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Abstract 

The paper presents some illustrative turns in the history of the interactions between philosophy, 

logic, mathematics, and mathematical education since the 16th century. The underlying 

problem could be called the Aristotelian problem. Aristotle argued that any individual thing 

consists of a substantial form, which determines its general nature, and matter, which 

individuates the thing and makes it numerically distinct from other similar substances. 

Keywords: Language, Logic, Philosophy, Mathematics, Different forms of 

complementarity. 

Resumo 

O artigo apresenta algumas voltas ilustrativas na história das interações entre Filosofia, Lógica, 

Matemática e Educação Matemática desde o século XVI. O problema subjacente poderia ser 

chamado Problema Aristotélico. Aristóteles argumentou que qualquer coisa individual consiste 
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em uma forma substancial, que determina sua natureza geral, e matéria, que individua a coisa 

e a torna numericamente distinta de qualquer outra substância semelhante. 

Palavras-chaves: Linguagem, Lógica, Filosofia, Matemática, Diferentes formas de 

complementaridade. 

Resumen 

El artículo presenta algunos giros ilustrativos en la historia de las interacciones entre la 

filosofía, la lógica, las matemáticas y la educación matemática desde el siglo XVI. El problema 

subyacente podría llamarse el problema aristotélico. Aristóteles había argumentado que 

cualquier cosa individual consta de una forma sustancial, que determina su naturaleza general, 

y materia, que individualiza la cosa y la hace numéricamente distinta de otras sustancias 

similares.  

Palabras clave: Lenguaje, Lógica, Filosofía, Matemáticas, Distintas formas de 

complementariedad. 

Résumé 

L'article présente quelques tournants illustratifs de l'histoire des interactions entre la 

philosophie, la logique, les mathématiques et l'enseignement des mathématiques depuis le 

XVIe siècle. Le problème sous-jacent pourrait être appelé le problème aristotélicien. Aristote 

avait soutenu que toute chose individuelle est constituée d'une forme substantielle, qui 

détermine sa nature générale, et d'une matière, qui individualise la chose et la rend 

numériquement distincte des autres substances semblables. 

Mots clés : Langue, Logique, Philosophie, Mathématiques, Différentes formes de 

complémentarité.   
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Mathematics Education in the Context of certain classical Debates in Philosophy and 

Mathematics 

Leibniz and Spinoza 

All philosophy is ultimately concerned with or even fundamentally shaped by the 

following question: Can we significantly influence our worldly destiny? Can one at least 

understand one’s own life? Is there perhaps some hidden individual rational quietly ruling over 

each particular destiny? Or is life just a sequence of adjustments of the human subject to some 

universal law? In the latter case life would simply consist in adapting oneself to the universal 

law and in this case existence and thinking would appear as one. Spinoza believed the latter, 

while Leibniz invented various constructs to assure himself and others that God could only 

have created the best of all possible worlds (one among many) because for Leibniz God’s will 

and his choice of a possible world are subordinated to God’s reason or his logical reasoning.  

Spinoza equates natural law and God, object and concept, or existence and thought. For 

Spinoza the existence of God and his essence, are one and the same (Ethics, Proposition I.20). 

Leibniz, on the contrary, puts God’s spirit before nature and things. Spinoza writes: 

Our understanding would certainly be less perfect if the spirit were alone and knew 

nothing but itself.” At the same time, what is most valuable is what is in “harmony with 

our nature. For when two individuals of exactly the same nature unite, they form an 

individual twice as powerful as either by itself (Spinoza, Ethics IV, Proposition 18). 

Spinoza conceives the individual “spirit” as a universal individual, an idea that he saw 

accomplished in geometry:   

With regard to the statement that number is a negation and not anything positive, it is 

obvious that matter in its totality, considered without limitation, can have no numbers, 

and that number applies only to finite and determinate bodies. For he who says that he 

apprehends a figure, thereby means to indicate simply this, that he apprehends a 

determinate thing and the manner of its determination. This determination therefore 

does not pertain to the thing in regard to its being, on the contrary, it is its non-being. 

So, since number is nothing but determination, and determination is negation, number 

can be nothing other than negation: (…) determinatio est negatio. (Spinoza, Letter to a 

friend 1674) 
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Leibniz’s philosophy and his view of the world was no less deterministic than that of 

Spinoza. Is was no less influenced by theological Ideas, but, at the same time, Leibniz’s 

thinking was extremely individualistic and nominalist, resembling the views put forward by 

Protestants.  

There are, in fact, two types of generality, predicative generality, on the one hand, and 

continuity, in the sense of Spinoza or Peirce, on the other (Peirce CP 5.102-103). An example 

may help clarifying this claim. The Londoner could be considered either as an element 

belonging to a given set, or as a concept encompassing a certain type of person. These two 

possibilities also exemplify the complementarity of object and concept, or of reference and 

sense.  

Leibniz was a dualist in his logic and in his philosophy or metaphysics. Two 

fundamental principles, the principle of the identity of indiscernibles, on the one hand, and the 

continuity principle, on the other. These principles were both equally important to Leibniz, 

even though they seem to be incompatible with each other. Leibniz struggled to reconcile them.  

Leibniz had inherited this problem from Aristotle. Aristotle had argued that any 

individual thing consists of a substantial form, which determines the general nature on the thing 

in case, and of a matter, which individuates the thing and makes it numerically distinct from 

other things belonging to the same substance. Aristotle is most often regarded as the great 

representative of a logic, that rests upon the assumption of the possibility of clear divisions and 

rigorous classification. 

But this is only half the story about Aristotle; and it is questionable whether it is the 

more important half. For it is equally true that he first suggested the limitations and 

dangers of classification, and the non-conformity of nature to those sharp divisions 

which are so indispensable for language (…). (Lovejoy 1964, 58)  

Aristotle thereby became responsible for the introduction of the principle of continuity 

into natural history. 
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And the very terms and illustrations used by a hundred later writers down to Locke and 

Leibniz and beyond, show that they were but repeating Aristotle’s expressions of this idea 

(Lovejoy loc. cit.). 

Leibniz believes that everything that happened could have happened differently and 

everything that exists could also have been different from what it is, had God willed it. But to 

accomplish his wishes God is constantly considering, as said, all possible worlds and he always 

chooses the best of all possible worlds, - namely that in which the uniformity of Nature 

representing the greatest variety of things, - is compatible with the determination by the laws 

of Nature. Against those who think that God might have made things better than he actually 

has, Leibniz replies that their opinions are  

in my judgment, based upon the too slight acquaintance which we have with the general 

harmony of the universe and with the hidden reasons for God’s conduct. (Leibniz G. 

1686, III). 

Mark Stewart states the problem as follows: 

By raising God’s choice to the level of possible worlds, Leibniz can have his principle 

of sufficient reason and eat it too, in a sense: that is, he can grant that all things within 

our world are linked together in a necessary way, while still maintaining that the world 

as a whole does not necessarily have to be the way it is. The reasons for the world, he 

says, lie in something extramundane (Stewart 2006, 238).  

There is necessity in the actual world, but this necessity is just one of many. Things, 

therefore, are necessarily what they are in the actual world, but this necessity is a contingent 

one because had God chosen a different world, things could have been different. But still a 

strictest logic and necessity would reign in any of those worlds.  

The difference between Spinoza and Leibniz described above is the expression of a 

deep rift between meanings (ideas) and things. For example, Leibniz proposed to develop a 

characteristica geometrica to reflect geometrical insight. On the other hand, Leibniz’s 

ambition also included the creation of a calculus ratiocinator, which was conceived of by him 

as a method of symbolic calculation that would mirror the processes of human knowledge and 
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reasoning. These goals are incompatible (Otte 1989, 21ff). “If controversies were to arise” says 

Leibniz, “it would suffice to sit down at the abacus and say to each other: Let us calculate!” 

(Leibniz 1684). But in consequence of his fundamental principle of the identity of 

indiscernibles Leibniz at the same time developed an intensional logic that has strongly 

influenced Bolzano and Frege. In fact,  

when Leibniz’s project began to be realized in the nineteenth century, its two logical 

components were taken up by different research traditions. The “algebraic” school 

represented by Boole, Peirce, and Schröder sought to develop in the spirit of Leibniz’s 

calculus ratiocinator mathematical techniques by means of which different kinds of 

human reasoning could be mastered. In contrast, Frege’s objective was, as he himself 

noted in his Begriffsschrift, to put forward a characteristica universalis in Leibniz’s 

sense, a Formelsprache des reinen Denkens (Hintikka 1997, Introduction, I.). 

The split between conceptual logic and the algebraic calculus, that was caused by 

Leibniz’s double orientation is also noticeable psychologically. For example, the well-known 

Gestalt psychologist Max Wertheimer (1880 - 1943) comments on the mathematical solution 

of Zeno’s paradoxes by means of a geometric series, resp. the convergence of that series. 

Fundamental for this solution is the following calculation. One multiplying the series  

S = (1 + a + a2 + a3 + a4+...) by a and subtracts the outcome from the initial series S, which 

immediately leads to S – aS=1. Wertheimer writes: 

It is correctly derived, proved, and elegant in its brevity. A way to get real insight into 

the matter, sensibly to derive the formula is not nearly so easy; it involves difficult steps 

and many more. While compelled to agree to the correctness of the above proceeding, 

there are many who feel dissatisfied, tricked. The multiplication of S by a together with 

the subtraction of one series from the other, gives the result; it does not give 

understanding of how the continuing series approaches this value in its growth. Real 

understanding proceeds by considering what happens in the growth of the series and 

derives the law of this growth, leading to the limit. Many do not bother really to 

understand. They are satisfied to have the result (Wertheimer 1945). 

In an appendix to his book Wertheimer presents an alternative approach to this problem. 

The essential characteristic of it consists in relying on the meaning of just a few relevant 

concepts (fraction etc.). “If I want to understand”, he says, “I must realize from the beginning 

what the first term 1/a means as a part of its whole” (Wertheimer 1945, 218). There is nothing 



Educ. Matem. Pesq., São Paulo, v.24, n.2, p. 41-62, 2022  47 

wrong with that. But people like Leibniz or Wertheimer demand too much: formal aesthetics 

and personal intimacy at the same time. 

Euclid and Descartes 

Euclid’s Elements are considered to provide the first axiomatic presentation of 

geometry and of mathematics in general. But Euclid’s geometry is concerned with the 

possibilities of constructing real geometrical figures and is therefore synthetic. In fact, Euclid 

systematized handling real geometrical objects (Fowler 1987) and introduced the geometrical 

postulates and theorems on the basis of an experience-based certainty.  

For example, in the very short argument of §35 (theorem 25) of book I of Euclid’s 

Elements the word “equal” occurs more than 10 times, with three different meanings: 

congruence, equality of area, and numerical identity. Among the “moderns”, Leibniz and 

Bolzano selected congruence as the essential equality relation, Grassmann took equality of 

area, and Descartes or Cantor and the rest of modern mathematics understood equality as 

numerical identity.   

Things, if considered strictly from a historical point of view, could become still 

somewhat more complicated, because the choice also depended on the kind of logic employed. 

For example, set-theory was initially essentially a logical conception (Ferreirós 1999). 

The points in the plane or in the space of Euclid or Descartes or Newton, as well as, the 

Points of today’s school geometry are all isolated, each marking a special place. As a 

consequence numerical identity becomes the only equality relation. Leibniz saw things 

differently. He understood Euclid in the traditional way, conceiving the congruence relation as 

the fundamental geometric equality. It yet turned out that congruence would not allow 

geometry to be algorithmized, because congruent parts can be put together in different ways, 

so that different “sums” arise. Grassmann drew attention to this in his Geometric Analysis (Otte 

1989, 21ff). 



48                                                            Educ. Matem. Pesq., São Paulo, v.24, n.2, p. 41-62, 2022 

This failure of Leibniz’s construction of a geometric calculus was a direct result of his 

attempt to combine the Platonic conceptualization of geometry with the algebraic version of 

Aristotelian logic developed by Petrus Ramus. The works of Aristotle, rediscovered in high 

medieval Spain and translated into Latin, had caused a tremendous intellectual revolution in 

European universities, “their turbulent Aristotelianized schools of art and theology became the 

seedbeds of scientific thought” (Rubenstein 2003, 7).  

Many historians credited Petrus Ramus (1505-1572) with a particularly important role 

in the academic debates about Aristotle’s logic and rhetoric, while mathematicians and 

scientists regarded Ramus as mathematically and scientifically illiterate. But Ramus’ efforts to 

convert the Aristotelian syllogistic logic, which seemed quite useless in mathematics, into an 

algebraic calculus proved essential. He seems to have been among the first to suggest that 

algebra deserved greater importance in logic. And he advocated a different, arithmetized 

representation in geometry. Ramus insisted that  

geometry, music and astrology cannot be sustained without numbers: These arts must 

therefore explain numbers and subordinate themselves to their service (Rossi 2000, 99).  

Ramus influenced Isaac Beeckman (1588-1637), a very close friend of Descartes in 

Holland. Descartes’s contact with Ramist methods was fostered by his acquaintance with 

Beeckman. This connection led to the idea of creating analytic geometry. In 1619, Descartes 

outlined some new ideas of establishing an analogy between arithmetic and geometry in an 

important letter to Beeckman of March 26 (Shea 1991, 44). Twenty years later Descartes 

published his Geometry. It begins, with the following programmatic statement:  

Any problem in geometry can easily be reduced to such terms that a knowledge of the 

length of certain straight lines is sufficient for its construction.  

Descartes program is based on connecting arithmetic and geometry by a diagrammatic 

model of arithmetic operations in the plane. Descartes determines the geometric quantities 

sought by solving specific equations instead of operating with geometric constructions. In this 
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way, Descartes generalizes the Euclidean concept of construction. The simple “machines” of 

Euclid’s geometry, compass and ruler, are generalized in Descartes’ geometry becoming 

“machines” that allow to construct curves or functions, instead of just points.  

Scientifically, the progress from Euclid to Descartes is reflected by the different 

problem-solving capacities of both systems. For example, the problem of doubling the square 

in the plane can be solved using Euclid’s methods (cf. Plato’s dialogue Meno), but the Delian 

problem of doubling the cube cannot be so solved. Descartes solves it by introducing additional 

objects (points, variables).  

The strength of algebra lies in the possibility of turning even unknown objects into 

objects of mathematical operation and calculating with them. The algebraic solution to the 

Delian problem looks as follows. 

 

Let x be the edge of the cube sought.  

We then get the equation x3 = 2.  

This leads to x4 = 2x.  

Now substituting y = x2. 

yields: y2 = 2x. 

This means that x is constructed as the intersection point of the parabolas y=x2 and 

y2=2x.   

 

The new variable y gives a new reference point and this leads to new relations. That’s the trick 

of mathematics: its indexical signs. Algebra is based, in fact, on a logic of relations, rather than 

on a logic of subject-predicate sentences (object-property logic). An example by the 

psychologist D. Kahneman is useful in further explaining this. Kahneman writes: 

Do not try to solve it but listen to your intuition: 

A bat and ball cost $ 1.10. The bat costs one dollar more than the ball.  

How much does the ball cost?  

A number came to your mind. The number, of course, is 10: 10 ¢. The distinctive mark 

of this easy puzzle is that it evokes an answer that is intuitive, appealing, and wrong. 



50                                                            Educ. Matem. Pesq., São Paulo, v.24, n.2, p. 41-62, 2022 

Do the math, and you will see. If the ball costs 10 ¢, then the total cost will be $ 1.20 

(10 ¢ for the ball and $ 1.10 for the bat), not $ 1.10. The correct answer is 5 ¢ (Kahneman 

2010, 44).  

In any case, psychology (Kahneman) identifies two methods and two forms of thinking. 

One depends on the meaning of the signs and words and dominates philosophy and the 

humanities. The other establishes a logic of relations between things, the known and the 

unknown, and is characteristic for mathematics.  

Mathematical existence 

Historically the issue of solving algebraic equations forced mathematicians to consider 

introducing new “imaginary” numbers. These proved helpful in factoring polynomials of 3rd 

and 4th degree which then made it possible to find general solutions to certain types of 

equations. In the beginning these new objects were perceived as mere operational symbols, 

rather than as true numbers.  

A similar problem arose already at a more elementary level, in connection with the 

issue of factoring quadratic polynomials. It turned out that even simple quadratic equations 

could not always be solved by rational numbers. This of course, had been already known to 

ancient Greek mathematics. To cope with the algebraic irrationals like the square root of 2, 

Euler, in his Complete Guide to Algebra, invented a mixed notation:  a + b (2)1/2 or if we 

abbreviate (2)1/2 by t: a1 + bt for the enlarged set of the algebraic numbers, as he did not see 

how he could deal with the irrational numbers otherwise. The semiotic approach presented the 

solution to an ontological problem, creating a new representation.  

To anybody familiar with the notion of algebraic structure, Euler’s approach may 

suggest an analogy with the imaginary numbers, because 1 and t are linearly independent 

vectors over the rationals, in exactly the same way, as 1 and i are linearly independent vectors 

over the reals. However, the axiomatic idea of a vector-space did not yet exist during the 18th 

century and therefore nobody saw and explored that analogy before the 19th century. New 
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mathematical disciplines, like algebraic number theory or vector calculus and linear algebra 

had to wait.  

It seems like a sleight of hand to create new mathematical objects - such as complex 

numbers - by expanding the application of given structures. Many mathematicians only felt 

reassured when Gauss proposed a geometric interpretation of the imaginary or complex 

numbers. But from the point of view of mathematical justification, geometry may be 

superfluous here, because theories and concepts are simply instruments of thought, which are 

primarily intended to fulfill specific functions.  

Here is an example of an analogous problem that dates back to the times of Nicolaus 

Copernicus, who not only recalculated the orbits of the stars, thereby causing a major 

revolution in respect to the understanding of the place of mankind in the universe, but who also 

carefully reflected upon the economics of money and its devaluation. Until the 1970s, the 

objective value of banknotes worldwide was secured by government promises that anyone 

could exchange their paper money for gold bars. In addition to the payment function, money 

therefore also had a substantial value. In the US, however, President Nixon withdrew that 

promise in 1971. The separation of function and substantial value had begun earlier. 

As a result of the Great Depression after World War I, attempts were made to 

understand money as a pure function of economic activity, just as the mathematician 

understands numbers as purely functional instruments for specific purposes (even Gauss 

realized that numbers were the products of our own making, as he wrote in a letter to Bessel in 

1830). This shift is well illustrated by film with the title Das Wunder von Wörgl (The Miracle 

of Wörgl) that tells the following true story. The global economic crisis after World War I is in 

full swing. The Tyrolean community of Wörgl - a small town near Salzburg in Austria - is 

facing bankruptcy. The Mayor rescues the community bringing back employment and 

prosperity through the introduction of a circulation-secured, purely functionally designed, local 
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money (you cannot deal with this money you can only spend it and if you do not spend it loses 

its value). The idea was based on the economics developed by Silvio Gesell (1862-1932). The 

famous British economist John Maynard Keynes comments: 

Gesell’s chief-work is written in cool and scientific terms, although it is run through by 

a more passionate and charged devotion to social justice than many think fit for a 

scholar. I believe that the future will learn more from Gesell’s than from Marx’s spirit. 

Structuralist trends appeared since the advent of “pure mathematics” at about the turn 

to the 19th century and structural analogy became a powerful research instrument. Hilbert's 

logical mentor Paul Bernays explains: 

In the philosophy of mathematics it is a common thesis, by which one tends to 

characterize what is specific to mathematics, that existence in the mathematical sense 

means nothing but freedom from contradiction. (…) This thesis is neither as simple nor 

as self-evident as it might seem (Bernays 1976, 93).  

The thesis implies that in mathematics the existence of so-called “ideal objects” means 

nothing other than the existence of certain functional legal relationships. In order to interpret a 

formal-axiomatic theory as knowledge, certain intended applications are required, because the 

theory itself is nothing but a formal instrument. These applications can be very diverse. So-

called fictionalism – one more type of modern nominalism - has developed a related conception 

of mathematical objectivity. Hartry Field, a very prominent fictionalist, explains:  

Nominalim is the doctrine that there are no abstract entities. The term ‘abstract entity’ 

may not be entirely clear, but one thing that does seem clear is that such alleged entities 

as numbers, functions and sets are abstract - that is, they would be abstract if they 

existed. In defending nominalism therefore, I am denying that numbers, functions, sets 

or any similar entities exist (Field 1980, 1). 

H. Field, M. Balaguer or L. Tharp saw mathematics as a kind of fictionalism. Tharp 

writes, for instance, that mathematical statements involve claims about relationships between 

very specific concepts. He explains his ideas by the following very brief story. “The only people 

in our story are Gertrude and Hamlet. Gertrude is a queen. Hamlet is a prince, and Gertrude 

is Hamlets mother” (Tharp 1989, 168). Tharp then continues:  
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Given these two stipulations which constitute our story, various consequences follow 

from the meanings of the concepts ›prince‹, ›queen‹ and ›mother‹, and are evidently 

true-in-the-story: for example, no princes are queens; Gertrude and Hamlet are distinct; 

Hamlet is not Gertrude’s mother. None of these conclusions follow logically from the 

given story, however (Tharp 1989, 168 f.). 

And the difference between “8 + 5 = 13” and “8 + 5 = 15” is simply that the first 

equation is true in the “grand tale” of ordinary arithmetic and the second is false. In analogy to 

the fact that the sentence “Gertrude is Hamlet’s son” would be wrong in Tharp’s story. 

Fictionalism in its many forms may be interesting, but it has gained little prominence within 

mathematics because it fails to accommodate the fact that a mathematical theory cannot or 

should not be definitively coupled to any particular meaning. 

Education and mathematics as a language 

Mathematics is often referred to as a language. Up to about 1800 mathematics consisted 

mainly in problem solving and the search for more powerful methods and new applications 

ruled the scene. Since then mathematics became most valued as a language. This development 

was a result of the strong educational role attributed to mathematics and to arithmetics in 

particular in Humboldt’s educational reform, and the associated idea of a unity of research and 

teaching. The conception still exists today. 

The intuitions of the classical spirit, split between rationalism (Descartes) and 

empiricism (Locke), were replaced by debates over the nature of language and communication.  

This shift went hand in hand with the search for a perfect match between sign and meaning. In 

this sense Condillac (1714-1780), Humboldt (1767-1835) and Bolzano (1781-1858) could be 

considered the ancestors of linguistic philosophy which made its way into the debates abut the 

function of language in education. Descartes saw in society only a source of superstition and 

error. Condillac - originally a student of Locke - thought differently. In a letter to a friend 

Condillac writes: 
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Before social life, natural signs are properly speaking not signs, but only cries that 

accompany sentiments of pain, joy, etc., which people utter by instinct and by the mere 

form of their organs. They must live together to have occasion to attach ideas to these 

cries and to employ them as signs. Then these cries blend with the arbitrary signs. 

(Condillac 2010, XXVII)  

That’s what my entire system comes down to in this matter. Social intercourse gives 

occasion (1) to change the natural cries into signs; (2) to invent other signs that we call 

arbitrary; and these signs (the natural as well as the arbitrary) are the first principles of 

the development and progress of the operations of the mind. I admit that on all this my 

work is not clear enough. I hope I’ll do better another time (Condillac 2010, 845).  

Since then mathematics became most valued as a language. Effros writes:  

The formulation and solution of problems has provided what is regarded by many as 

the most characteristic feature of the subject. It must be stressed, however, that the 

primary purpose of problem solving is to facilitate the discovery of new mathematical 

concepts and to gauge the success of these methods.  (…) Our premise is that 

mathematics is a language, since it provides both conveyance for and a substantiation 

of our thoughts. It is that aspect of mathematics that explains the key role it plays in 

modern science (Effros 1998, 132). 

The core of the conception of mathematics as language consists in the axiomatic method 

and in deductive reasoning. This approach came about as soon as it was realized that one was 

free to create all kinds of algebraic systems in which the variables stand for completely 

unspecified objects. Mathematics became Meta-Mathematics (a system of axioms in Hilbert’s 

sense presents a theory after all!)  

Especially algebra became meta-algebra, became transformed from an analytical 

language (Condillac) into a theory of structures. The works of Evariste Galois (1811-1832), 

Hermann Grassmann (1809-1878), A. DeMorgan (1806-1878), George Boole (1815-1864) or 

Benjamin Peirce (1809-1880) in the United States, to name just a few, provide a clear idea of 

this new algebraic spirit. We have gained a glimpse on these developments when discussing 

the problem of the imaginary numbers in section III.  

The dynamic heart of this approach consists in a complementarity of idea and 

application, of concept and object. In his criticism of Edmund Husserl’s emphasis on 

conceptual thinking, Frege emphasized that mathematicians define neither concepts, nor their 

contents, but rather their extensions: 
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For the mathematician, it is no more correct and no more incorrect to define a conic 

section as the circumference of the intersection of a plane and the surface of a right 

circular cone than as a plane curve whose equation with respect to rectangular co-

ordinates is of degree 2. Which of these two definitions he chooses, or whether he 

chooses another again, is guided solely by grounds of convenience, although these 

expressions neither have the same sense nor evoke the same ideas. (Frege, quoted after 

Dummett 1991, 32) 

In school, however, teachers and students need to put far greater effort into 

communicating mathematical ideas. And with respect to mathematical thinking, it seems very 

relevant indeed which definition is chosen, which perspective is taken, or how a problem 

situation is represented, exactly because the various “expressions neither have the same sense 

nor evoke the same ideas”. In mathematics education this is often discussed as the distinction 

between basic (computational) skills and conceptual understanding (compare, for instance, Wu 

1999; Radu 2002). Conceptual thinking plays a far greater role in school, than in theoretical 

mathematics.  

From an educational perspective two concepts A and B are not the same, even if 

contingently or necessarily all A’s are B’s and vice versa, because different concepts help to 

establish different kinds of relationships and thus influence problem solving activity 

development in different ways. Two concepts can be extensionally equivalent and yet function 

differently depending upon the cognitive context they are embedded in. 

Effros construes “understanding” as the ability of forming concepts and links this to his 

conception of a linguistic view of mathematics:  

As in the other disciplines the most valuable product of our enterprise has been 

discovering concepts. These concepts in turn represent extensions of our ability to use 

language, the mediator of human understanding. (Effros 1998, 139). 

Teachers often even believe, that the main objective of school-mathematics resembles that of 

philosophy (creating concepts), or more narrowly that of logic (learning to use language 

correctly). Given this state of affairs, a process is important which Thurston describes under 

the label of mental compression: 
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Mathematics is amazingly compressible: you may struggle a long time, step by step to 

work through some process or idea from several approaches. But once you really 

understand it and have the mental perspective to see it as whole, there is often a 

tremendous mental compression (Thurston 1990, 847). 

Mathematics, then emerges, on the one hand, as the creation or production of meaning 

and depends in its development on hypostatic abstractions, that is, on abstractions from actions, 

rather than from ready-made objects. Abstraction must, on the other hand, be accompanied by 

the inverse process of interiorization of the explicit; a process which transforms the explicit 

symbolic representations into internal means, helping the learner to build new intuitions and 

thus expand its range of feeling, thinking, and acting. 

Mathematics in society 

Nowadays one often hears the complaint, that science and technology have become so 

abstract, so technically and mathematically demanding, and that, as a result, it has become 

increasingly difficult to properly incorporate them into general culture. This has been 

sometimes referred to as a new barbarianism: 

Pour la première fois dans l’histoire de l’humanité, savoir et culture divergent. (…) Les 

déterminations géométriques auxquelles la science galiléenne tente réduire l’être des 

choses sont des idéalités. Celles-ci loin de pouvoir rendre compte di monde sensible, 

subjectif et relatif dans lequel se déroule notre activité quotidienne se réfèrent 

nécessairement à ce monde de la vie, c’est seulement par rapport à lui qu’elles ont un 

sens, c’est sur le sol incontournable de ce monde qu’elles sont construites. De ce point 

de vue si l’on considère la terre non pas comme une planète qui tourne autour du soleil 

(…) mais comme ce sol de toute expérience auquel les idéalisations scientifiques 

renvoient inévitablement, il faut reprendre la folle sentence de Husserl et dire avec lui: 

l’arche-originaire terre ne se meut pas (Henry 1987, 18). 

This gap between intuitive grasp and theoretical concepts is not limited to technology 

and mathematized science. It also has nothing to do with the fact that not everyone can be 

taught the latest scientific techniques and theories. Rather, it has to do with the inner and outer 

worlds falling apart. Communication cannot be reduced to language, but requires the existence 

of a common world and shared customs or world views. In this sense, mathematics educators 
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and philosophers had always understood Euclid and Euclid’s elements as valuable educational 

content.  

Euclid was not importance for Galileo, Leibniz, Bourbaki, etc. but Euclid became 

important for the (higher) educational institutions. From an ideological and philosophical point 

of view Euclid’s Geometry did not lose its relevance due to the advancements in pure 

mathematics towards analytic or projective geometry (Richards 1988).  

However, the comprehensive reform of mathematics education after the Sputnik shock 

of 1957, which came to be known under the name “New Math”, and which tried to narrow the 

gap between mathematical research and the schools was essentially based on the opposite 

philosophy. In 1959, Jean Dieudonne (1906-1992), spokesman for the Bourbaki group, gained 

a lot of attention by proclaiming: “Down with Euclid! Death to Triangles!”. He argued that the 

teaching of geometry at school should be replaced by linear algebra.  

In learning mathematics, we become aware of and experience structures. That is what 

mathematical experience is. Finite sets are not enough, so axioms are used to define the 

structures. Hilbert and his followers used axioms, for example in geometry, to express 

structures. In the 50ies structures entered the teaching of mathematics at the universities. With 

respect to the schools, however, language and logic ruled the day, not mathematical 

structuralism. This also has become the dominant position in analytical philosophy.  

John Rawls (1921–2002), America’s eminent political philosopher, recounts in his 

memoirs (Future Pasts, 2003) a constant dispute of this kind between Burton Dreben, a 

logician considered the highest authority on the recent history of philosophy, and the Harvard 

mathematician Gerald Sacks: 

Sacks then distinguished between syntax and structure, saying that what is important 

for logic is structure, not syntax. What we do in studying mathematics is learn about 

various structures. Sacks granted that syntax is simpler and that it therefore makes sense 

that we begin teaching logic with syntax. But, he argued, syntax is not what is 

fundamental. Sacks argued that Dreben thinks that syntax is fundamental because it is 

simple, and that this is simply wrong.  
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The primary function of language seems to have been originally, “to describe the spatio-

temporal processes which surround us, and whose topology is transparent in the syntax of the 

sentences describing them” (Thom 1971, 698).  

In order to alleviate the difficulties of teaching mathematics, it has therefore been 

proposed that classical Euclidean geometry and its language be given a greater role in 

mathematical teaching because, from various linguistic points of view, it could form a bridge 

between the mother tongue that we unconsciously acquire and the formal algebraic language 

of school mathematics. The eminent mathematician, R. Thom said in his address to the 2nd 

International Congress for Mathematics Education in Exeter in 1972, among other things:  

The language of elementary geometry offers a solution to the following problem: to 

express in a one-dimensional combination – that of language – a morphology, a multi-

dimensional structure. Now this problem recurs in a form ›everywhere dense‹ in 

mathematics, where the mathematician has to communicate his intuitions to others. In 

this sense, the spirit of geometry circulates almost everywhere in the immense body of 

mathematics, and it is a major pedagogical error to seek to eliminate it (Thom 1972, 

206 f.).  

The syntax of our language is poor and simple, but the sense and meaning of what is 

said is usually intuitively immediately apparent. We saw an illustration of this earlier on in our 

presentation of Tharp’s fictionalism. Geometry has a richer structure, consisting of all possible 

constructions and movements in space. However, sense and meaning are still more or less 

intuitively present. At the same time, the meanings are more clearly identifiable through the 

definition of geometric equality (congruence) than is the case with the linguistic meanings. But 

the operational options of geometry are, as point out above, very limited. So the analytical 

element in geometry remains tied to algebra (This reminds one of Leibniz’ problems with his 

project of a geometrical characteristics).  

Algebra is structurally much more complex than language or geometry because it is not 

constrained by any boundaries other than the requirement of logical consistency But it is vague 
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or abstract in its meanings. The sense or the meaning of an algebraic equation lies in the syntax, 

it just consists in calculating.  

Psychologically, our language and the social context carry the greatest weight. 

Psychologists have used this fact to test people's social empathy. Elsa Ermer and Kent Kiehl 

of the University of New Mexico, Albuquerque, decided to examine prison inmates’ moral 

sensitivities using the Wason Card Test (Ermer & Kiehl 1992).  

In the first presentation of the problem, four cards are placed on the table, each having 

a number on one side and a color on the other. The cards laid out show something like: 3, 8, 

brown, and red. The rule is: “If a card shows an even number, then it is red on the other side”. 

Question: “Which cards do you have to turn over to decide if the rule has been broken?” Now 

consider the following problem. The rule to be tested is: “If you rent a car, you should refill the 

tank with gasoline afterwards”. The following cases are these “1) Dave didn’t borrow the car; 

2) Helen borrowed the car; 3) Brianne filled the tank with petrol; 4) Kirk didn’t fill the tank.” 

As before, you are required to decide which cards to turn over to see if the rule has been broken. 

In terms of formal logic, the problems are the same. However, as Ermer and Kiehl found out 

in their large-scale test, in some of the groups tested, most people found the second problem 

easier to solve, than the first.  

The same phenomenon appeared with the following problem. There are rabbits and 

chickens on a farm. Together they have 9 heads and 24 legs. How many rabbits are in the yard? 

You just have to allocate the corresponding number of feet to each head. This is not easy for 

some children to grasp because of the “cruelties against the animals involved. For many 

children it was easier to understand the problem when it was dressed in the form of 2 and 4 bed 

hotel rooms. Distributing beds among rooms seemed less “cruel” than distributing feet to heads.  

Conclusion 

Ultimately, whether in science or in education, we seem unable to escape the debates 
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caused by the opposition of syntax and semantics, of the functional and the substantial 

approach described above. Heijenoort aptly coined this opposition as a distinction between two 

types of logic:  

The universality of logic expresses itself in an important feature of Frege’s system. In 

that system the quantifiers binding individual variables range over all objects. As is well 

known, according to Frege, the ontological furniture of the universe divides into objects 

and functions. Boole has his universal class, and De Morgan his universe of discourse 

denoted by ›1‹. But these have hardly any ontological import. They can be changed at 

will. The universe of discourse comprehends only what we agree to consider at a certain 

time, in a certain context. For Frege it cannot be a question of changing universes. 

(Heijenoort 1967) 

From our point of view, however, it is important to highlight the fact that 

mathematicians work under the paradigm characteristic for the algebraic school initiated by De 

Morgan, George Boole, and George Peacock in England, Robert Grassmann and Ernst 

Schroeder in Germany, by Charles S. Peirce in the US, by Giuseppe Peano in Italy etc. As 

pointed out by Heijenoort, under this paradigm, sign and object retain a relative independence 

from each other. This complementarity of reference proves helpful in advancing mathematical 

knowledge, whether in research or in school. 
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