeology is the central concept to 

describe human actions. For the most recent and concise reference, see (Bosch, Chevallard, 

García & Monaghan, 2019). 

A praxeology 𝓅 is an ordered pair (Π; Λ) in which Π is an ordered pair (T; τ) too, and 

Λ is also an ordered pair (θ; ϴ); that is 𝓅 = ((T; τ); (θ; ϴ)), though also commonly written as 

𝓅 = (T; τ; θ; ϴ), as in (Bosch et al., 2019). T, as the starting point of the whole concept of 

praxeology, is a set of (in some way connected) tasks, in which a task t (t ∈ T) can be (almost) 

anything to be accomplished or realized by a human, though in our case it will be a 

mathematical task. In order for this accomplishment, the use of a technique is required, which 

is an element of τ, the set of some possible techniques, therefore τ is in relation to T. That is, 

different techniques can be used to solve a task in T, even if there are usually a small set of 

techniques that prevail in a given institution – sometimes only one – and appear to be the 

“normal way” of carrying out a type of task. The ordered pair (T; τ) is called the praxis block 

of the praxeology, that is (to be) done or conducted, also referred to as the ‘know how’ element 

of the praxeology. 

If T is a single type of task, that, is for instance, T consists solely of such tasks that can 

be solved by a same technique, than 𝓅 is called a point praxeology. 
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In the other block, θ denotes the technology, which serves explanatory proposes, it is 

the part of the human action that justifies the use of the technique τ to accomplish tasks of T, 

in our case, it is the core element of the argumentation related to solving a mathematical task. 

θ depends on (T; τ), but for instance if 𝓅 is a point praxeology, than θ usually depends also on 

other types of tasks and techniques that are related to (T; τ). In fact, one of the roles of the 

technology is to create such connections among types of tasks and techniques, that is, to 

connect point praxeologies. If T consists of a set of different types of tasks that are “organized 

around a common technological discourse” (Barquero & Bosch, 2015 p.69), it is called a local 

praxeology. 

However, the technology θ shall (or may) also be justified at a higher level, where it is 

usually connected to other technologies. This higher-level justification is ϴ, and it is called the 

theory element of the praxeology. ϴ is related to θ and also to other technologies. The ordered 

pair (θ; ϴ) is called the logos block of the praxeology. 𝓅 = (T; τ; θ; ϴ), that is basically at the 

level of argumentation and proving. If 𝓅 contains all point and local praxeologies ‘of’ a 

common theory, it is called a regional praxeology. 

This ‘definition’ of a praxeology may suggest a static nature, which is typically not the 

case. “Human praxeologies are open to change, adaptation and improvement” (Chevallard, 

2006, p. 23), they have an essentially dynamic nature. 

Praxeological analysis (Bosch et al., 2019) is to study certain praxeologies, by 

unfolding, identifying and describing their praxis and logos blocks.  

In the past years, research on ATD has been focusing on the institutional conditions 

enabling a paradigmatic change in teaching and learning mathematics, from the paradigm of 

visiting works (PVW) to the paradigm of questioning the world (PQW) (Chevallard, 2015), 

primarily through the development of a didactic design framework, called study and research 

paths (SRP) (Bosch & Winsløw, 2016; Bosch & Gascón, 2014; Chevallard, 2015; Barquero & 
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Bosch, 2015). However, the ATD theoretical framework and especially the tool praxeological 

analysis has been created to be applied to any kind of educational situation, belonging to any 

paradigm of teaching and learning. Whether to analyse elements of an SRP within PQW, where 

students are to inquire into questions for creating their own, not (necessary) pre-established 

answers, through studying available and relevant works and raising corresponding derived 

questions, or to analyse “pre-established praxeologies” which have already “turned into 

monuments” within PVW (Chevallard, 2006, p. 25), where the expected answers to the raised 

questions are basically pre-determined; the praxeological analysis may be in both cases 

appropriate to use in order for gaining a deeper insight into the situations and actions of students 

during the learning and teaching processes. 

Selected problems from a selected Pósa thread ‒ Object of study 

a. The process for selecting the problems and the presented order of the problems 

The selection was based on the praxeological analysis of a larger set of problems used 

in the Pósa camps or in the experimental classes. Problems having the same kind of element 

in their logos blocks, recursive thinking, were selected first. The problems to be presented in 

the next subsection for analysis are a subset of the set of these previously selected ones. On 

the one hand, they represent, even if not a wide range, but at least some different types of 

tasks. On the other hand some subtypes or variants of the same type of tasks are presented 

too. 

The problems are presented in the order they are usually posed to the 6th-8th grades 

students in the talent care math camps, and 9th grade students in the experimental classes. 

b. The problems to be analysed 

Problem 1.  In how many different ways can you get from A to B in the diagram below if you 

can only proceed from left to right? 
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Figure 1 

Paths in ‘bubble figure’ – Problem 1 

 

Problem 2.  In how many different ways can you get from the bottom left corner field to the 

top right one in a 10 x 13 rectangle grid, if in each step you can either move one (field) to the 

right or one upwards? 

Figure 2 

Paths in rectangular grid – Problem 2 

 

Problem 3.  Similar to Problem 1, with almost the same task, but with a different figure: 

Figure 3 

More complicated ‘paths in bubble figure’ – Problem 3 

 

Problem 4.  Similar to Problem 4, but you cannot step on the black square: 

Figure 4 

Paths in hollow grid – Problem 4 

 

Problem 5.  We notice that for the first some powers of 3, the decimal place is always occupied 

by an even digit. Is it true for every power of 3? 
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Problem 6.  In how many ways can you (completely) cover a 2×12 sized rectangle (grid) with 

dominoes (1×2 sized rectangles, the spots on the dominoes are irrelevant)? 

Problem 7.   

… an astronaut … lives in a space station that consists of 27 space modules… set 

at the vertices of the little unit cubes that make a 2×2×2 cube. There are passages between 

each neighbouring modules, represented by the edges of the unit cubes. Our astronaut 

can only use these passages to move between the modules. Our hero is now at the (green) 

module signed by vertex A, in Figure 6, and would like to go to the opposite vertex (G) 

of the two-unit cube. In how many different ways can they2 do this, if they do not want 

to move away from their target? (Katona & Szűcs, 2017, p. 22-23) 

Figure 5 

The space station for the paths of the astronaut in Problem 7 

 

Problem 8.  We go to a belvedere castle at the top of a hill (K in Figure 6). If we start below, 

from the village (A), how many different ways (paths) can we walk, if we always have to go 

upwards, and we can either use a segment of the serpentine, or of the steep paths (left of 

right), and we can independently decide at each crossing point whether we take the serpentine 

or the steep one? 

 
2 The word ’they’ and its inflected forms are used as epicene (gender-neutral) singular pronouns. 
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Figure 6 

Serpentine on the hill – Problem 8 

 

Praxeological analysis on the selected thread of problems ‒ description of the tasks, 

techniques and technologies 

In this section, we conduct a praxeological analysis on the aforelisted problems. We 

describe the tasks, the techniques, and reveal the technology part of the logos blocks. We do 

not consider the theory parts in details, as we consider the decisive feature in focus to be part 

of the technology elements. 

c. An interpretation of the elements of the problem-solving processes 

In this section, we describe how elements of the problem-solving processes in the Pósa 

camps and experimental classes are interpreted, by using concepts, tools of ATD ‒ in italics. 

The problems to be analysed are regarded as questions. The solutions, which are on the one 

hand teachers’ anticipated solutions, but as well ones that have dominantly occurred as 

students’ solutions, contain the answers to the questions. We also regard, for the praxeological 

analysis, the questions (the problems) as the tasks, the sequence of ‘main’ actions of the 

problem-solving process of elaborating the answers as the techniques, the explanation for the 

use of techniques for solving the particular tasks, or any supporting comments on these 

processes, that is the argumentation and proving elements as technologies, and the justification 

at a higher level as the theory. 

Not all possible, not even all (in the camps and experimental classes) occurred 

techniques are presented, only the ones that are the most frequent, and more importantly the 

corresponding logos blocks of which contain the common element ‘recursion’ or ‘recursive 
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thinking’, for the sake of the development of which these particular tasks were posed during 

the Pósa sessions. 

Sometimes technology is described before the technique, reflecting a typical order of 

the ideas emerging during the problem-solving processes in the Pósa camps and the 

experimental classes, where the procedure of students working with the problems, that is, 

experimenting, conjecturing, testing, verifying, … is a whole, and no use of technique without 

revealed technology would make any sense or (real) value during these sessions. The 

techniques are sometimes not fully and explicitly written down when it seems trivial to figure 

them out for the expected reader. 

d. Types of tasks in the analysed sample 

There are basically 2 main types of tasks: counting (different possibilities) and proving. 

The task embedded in Problem 5, denoted by Task 5 (T5) belongs to the proving type, all the 

other tasks belong to the counting type. However, in all presented cases, as in the case of each 

and every problem-solving process in the Pósa sessions, proving, arguing for the solution, 

searching for and formulating an explanation for the elaborated answer, or in other words, 

revealing, becoming aware of, expressing and discussing the corresponding technologies or 

even the theory parts are inseparable parts of the whole process. 

The counting types may be separated into 2 subtypes: counting paths, in Task 1‒4 

(embedded in Problems 1‒4) and Tasks 7‒8 (Problems 7‒8), and counting covering patterns 

(with dominoes), exemplified by Task 6 (Problem 6), which may also be called counting tilings 

task type. The counting paths type also contains 3 subtypes: counting paths in bubble figures 

(Tasks 1 and 3), in grids (Tasks 2 and 4 in 2 dimensions, and Task 7 in 3 dimensions) and the 

serpentine paths counting task type (Task 8). A graphical representation of this categorization 

is Figure 7 below. 
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Figure 7 

Types of tasks to be analysed 

 

e. Techniques and technologies for Problems 1 and 3 

Technique 1A and 3A (techniques for Tasks 1 and 3, and Technique type A).  Students 

may try counting the different paths one by one, with systematically registering the options 

(between intersection points) they had already taken. They may do it by drawing or colouring 

the different paths or only by imagining them. The operation they use here is adding (one by 

one). 

Technology 1A and 3A.  By carefully determining cases and subcases, based on options 

between intersection points, they may ‘quite surely’ count all the different paths. They can use 

the operation adding (one by one), as those sets of possible paths the numbers of which they 

add do not have a (non empty) intersection, that is, they are disjoint. We call this the additive 

method. The technology they use is that the number of elements of the union of disjoint finite 

sets is the sum of the numbers of elements of the sets. 
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Students can also only start using this technique, and based on observations during the 

use of it, proceed on the following different techniques, Techniques of type A’ or B. 

Technique 1A’ and 3A’.  Similar to Techniques 1A and 3A, counting one by one, and 

using addition, but instead of drawing, colouring or imagining the different paths, students first 

code the paths e.g. by using sequences of letters, for e.g. u and d for up and down respectively 

and m for the middle way, where it is needed; see Figure 8. This technique requires the 

understanding of symbolism, in its technology part. 

Figure 8 

Symbolizing & addition’ technique – version1 for Problem 1 

 

The use of different symbols, denoting the possible options between neighbouring 

intersection points by r1 for road 1, r2 for road, etc., see Figure 9, may foster a shift to the use 

of Technique Bs. 

Figure 9 

‘Symbolizing & addition’ technique – version 2 for Problem 1 

 

Technique and Technology 1B and 3B.  Students realize that, e.g. in case of task 1, 

starting from point A, either you choose the higher or the lower path, and in both cases, you 

have the same number of choices later on (or, in the case of Problem 3, that you have 4 choices 

to arrive at B from the preceding point, and you have the same number of possibilities to arrive 

at this preceding point in all the 4 cases). This may result to noticing that if you count the 

number of paths between those pairs of points (edge points), which are connected by a path 

and for which any path going from the points between them (inner points) goes only to these 
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inner or edge points (let us call these pairs of edge points together with their inner points 

sections), than you can multiply these numbers you have got for the sections to get the final 

correct answer. Counting the possibilities for the sections, and multiplying these numbers are 

the used techniques. The explanation behind multiplication is the so-called product rule, which 

is part of the technology and which relates to rules of counting the number of elements of the 

Cartesian product of finite sets. 

f. Techniques and technologies for Problems 2, 4 and 7 

Technique 2A, 4A and 2A’, 4A’.  Similar that of 1A, 3A and 1A’, 3A’, counting one by 

one, using the additive method. 

Techniques 2A’ and 4A’is again based on symbolizing first, which again may lead to 

the use of techniques type B. 

Technology 2B and 4B.  For a given field X in the grid, you can either arrive from its 

left neighbour Xl or from its bottom neighbour Xb. On one hand, if you add the step Xb to X as 

a final step to any proper path from the bottom left corner S to Xb, you get a proper path from 

S to X; and using different S to Xb paths results in different S to X paths. The same holds for 

proper paths from S to Xl added the step Xl to X. Of course, starting with an S to Xb path results 

in a different S to X path than starting with an S to Xl one. On the other hand, all the different 

paths from S to X is either a path from S to Xl and then 1 step from Xl to X, or a path from S 

to Xb and then 1 step from Xb to X; and different S to X paths contain different S to Xl or S to 

Xb paths. This bijection is in the heart of the technology that gives account for the technique to 

solve the task. Here we use a kind of addition method again. For Task 4, the technology part is 

broader, corresponding to an additional technique needed, containing the product rule, 

explained in the followings. 

Technique 2B and 4B.  You can start counting the arriving possibilities for the 

particular fields (X) one by one, by starting from S, and in each step (for X) counting the sum 
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of the arriving possibilities for Xl and for Xb. and then adding them. It continues until the 

arriving possibilities for all fields are counted, finally for the top right corner, which was 

asked. It is again a variation of the additive method, for a part of it, see Figure 10. 

Figure 10 

The ‘additive method’ technique for counting paths in a grid ‒ Problem 2 

 

For Task 4 (in very brief), you additionally need to count the number of paths in that 

you step on the black hole (B), using product rule as in Task 1 and 3, shown by Figure 11, 

and then to subtract it from the total number of paths. 

Figure 11 

Representing part of the technology behind multiplication ‒ Problem 4 

 

Technique and Technology 7.  As a 3D variant of the techniques and technologies in 

Task 2, focusing on the B type of techniques and technologies, you can use the additive method. 

g. Technique and technology for Problems 6 and 8 

Technology 6 (only type B is discussed).  We can place a domino in basically two ways: 

in a vertical or in a horizontal position. First, it is easy to see that if we place 2 dominoes 

horizontally in a way that the right side of one is just below the left side of the other (or the 

other way round) we will not be able to cover the whole rectangle, therefore if we place a 

domino horizontally we need to place another one just above or below it. That is, we have two 
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building blocks, a 1×2 vertical one and a 2×2 one. Second, if we start with a vertical one, we 

have a 2×11 rectangle still needs to be covered, and the 1×2 vertical start plus any different 

2×11 proper coverings results in different proper 2×12 coverings. Starting with a 2×2 building 

block, we have a 2×10 rectangle remained to be covered, and the 2×2 start plus any different 

2×10 proper coverings results in different proper 2×12 coverings. Any covering with one type 

of start (building block) essentially differs from any other one with the other type of start. Third, 

any proper 2×12 covering is either a ‘1×2 start + proper 2×11 covering’ type or ‘2×2 start + 

proper 2×10 covering’ type, and different proper 1×12 coverings contain different proper 2×11 

or 2×10 sub-coverings. Here, we also have a bijection (as in task 4) being in the heart of 

Technology 6. Of course, the same correspondence can be told to smaller rectangle segments, 

e.g. tracing the 2×11 coverings back to 2×10 and 2×9 coverings, etc. 

Figure 12 

Illustration of the main idea of the Technique for Task 6 

  

Technique 6.  Counting the possible numbers of coverings with each type of start (or 

ending) and adding these two numbers, you get the final result. We can now count the 

number of possible coverings for smaller rectangles, first for a 1×2 rectangle (: =F1) = 1, for 

a 2×2 (: =F2) = 2 (2 vertical blocks or 1 2×2 block (2 horizontals)), F3 = F1 + F2 = 3, etc. you 

can calculate finally F12. 

We note that as part of the technology, students can also realize that these are the 

Fibonacci numbers, but the majority of them usually have not learnt about them before; it is 

discussed together with the teacher. 

Technology and Technique 8 (only type B is discussed).  If you look at the crossing 

points, which are all along the serpentine, numbering them according to their order in the 

serpentine line towards K, we have F1, F2, … F9 = K (we can have F0 = A). Let these symbols 
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also mean the different arriving possibilities to these points. To K, you can arrive from either 

F8 or F9, and a similar bijection can be discovered to the one we found at Task 6, and similarly, 

you can discover the Fibonacci sequence and calculate K, by adding the numbers of arriving 

possibilities at the proper crossing points. 

h. Technique and technology for Problem 5 

Multiplying the possible last digits of powers of 3, which are 1, 3, 7 and 9 (known and 

proven before) by 3, we get 0, 0, 2 and 2 respectively as the digits taken to the decimal place. 

If there was an even number at the decimal place, say n, of a power of 3, then we get the last 

digit of 3×n + 0 or 3×n + 2 for the decimal place of the next power of 3, which digit is also 

even. 

Pósa problems connected at the logos level, as a didactic strategy of the method ‒ 

Preliminary result and conclusion 

i. Common element of the technology parts ‒ recursion 

We can realize and lay focus on a common element of the technology parts of all the 

problems, in the cases of Problems 1-4 with respect to the B types of techniques and 

technologies, which is recursion. They all require the students to trace the original tasks back 

to ones that are ‘structurally’ exactly the same, and this process needs to be repeated for a 

(finite) number of times, until they arrive at an ‘initial’ task, which is easy to solve (or they can 

start with this easy one); that is, students need do, use and develop different kinds of recursive 

thinking. 

In Technologies 1B and 3B, it is about tracing back to the so-called smaller ‘sections’. 

This recursion leads to the use of the so-called product rule. In Technologies 2B and 4B, the 

recursive step is to trace the SX paths back to SXb and SXl paths. In technology 7, it’s similar, 

but in 3 dimensions, so some fields have more neighbouring fields to take into account. In 

Technologies 6 and 8, it is the Fibonacci recursion. In all these technologies, in order for 
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counting the different paths or coverings, students may count the same kinds of things in 

smaller segments of the figures, or in smaller rectangles for coverings. In Technology 5, the 

recursion step is between a power of three and the next power of 33, which step is in the heart 

of the proof presented. 

Figure 13 

The analysed problems connected by recursion in their logos blocks 

  

The following graph, in Figure 13, represents the revealed structure of this 

‘technological’ relationship, with the subtypes of recursion or with some other important 

elements in the technology part, such as product rule, showing the important revealed and 

 
3 The technique and technology for Task 5 is also an example of ’proof by induction’. Here, we do not aim at 

analysing the relationship between a ’recursive process’ and ’proof by induction’, although it seems to be an 

important research task during the continuation of the present research. 
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(during the sessions) discussed relationships of pairs of problems, and also indicating the 

connectedness to some other problems that could not be part of the presented analysis. 

j. Relating presented ATD related research results to the previous WPT model and 

the concept of kernel 

Recursive thinking, according to the WPT model (first, though not elaborately appeared 

in Katona & Szűcs, 2017) is (one of) the supposed kernel(s) of the threads formed by these 

(and other, partly similar) problems posed in the Pósa camps. 

According to the results of the analysis of this present paper, we conclude that the kernel 

‘recursion’ is a common element of the technology parts in the logos blocks of the problems 

that are part of the thread that is formed by this kernel. The kernel recursive thinking is an 

element of the intersection of the technology parts relating to certain techniques of the tasks 

that are embedded into the particular problems. In that respect, we have a set of point 

praxeologies, connected by their technology parts and thus forming a local praxeology, which 

appears as a decisive feature of the problem set used in the Pósa method. 

In its current state, the Pósa WPT consists of hundreds of problems, which are 

connected to each other in multiple ways, through several kernels, such as experimentation, 

yieldingness, invariant quantity, bounds (upper and lower), pigeonhole principle, recursive 

thinking, induction (mathematical), proof of existence, proof of impossibility, proof by 

contradiction and representational change. They also belong to several mathematical content 

areas, such as geometry, functions and analysis, algebra, number theory, combinatorics, graph 

theory, probability and statistics. Finding further correspondence between the kernels and 

results of praxeological analyses, of which the present paper could only offer a sample, as well 

as conducting further praxeological analyses are needed and planned to be done in order for a 

deeper understanding on the structure and application mechanism of the Pósa WPT. 
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k. Discovering previously hidden local praxeologies through working with 

technologically connected point praxeologies – an element of the didactic strategy of the 

Pósa method 

As concluded from the analysis of the present paper, considering also information on 

the Pósa camps collected so far and mostly presented in the 1st chapter, teacher(s) of the Pósa 

method present(s) (seemingly) isolated tasks of different types, appearing for the students 

during (the beginning of) problem-solving as a set of tasks from different point praxeologies. 

These tasks are related by a common technological element, which technological relation 

creates a local praxeology (about recursion) these point praxeologies belong to. The common 

technological element and the existence of the local praxeology is first hidden for the students, 

the local praxeology is for them to approach during problem-solving. The students develop 

techniques to solve the tasks; in the case of the analysed sample, for the students, there 

(probably) are 3 types of tasks: counting paths (P1-4 and P7-8), counting tilings (P6) and one 

with number regularity (P7). This appears at the level of praxis, when the students know the 

tasks and the techniques. Usually in parallel with this process, that is during, but sometimes 

before or after this praxis level procedure, students are required to create rationale for the 

techniques, usually at the level of proofs, which is also discussed together and becomes a 

commonality, so that the technology, and most importantly, the connectedness of the 

technology parts, the kernels are made explicit, and also to be used later. This is the revealment 

of the local praxeology they have approached, elaborated, discovered. Students understand that 

and why these problems are connected, why the tasks approaches are of the same type. In our 

case, they understand that recursion is a common generator of the techniques they used. This 

also allows students to elaborate new (related) techniques for solving new (related) tasks, due 

to the productiveness of this connecting technological element, the local praxeology, that it 

also has the capacity to generate new techniques to address new problems. 
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Brief list of issues for further studies on the Pósa method in the ATD context 

– further praxeological analyses focusing on the logos blocks of the Pósa 

problems, and further support between the concept kernel and the intersection of logos blocks 

of particular sets of Pósa problems; 

– collecting (more) and categorizing kernels used in the Pósa method according 

to their functions in learning and doing mathematics; 

– study dialectics in the application of the Pósa method, such as the dialectics of 

questions and answers and of media and milieu (Bosch et al., 2019) for revealing more of the 

structure of the problem set; 

– study the ‘generating potential’ of questions in the Pósa method, regarding 

them as generating questions (Bosch et al., 2019) and detecting types of generations used in 

the method; 

– study the relativeness of questions being generating, and what makes a 

question generating; 

– study on the dynamicity of the WPT, comparing different implementations of 

the method with the same ‘generating questions’, whether different derived questions 

emerged; 

– completing the description of the didactic strategy of the Pósa method; 

– determining basic guidelines for the development of a new curriculum in 

Hungary based on the Pósa method, with the development of new (partly content-based) 

kernels corresponding to current curriculum requirements 
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