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Abstract 

Although the beginning of the mathematical treatment of discrete and continuum objects 

precedes the elaboration of the theoretical notions of continuity and discreteness – the property 

of being discrete – it is correct to say that the first time in history that the contradiction between 

the two concepts appeared dates back to ancient Greece, and Zeno's paradoxes are the oldest 

and clearest example of this contradiction. Despite the changes that occurred with the scientific 

revolution of the 17th century and the emergence of the notion of function, continuity remained 

related to the movement of an object from one place to another, although with the work of 

Descartes began a process of unification between the discrete and continuum aspects of 

mathematics. In the 19th century, the notion of continuity took on a new form, as the notion of 

continuity and discrete mathematics began to be approached on the basis of studies of series 

and motion, which made possible the modern definitions of limit and continuity, which in turn 

made it possible to establish an intrinsic relationship between the discrete and the continuum. 
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After the historical exposition, an attempt is made to show the epistemological and 

philosophical implications of this process, which are extremely important for the educational 

process, insofar as the discrete and the continuum are related to language and intuition. The 

methodology used in this article is a historical bibliographical analysis based on the notion of 

complementarity as elaborated by Michael Otte. 

Keywords: Continuity, Discreteness, Definition, Mathematics. 

Resumen 

Si bien el inicio del tratamiento matemático de los objetos discretos y continuos precede a la 

elaboración de las nociones teóricas de continuidad y discreción –propiedad de ser discreto–, 

es correcto afirmar que la primera vez en la historia que la contradicción entre ambos conceptos 

apareció se remonta a la Antigua Grecia, y las paradojas de Zenón son el ejemplo más antiguo 

y claro de esta contradicción. A pesar de los cambios ocurridos con la Revolución Científica 

del siglo XVII y el surgimiento de la noción de función, la continuidad siguió relacionada con 

el movimiento de un objeto de un lugar a otro, aunque, con la obra de Descartes, se inició un 

proceso de unificación entre los aspectos discretos y continuos de las matemáticas. En el siglo 

XIX se daría una nueva faceta a la noción de continuidad, al iniciarse un acercamiento a la 

noción de continuidad y a la matemática discreta a partir de estudios de series y movimientos 

que posibilitaron definiciones modernas de límite y continuidad, que – a su vez – permitió 

establecer una relación intrínseca entre lo discreto y lo continuo. Luego de la exposición 

histórica, buscamos mostrar las implicaciones epistemológicas y filosóficas de este proceso, las 

cuales son de suma importancia para el proceso educativo, ya que lo discreto y lo continuo se 

relacionan con el lenguaje y la intuición. En este artículo se utilizó el análisis bibliográfico 

histórico como metodología basada en la noción de complementariedad elaborada por Michael 

Otte. 

Palabras clave: Continuidad, discreción, definición, matemáticas. 

Résumé 

Bien que le début du traitement mathématique des objets discrets et continus précède 

l'élaboration des notions théoriques de continuité et de discrétion – propriété d'être discret – il 

est correct d'affirmer que la première fois dans l'histoire où est apparue la contradiction 

existante entre les deux concepts remonte à la Grèce antique, avec les paradoxes de Zénon 

comme exemple le plus ancien et le plus clair. Malgré les changements survenus avec la 

Révolution scientifique du XVIIe siècle et l'émergence de la notion de fonction, la continuité 
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est restée liée au mouvement d'un objet d'un endroit à un autre, bien que, avec l'œuvre de 

Descartes, un processus d'unification entre les aspects discrets et continus des mathématiques 

ait commencé, ce qui, au XIXe siècle, donnerait une nouvelle forme à la notion de continuité, 

lorsque commence une approche de la notion de continuité et des mathématiques discrètes 

basée sur les études de séries et de mouvement qui permettront les définitions modernes de 

limite et de continuité, permettant l'établissement d'une relation intrinsèque entre le discret et le 

continu. Après l'exposition historique, nous cherchons à montrer les implications 

épistémologiques et philosophiques de ce processus, qui sont d'une importance extrême pour le 

processus éducatif, dans la mesure où le discret et le continu sont liés au langage et à l'intuition. 

Dans cet article, nous utilisons comme méthodologie l'analyse historique bibliographique basée 

sur la notion de complémentarité telle que développée par Michael Otte. 

Mots-clés : Continuité, discrétion, définition, mathématiques. 

Resumo 

Embora o início do trato matemático de objetos discretos e de objetos contínuos preceda a 

elaboração das noções teóricas de continuidade e discretude – propriedade de ser discreto –, é 

correto afirmar que a primeira vez na história em que apareceu a contradição existente entre os 

dois conceitos é datada da Grécia Antiga, e os paradoxos de Zenão são o exemplo mais antigo 

e claro dessa contradição. Apesar das mudanças ocorridas com a Revolução Científica do século 

XVII e do surgimento da noção de função, a continuidade permaneceu relacionada com o 

movimento de um objeto de um local a outro, embora, com a obra de Descartes, tenha começado 

um processo de unificação entre os aspectos discreto e contínuo da matemática. No século XIX, 

seria dada uma nova feição à noção de continuidade, ao se iniciar uma abordagem da noção de 

continuidade e da matemática discreta com base nos estudos de séries e do movimento que 

tornaram possíveis as modernas definições de limite e de continuidade, que – por sua vez – 

permitiram o estabelecimento de uma relação intrínseca entre o discreto e o contínuo. Após a 

exposição histórica, procura-se mostrar as implicações epistemológicas e filosóficas desse 

processo, que são de extrema importância para o processo educacional, na medida em que o 

discreto e o contínuo se relacionam com a linguagem e a intuição. No presente artigo, utilizou-

se como metodologia a análise histórica bibliográfica com base na noção de complementaridade 

tal qual elaborada por Michael Otte. 

Palavras-chave: Continuidade, Discretude, Definição, Matemática. 



 

290                                                            Educ. Matem. Pesq., São Paulo, v.26, n.4, p.287-307, 2024 

Evolution of the notion of continuity and reflections on the relationship between discrete 

and continuum 

The aim of this article is to present the history of the evolution of the notion of 

continuity, to reflect on the philosophical and epistemological considerations that this history 

entails, and to highlight the relationship between continuity and discreteness – the property of 

being discrete – in terms of the formal and intuitive aspects of mathematics. The method that 

was used was a historical bibliographic analysis based on the notion of complementarity 

developed by Michael Otte (Clímaco et al., 2024; Otte, 1994, 2003). 

We begin by discussing the emergence of the notion of continuity in Ancient Greece 

and Zeno's paradox, identified as "Achilles and the Tortoise," to reflect on the incapacity of 

Greek mathematics to reconcile the qualitative (continuum) and quantitative (discrete) aspects 

of mathematics. 

We then discuss how the relationship between the discrete and the continuum emerged 

in the 17th and 18th centuries, showing how the Greek heritage was transformed, and its 

concepts approached from a new perspective – that of the Scientific Revolution – with the 

growing appreciation of numbers that took shape with the foundation of algebra and the creation 

of analytical geometry. 

We then show how the question of the relationship between the discrete and the 

continuum was resolved – in a way that is still valid today – by the precise and rigorous 

definition of continuity in terms of epsilon and delta, on the one hand, and by the establishment 

of the relationship between the line and numbers, on the other. To do this, we show the 

fundamental process – which can be considered the continuation of a process that began with 

Descartes – of the arithmetization of mathematics. A process that revolutionized mathematical 

knowledge and at the same time promoted an inversion in the way we conceive of the 

continuum and the discrete. 

Before the end, we also explain the importance of the approach taken in the article and 

why the views of historians who insist that there is no substantial difference between the notions 

of rigor of the 17th and 18th centuries and those that emerged in the 19th century and continue 

to this day are incorrect. 

            In the final considerations, we present some important philosophical and 

epistemological implications for thinking about the consequences for the educational process 

of this true scientific revolution – to use the term used by Judith Grabiner, a Cauchy scholar – 

in mathematics. In fact, little has been done to analyze the educational implications of this 
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revolution, as we do in this article, and for this purpose, we use the notion of complementarity 

as proposed by Otte (1994, 2003). 

The complementarity between the discrete and the continuum is also fundamental 

because numerous phenomena in the physical world can be modeled using discrete or 

continuum models, and this has epistemological implications that are not only scientific but 

also methodological and didactic. 

The Emergence of the Concept of Continuity in Ancient Greece 

The notions of continuity and discreteness certainly have deep roots in the history of the 

development of mathematical knowledge and can be found in different times and cultures. 

Throughout its history, humankind has developed counting systems to deal with quantification 

from a discrete point of view, on the one hand, and has observed the existence of the dimension 

of continuum quantities such as length, area, and volume, on the other. 

More than 2000 years before a formal definition of continuity of functions appeared, it 

was common to attribute the property of being continuum to a quantity or phenomenon in nature 

if it consisted of an uninterrupted whole, without holes; in general, before the 19th century, the 

most common examples of continuity did not refer to mathematical objects, but to physical 

concepts such as energy, motion, time, and so on. In mathematics, at least since the 19th 

century, the exemplary model of a continuum object is the straight line.  

In contrast to continuity is the attribute of being discrete. Originally, discrete referred 

to something distinct from something else, denoting a clear separation between elements. Thus, 

integers numbers, taken as individual entities – ignoring fractions or decimals – appear to be 

separate, rather than forming a continuum. Similarly, discrete geometry contrasts with 

continuum geometry in that it deals with geometric structures made up of separate individual 

points. 

The earliest record – referring to the paradoxes of Zeno of Eleia (490-430 BC) – that we 

have of the existence of a difficulty in properly relating the continuum and the discrete can be 

found in the work Physics, by Aristotle (2009a, 1013, 4ff), a philosopher who lived between 

384 and 322 BC. He refers in particular to the paradox that describes a race between the tortoise 

and the war hero and Olympic champion Achilles – and which can be stated as follows: in a 

race between Achilles and the tortoise, in which the tortoise takes the lead, every time Achilles 

reaches the place where the tortoise was, the tortoise has already covered a certain distance and 

is at another place; this happens successively, an indefinite number of times, so that no matter 

how hard Achilles runs, he will never catch up with the tortoise. 



 

292                                                            Educ. Matem. Pesq., São Paulo, v.26, n.4, p.287-307, 2024 

The enunciation of this paradox not only showed the inconsistency between physical 

phenomena and the mathematics of the time, but and more importantly from the point of view 

of the subject of this article, for the first time showed the difficulty of relating the qualitative 

and quantitative aspects of mathematics, or between the continuum and the discrete.  

In Ancient Greece, there were atomistic philosophers and mathematicians – such as 

Democritus (460-370 B.C.) – who conceived of a discrete universe, made up of isolated, 

indivisible parts and used these concepts to successfully calculate the volume of solids and the 

area of geometric figures. 

But the devaluation by Greek thinkers of the practical and utilitarian aspects of 

knowledge, and the elevation of aesthetic, theoretical, and metaphysical ideals, contributed to 

a worldview in which the mathematics that was valued – as Plato (2017, 526c) said in the 

Republic – was not that of those who used it for the purpose of buying and selling, but rather 

that which served the honor of the spirit. This view meant that, despite his great contributions 

to mathematics, there was a devaluation of the notion of number in Greek mathematics, which 

led it away from the search for a quantitative, discrete, and static definition of continuity. 

Plato and the mathematicians who attended his Academy would form the new 

generation of mathematicians who, in turn, would decisively influence the mathematics of the 

Hellenistic period of Greek history – considered by many to be the most fertile period of Greek 

mathematics, and which included mathematicians of the caliber of Euclid and Archimedes –; 

they would reject the way of thinking about mathematical objects conceived by Democritus; 

and they would not continue the atomistic investigations. 

The notion of the number line would take centuries to develop. Thus, a geometric and 

continuum conception of mathematics – which included a qualitative approach – prevailed in 

Ancient Greece. This dominant conception was not only expressed in Plato's (2017) 

valorization of geometry and the metaphysical aspects of numbers, but was systematically 

explained by Aristotle (2009b, pp. 31-34), who formulated a notion of continuity associated 

with motion and the rejection of the idea that space is composed of a finite or infinite number 

of points, which would invalidate Zeno's paradoxes: 

The magnitude over which the change takes place is continuum. For suppose a thing 

changed from C to D. Then if CD were indivisible, two things that have no parts could 

be consecutive, and since this is impossible [the space between them], it must be a 

magnitude and therefore be indefinitely divisible. Then this thing makes innumerable 

changes before it has made any specific change. 
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Influenced by these ideas, Greek mathematicians and thinkers kept the concepts of 

discrete and continuum extremely strictly separated conceptually, and even used different terms 

for each concept: to geometric objects they assigned the term "size", which referred to what is 

continuum, and they assigned the term "number" to what is discrete4. Aristotle had separated 

quantity and quality as different categories that did not communicate, and so the mathematical 

legacy remained: there was no definition of a relationship between continuum and discrete 

quantities, nor any attempt to do so. 

The changes that took place in Greek mathematics during the Hellenistic period of 

Ancient Greece – when Greek culture was on the one hand expanding and on the other hand 

being influenced by practical and arithmetical problems from the East – did not change this 

general orientation, and it would be centuries before mathematicians embarked on the path of 

investigation that would lead to the proper establishment of the relationship between the 

discrete and the continuum, by means of a clear and rigid relationship between points on the 

line and numbers. 

Continuity in the 17th and 18th centuries 

Still in the Middle Ages, scholastics such as Richard Swineshead – or Suisset, whose 

birth and death dates remain uncertain – and Jean Buridan (1300-1358) resumed studies on the 

nature of continuity, and the idea of an oriented line appeared, similar to what came to be called 

the real line in the 19th century, although there was no notion of a set of real numbers. The 

strengthening of trade and navigation, as well as the resumption of an active commercial life in 

cities and the increasing introduction of Indo-Arabic numerals in Europe, favored the beginning 

of a progressive appreciation of numbers and the discrete nature of mathematics (Clímaco, 

2011; Sinkevich, 2017). Also in the Middle Ages, Hindus, and Arabs contributed to the 

development of continuity studies not only through the numerals identified with their names or 

Euclid's translations, but also by approaching numbers in a way that was less rigidly separated 

from geometry and by developing the study of equations. 

In the 17th and 18th centuries, studies of the solutions of algebraic equations and the 

Scientific Revolution – especially with the works of Descartes, Cavallieri, Kepler, etc. – gave 

a tremendous boost to quantitative studies. – gave an enormous impetus to quantitative studies 

 
4 “Magnitude [μέγεθος (transl. megethos)], in fact, corresponds to one of the two divisions of quantity [gr. ποσόν 

, translit. póson], namely the continuous (such as a line, a surface, or a body), while number (gr. ἀριθμός. translit. 

arithmos) ... [is related to the] discrete” (Heath, 1949, p. 45). Roque's (2012, p. 166) statement that “there was 

nothing in common between continuous quantities (infinitely divisible) and discrete quantities (made up of 

indivisible units)” is also important. 
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to invade all areas of the natural sciences, as well as mathematics itself. Thus, the entire edifice 

of Greek mathematics was revised under the eyes of mathematicians with practical (scientific, 

but also financial) and numerical concerns – very different from the Greeks – with the 

invaluable help of the Cartesian plan and the symbolic notation they had developed. 

In this historical period, methods that the Greeks had used – such as exhaustion, 

coordinates – and their theoretical achievements were taken up again, but for the purposes of 

calculations and discoveries, the excessive concern with rigor and the search for beauty and 

harmony that often caused the Greeks to neglect the exploration of other aspects of mathematics 

were abandoned. In particular, the mathematicians of the 17th century innovated profoundly by 

incorporating the study of curves expressing motion into geometry, by introducing studies of 

the operational aspects of numbers and calculations, and by accepting the possibility of making 

approximations between lines and curves. 

Regarding the relationship between the discrete and continuum aspects, we can say that 

the mathematicians of the Scientific Revolution period, familiar with the mathematical works 

of the Greeks and using them in a new light, achieved a strong union between these concepts. 

One of the most important results of this approach to the discrete and the continuum was the 

creation of algebra (Boutroux, 1992), analytical geometry (with the Cartesian plane), and the 

notion of function. 

It is undeniable that the above-mentioned advances of the 17th century represented a 

profound change in the nature of mathematics and a significant milestone in the search for an 

understanding of mathematics in which its discrete and continuum aspects were brought closer 

together. However, in the 17th century, mathematicians were not yet faced with the question of 

defining continuity or numbers in terms of numerical sequences, and it was not until the 19th 

century that the notion of continuity was separated from the notion of motion or transformation 

of natural phenomena. 

Although Isaac Newton (1642-1727) carried out important studies on numerical series, 

his work Mathematical Principles of Natural Philosophy (2012) is still full of geometric 

demonstrations, which shows that the union between the continuum and the discrete was still 

relatively fragile in this scientist's work. The English thinker conceived of continuum quantities 

through continuum motion and explicitly rejected the definition of curves as formed by points 

–  he understood them as generated by the motion of points. The lack of a proper understanding 

of the relationship between the discrete and the continuum prevented him from giving a correct 

definition of some of the most fundamental concepts of calculus, such as limits and continuity, 
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which led him to use methods in the calculation of derivatives that, as Berkeley (2010) would 

show, at the beginning of the eighteenth century, contained important contradictions  

Gottfried Wilhelm Leibniz (1646-1716) dealt with the notion of continuity in several 

works and in his correspondence. In 1702, in a letter to Varignon, he states, "if a continuum 

transition is supposed to end at a certain limit, then it is possible to form a general argument 

that also includes the final limit" (Leibniz, 1962, p. 93). In another publication, he states, "nature 

... never proceeds by leaps" (Leibniz, 1961, p. 567) or that "no change takes place by means of 

leaps" (p. 168). 

The definition of continuity appears in an even different way – it relates ordinates and 

coordinates – in Leibniz's letter to Bayle in 1687, in which he presents continuity as a principle 

of general order expressed in the words: "as the data are ordered, so the unknowns is ordered" 

(Leibniz, 1969, p. 37). In the Latin version of On the Principle of Continuity, Leibniz (1904, p. 

84) makes an even clearer formulation of the distinction between independent variables (which 

he calls given) and dependent variables (sought): "a determined order in what is corresponds to 

a determined order in what is sought". 

From the different definitions we have presented, we can deduce that in Leibniz's work 

the question of mathematical continuity ended up being confused with the law of conservation 

of motion applied to hard bodies: when two hard bodies collide, is there a loss of energy or 

simply a transfer of energy from one to the other? Leibniz maintained that there could be no 

loss of energy out of respect for the law of continuity, since it would not be possible to 

"transitionem per saltum" (cf. Schubring, 2004, p. 182). Throughout the 18th century, there 

was no significant change in this view, as we can also see in Bernoulli (1727), who postulated 

the Intermediate Value Theorem as a physical concept – and not a mathematical one. 

 But even in Leibniz's work, when the author related continuity to the loss of energy, the 

law of continuity became equivalent to the Intermediate Value Theorem, which for the first 

time placed this theorem as something fundamental – equivalent to a principle – for 

mathematics (cf. Schubring, 2004). Obviously, neither continuity nor the Intermediate Value 

Theorem could be proved. 

Although in the 18th century mathematics began to take the form it has today – and 

mathematical treatises, even those on mechanics, began to contain fewer and fewer drawings 

and more and more formulas, functions, and series – the criteria for the convergence of series, 

essential for the definition of the limit, were not studied in depth. To explain concepts such as 

continuity, the infinitely large, and the infinitely small, mathematicians continued to use 
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explanations that sometimes relied on analogies with nature and sometimes on metaphysical 

arguments (Bolzano, 1905; Boyer, 1949). 

The contradictions in attempts to define the basic concepts of calculus remained 

unsolved in the 18th century, and only D'Alembert (1723-1790) attempted to define these 

concepts in terms of limits, but still with certain dubieties. 

The practical consequence of this was that infinite series, which appeared more and 

more frequently in the solution of differential equations, led to completely absurd results, even 

in the hands of mathematicians of the caliber of Euler (1959), who lived between 1707 and 

1783. On the other hand, in a work published in 1748, this scholar attempted to define the 

continuity and discontinuity of curves according to whether or not they were described by a 

single law of formation (Euler, 1983), which overall shows how far he was from the central 

issues for differential and integral calculus in the 19th century, namely the definition of 

continuity and convergence of series. 

Continuity in the 19th century: arithmetization 

Arithmetization is the process by which mathematics began to base its most important 

concepts on arithmetic notions, more specifically on the concept of real numbers. This process 

revolutionized mathematics by reversing the continuum-discrete relationship. If, until the 

eighteenth century, the number was seen either as the expression of continuum physical 

quantities or as a metaphysical principle whose validity was confirmed and legitimized by the 

workings of nature, with the advent of arithmetic, the number became the basis of the very 

concept of continuity, through numerical series and the definition of the notion of continuity in 

arithmetical terms, that is, numerical and static. 

If the 17th and 18th centuries had been characterized by the search for new discoveries 

at the expense of the excessive rigor of the Greeks, the 19th century was a kind of return to 

rigor, but without the Greek scruples of using numbers and approximations between curves and 

lines, and with the new symbolism introduced in the previous two centuries. 

Bolzano and Cauchy were the mathematicians of the first half of the 19th century who 

made the most progress in this direction. Bolzano formulated the need to rewrite the foundations 

of calculus on a pure and rigorous basis, but his work was not as well known or had the same 
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impact as that of Cauchy, who developed similar principles in more areas of mathematics than 

Bolzano and whose work was immediately known by the greatest mathematicians of his time5. 

With the definition we present below – which would be formulated in a similar way by 

Cauchy a few years later and made even more analytical and rigorous by Weierstrass in the 

second half of the 19th century – continuity is now treated arithmetically and statically: 

the expression that a function f(x) varies according to the law of continuity for all values 

of x inside or outside certain limits means only this: if x is any such value, the difference 

f(x+ω) – f(x) can be made smaller than any given quantity by requiring only that ω can 

be made as small as we like. With the notation I introduced in Section 14 of the 

Binomischhe Lehrsatz etc. (Prague, 1816), this is f(x+ ω) = fx + Ω. (Bolzano, 2004, p. 

256) 

Bolzano also enunciated a convergence criterion for series – prior to Cauchy's – today 

known as Cauchy's Convergence Criterion and proved the existence of the greatest lower limit 

(or smallest upper limit) for limited sets, which we call today the least (and supremum). This 

was rewritten by Weierstrass as every limited sequence (of real numbers, as we know today) 

has a convergent subsequence, and since the end of the 19th century it has been called the 

Bolzano-Weierstrass Theorem. 

A few years later, Cauchy (1821, p. 43) gave the following definition of continuity, very 

similar to that of Bolzano: 

Let f(x) be a function of the variable x, and suppose that for any value of x between two 

given bounds, this function always takes a single finite value. If, starting from a value 

of x between these limits, the variable x is given an infinitesimally small increase α, 

then the function itself will be increased by the difference f(x+α)-f(x), which depends 

on both the new variable α and the value of x. That is, the function f(x) will be, between 

the two limits assigned to the variable x, a continuum function of this variable if, for 

each value of x between the limits, the numerical value of the difference f(x+α)-f(x) 

decreases indefinitely with that of α. In other words, the function f(x) remains 

continuum with respect to x between the given limits if, between these limits, an 

infinitesimally small increase in the variable always produces an infinitesimally small 

increase in the function itself. It also says that the function f(x) is, in the neighborhood 

of a given value assigned to the variable x, a continuum function of that variable 

whenever it is continuum between two limits of x, even very close ones, which contain 

the value in question. 

Weierstrass, in the second half of the 19th century, presented a definition – not in an 

article or treatise, but in a lecture note later published by several students who attended his 

 

5 Clímaco (2014) and Grabiner (1981) explain Bolzano's isolation, partly because he lived in Bohemia, partly 

because he never held a chair of mathematics in any institution, partly because he had a scholastic style – quite 

different from that assumed by the great mathematicians of his time. 
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courses, and which is very similar to the one found in calculus textbooks today – in which he 

gives greater precision than the definitions given by Bolzano and Cauchy, and eliminates all 

reference to notions such as becoming, approaching, decreasing, among others, which refer 

to issues related to motion, infinitely small, or similar. 

Here there is a certain inaccuracy in Boyer's statement (1949, p. 287): "Weierstrass 

defined f(x) to be continuum, within certain limits of x, if for any value x0 such that for all 

values in this interval the difference f(x)-f(x0), in absolute values, is less than ε." 

So let's go back to Dugac (1973, p. 64) who, based on the notes of Hermann Amandus 

Schwarz, talks about the course given by Weierstrass in the summer of 1965: 

By introducing the definition of the infinitely small variation of the variable and the 

function using δ and ε, Weierstrass introduces a very important notion that will give the 

definitions of limit and continuity all the precision and clarity they have today. 

Weierstrass thus gave form to the notion of limit, which until then, after a decisive step 

by Cauchy, had been expressed by the statement that if h tends to zero, (𝑥 + ℎ) − 𝑓(𝑥) 

tends to zero. In fact, he gave the following definition "If it is possible to define a limit 

δ such that, for any value of h smaller in absolute value than δ, 𝑓(𝑥 + ℎ) − 𝑓(𝑥) is 

smaller than any arbitrarily small value of ε, then we can say that we are matching an 

infinitely small variation of the variable with an infinitely small variation of the 

functions. This is the crucial step towards the current delimitation of the limit, which 

establishes a functional relationship between δ and ε, expressed by inequalities between 

the variables and between the values of the function. Moreover, the fact of replacing the 

intuitive idea of "tends to" with these inequalities leads to a precise analytical expression 

whose introduction into analysis will have a very great impact. Furthermore, it will 

replace sequences of points tending to a fixed point with neighborhoods of a point 

defined by inequalities, which will be one of the origins of general topology. The use of 

this definition in this course confirms the opinion of Pновити [[90], 25): "It seems that 

it was Karl Weierstrass who first introduced the notion of the limit of a function as 

precisely as possible. And the first handbook inspired by Weierstrass' ideas, published 

by Otto Stolz, gives the current definition of the limit, specifying what is difficult in 

Weierstrass (Volume 1, 990). 

Although Otto Stolz does not define continuity in his work, by establishing the 

definition of limit using epsilon and delta, he laid the foundation for the definition of continuity 

found in current textbooks. 

Having established the current notation with Weierstrass's work rewritten by Otto Stolz, 

which, as Circe (2021) said, reveals the intrinsic relationship between didactic needs and the 

new writing of mathematics in a pure way, we think it is important to reveal a part of the history 

that concerns continuity – more precisely, the relationship between the real numbers and the 

continuity of the line. 



 

Educ. Matem. Pesq., São Paulo, v.26, n.4, p.287-307, 2024  299 
 

About 70 years after the publication of Bolzano's (2004) definition of continuity in his 

Purely Analytic Proof... – and 23 years after the course in which Weierstrass introduced the 

concept of the modern limit –, Dedekind (1963, pp. 11-12) stated that the correspondence 

between the line and the set of real numbers must simply be postulated in such a way that it is 

obvious to the subject, and thus there is no need to demonstrate this correspondence: 

I find the essence of continuity... in the following principle: If all points of the straight 

line fall into two classes such that every point of the first class lies to the left of every 

point of the second class, then there exists one and only one point which produces this 

division of all points into two classes, this severing of the straight line into two 

portions.”As already said I think I shall not err in assuming that every one will at once 

grant the truth of this statement; the majority of my readers will be very much 

disappointed in learning that by this commonplace remark the secret of continuity is to 

be revealed... I am glad if every one finds the above principle so obvious and so in 

harmony with his own ideas of a line; for I am utterly unable to adduce any proof of its 

correctness, nor has any one the power. The assumption of this property of the line is 

nothing else than an axiom by which we attribute to the line its continuity, by which we 

find continuity in the line. If space has at all a real existence it is not necessary for it to 

be continuous; many of its properties would remain the same even were it discontinuous. 

And if we knew for certain that space was discontinuous there would be nothing to 

prevent us... from filling up its gaps, in thought, and thus making it continuous; this 

filling up would consist in a creation of new point-individuals and would have to be 

effected in accordance with the above principle. 

Similarly, the definition of irrational numbers by embedded intervals, elaborated in its 

current form by Hilbert and Kolmogorov – which we present in the way it was described by 

Richard Courant (1888-1972), who was Hilbert's student and colleague; and Robbins Herbert 

(1915-2001) by the statement that "an irrational point is completely described by a sequence of 

embedded rational intervals of length tending to zero" (Courant & Robbins, 2000, p. 82) – is 

also nothing more than a form of explicit postulation of something we deduce from the notion 

of spatiotemporal continuity. For, so conceived, "the existence on the number line (considered 

as a line) of a point contained in any sequence of nested intervals with rational endpoints" (p. 

82) is considered as 

a fundamental postulate of geometry ... We accept it, as we accept other axioms or 

postulates in mathematics, because of its intuitive plausibility and its usefulness in 

constructing a consistent system of mathematical thought ... To construct this definition, 

after having been led to a sequence of embedded rational intervals by an intuitive feeling 

that the irrational point "exists," is to abandon the intuitive support with which our 

reasoning proceeded, and to understand that all mathematical properties of irrational 

points can be expressed as properties of sequences of embedded rational intervals. 

(Courant & Robbins, 2000, pp. 82-83) 
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To have a proper understanding of the significance of the profound transformations that 

took place in the foundations of calculus in the 19th century 

Having established in the previous topic the paths followed by the notion of continuity, 

we will now discuss how the profound transformations that took place in the foundations of 

calculus – resulting from the correct definition and conception of the notion of continuity – 

between the 18th and 19th centuries should be properly understood. 

The quotations from the eighteenth century made in the previous topic are, in our view, 

sufficient to show that Leibniz's conception of continuity was far removed from the arithmetical 

conception of the nineteenth century. This is confirmed by Schubring (2004, p. 176): he states 

that the authors who considered Leibniz's definition to be equivalent to that of the 19th century 

"were not aware of an essential conceptual difference ... while the modern concept concerns the 

continuity of functions, Leibniz's version concerns quantities of geometric variables". Thus, 

even if one can hardly disagree with Roque's (2012, pp. 404-405) statement that "the 

constitution of the concept of rigor now in force is linked to the history of the analysis of 

mathematics", his statement about eighteenth-century mathematicians that "we cannot say that 

their results lacked rigor, as if they had the goal of advancing without concern for the 

foundations of their methods" (pp. 406-407) should be discussed more carefully. 

After all, recognizing the historicity of a certain phenomenon cannot mean abandoning 

the study of its fundamental characteristics and when they appeared in their most critical 

aspects. 

In this sense, it seems extremely important to understand that the mathematicians of the 

17th century began a conscious movement to abandon the excessive rigor of the Greeks in 

geometry in order to obtain new results, and that this disposition was largely continued by the 

mathematicians of the 18th century. This movement was associated with what Struik (1989, p. 

21) called the "spirit of experimentation". Euler's attitude is an example of this trend. As stated 

by Boyer and Rusnock, quoted by Clímaco (2011, p. 117), in reference to the mathematicians 

of the 18th century, 

The objects of these mathematicians' greatest concern were the creation and 

development of mathematics, and not its foundation. ... If, on the one hand, the greatness 

of the advances made in mathematics in this century is unquestionable, on the other 

hand, Berkeley's questioning of the notions of infinity and infinitude remained without 

a satisfactory answer, and the contradictory nature of the explanations that 

mathematicians tried to give for these notions was highlighted by the Bishop's criticism, 

and also by the careless manipulation of infinite series, which led Euler to generalize 

certain results to the point of affirming equality 
1

1−𝑥
= 1 + x + 𝑥2 + ⋯ + x𝑛+. ..  as true 

for arbitrary values, such as x =-1, x =1, x = 2, etc. (cf. (cf. RUSNOCK, 1997, p. 73). 
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Thus, at the end of the 18th century, these concepts (infinity, infinities, and continuity) 

were explained either in metaphysical terms, or in terms of geometric explanations, or 

involving the notions of space and time (Boyer, 1949, p. 287). 

From the historian's point of view, the key should not be the subjective question of 

whether Euler and others considered their work to be rigorous or not, but rather to understand 

the nature of the mathematical work they were doing, how much they devoted themselves to 

questions of foundations, the value they placed on these questions, and what they understood 

by rigor and foundations. 

We have decided to use a long quotation from Grabiner (1981, pp. 1-2) – a well-known 

scholar of Cauchy and his rigorization movement – on the historical difference between the 

notion of rigor in the 18th century and that of the 19th century, which also emphasizes the real 

revolution that this change caused: 

These two different aspects-use and justificationof the calculus, simultaneously 

coexisting in the modern subject, are in fact the legacies of two different historical 

periods: the eighteenth and the nineteenth centuries. In the eighteenth century, analysts 

were engaged in exciting and fruitful discoveries about curves, infinite processes, and 

physical systems. The names we attach to important results in the calculus-Bernoulli's 

numbers, L'Hopital's rule, Taylor's series, Euler's gamma function, the Lagrange 

remainder, the Laplace transform-attest to the mathematical discoveries of eighteenth-

century analysts. Though not indifferent to rigor, these researchers spent most of their 

effort developing and applying powerful methods, some of which they could not justify, 

to solve problems; they did not emphasize the mathematical importance of the 

foundations of the calculus and did not really see foundations as an important area of 

mathematical endeavor. By contrast, a major task for nineteenth-century analysts like 

Cauchy, Abel, Bolzano, and Weierstrass was to give rigorous definitions of the basic 

concepts and, even more important, rigorous proofs of the results of the calculus. Their 

proofs made precise the conditions under which the relations between the concepts of 

the calculus held. Indeed, nineteenth-century precision made possible the discovery and 

application of concepts like those of uniform convergence, uniform continuity, 

summability, and asymptotic expansions, which could neither be studied nor even 

expressed in the conceptual framework of eighteenth-century mathematics. The very 

names we use for some basic ideas in analysis reflect the achievements of nineteenth-

century mathematicians in the foundations of analysis: Abel's convergence theorem, the 

Cauchy criterion, the Riemann integral, the Bolzano-Weierstrass theorem, the Dedekind 

cut. And the symbols of nineteenth-century rigor-the ubiquitous delta and epsilon-first 

appear in their accustomed logical roles in Cauchy's lectures on the calculus in 1823. Of 

course nineteenth-century analysis owed much to eighteenth-century analysis. But the 

nineteenth-century foundations of the calculus cannot be said to have grown naturally 

or automatically out of earlier views. Mathematics may often grow smoothly by the 

addition of methods, but it did not do so in this case. The conceptual difference between 

the eighteenth-century way of looking at and doing the calculus and nineteenth-century 

views was simply too great. It is this difference which justifies our claim that the change 

was a true scientific revolution, and which motivates the present inquiry into the causes 

of that change. 
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The words of Lützen (2003 quoted by Roque, 2012, p. 367) as supposed proof that "in 

more recent texts, however, we can already discern a certain awareness that the implicit concept 

of rigor in traditional narratives has a retrospective character" simply does not hold up, since 

neither Lützen gives any indication that the rigor of the 19th century was comparable to that of 

other centuries – or that it could be surpassed or relativized from one day to the next – nor has 

the research carried out in the last 20 years (from 2003 to 2023) indicated anything along the 

lines of what Roque claims, which confirms our thesis that the notion of rigor did indeed 

undergo profound transformations in the 19th century and that it was not a major concern in the 

17th and 18th centuries. 

To a certain extent, the mathematicians of the 18th century were aware of the lack of 

rigor in calculus, to the extent that none of them had yet managed to respond to the objections 

raised by Berkeley to the foundations of calculus in the same 18th century – nor had they 

responded in a reasoned way to Zeno's paradoxes. The mathematicians of the 17th and 18th 

centuries understood that their merit was to make mathematics grow. To do this, they avoided 

being paralyzed by logical reasons or even by inconsistencies in the foundations, and they 

believed that the progress of their mathematical work at that time did not depend on such rigor. 

To say that these mathematicians did not have the same concern or rigor as the mathematicians 

of the 19th century in no way diminishes their work, it simply helps us to understand the 

dynamics of growth and transformation of mathematics that are characteristic of each era. 

Replacing this analysis with the mere observation that all phenomena are historical does nothing 

to help us analyze and establish the fundamental characteristics of historical phenomena. 

This rigor was only achieved when arithmetic was introduced: the foundation of 

calculus on the notion of limit, the rigorous study of the convergence of series, the definition of 

each real number by a numerical sequence, the assignment of each point on a straight line to a 

single real number, and so on. Only this development allowed mathematics to reach the 

generality it achieved in the 19th century, which gave new impetus to the other sciences and 

prepared for the great expansion and specialization of mathematics in the 20th century. Finally, 

with the transformation that took place in the nineteenth century, mathematics ceased to be a 

science of quantities, magnitudes, and calculations – in the sense of accounting – and began to 

focus on the notion of proving known results. Moreover, the creation of concepts by 

mathematicians to demonstrate these results – in particular the concepts of limit, continuity, 

derivative, and convergence – completely transformed mathematics, leading to what we know 

today as pure mathematics, something that Roque (2012) himself recognizes. 
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And the emergence of pure mathematics is not limited to arithmetic, nor is it an isolated 

phenomenon from what happened in other fields. As Giddens (1991, p. 39) notes, "it is 

characteristic of modernity ... to reflect on the nature of reflection itself. 

Clímaco (2014, pp. 135-136) states that 

one of the most important characteristics of modern mathematics, which emerged in the 

19th century, and of both tendencies that tried to define it, is its self-reflexivity, its meta-

mathematical dimension. At the beginning of the 19th century, during the Second 

Industrial Revolution, mathematicians became aware of the need for self-reflection, to 

reflect on their own concepts. Meta-mathematics then emerged, a way of conceiving 

mathematics that outlined its own conception of mathematical logic, and with which it, 

which had always been characterized by quantities and magnitudes, lost this 

characteristic with the change and breadth of its own ideas, becoming a conceptual 

discipline. 

Concepts such as functions, series, and derivatives – previously regarded as tools of the 

physical sciences – came to be regarded from the nineteenth century as objects proper to 

mathematics, to be studied separately or at least far removed from their use in other sciences or 

from intuitive notions. 

From the point of view of the relationship between the continuum and the discrete, the 

progressive transformations in the notion of continuity in the 19th century led to a reconciliation 

between the discrete and the continuum: If in Ancient Greece qualitative aspects and a 

continuum, non-numerical approach to mathematics prevailed, and if the Hindus, Arabs, and 

Chinese gave priority to the numerical, and therefore discrete, aspects of this science, in the 

seventeenth century a reconciliation between the discrete and the continuum began, culminating 

in Dedekind's definition of number (1963, pp. 11-12), which solved, so to speak, what he calls 

"the mystery of continuity" – the mystery of that unintuitive mathematical concept, the number 

line, which first haunted the Greeks with the paradox of Achilles and the tortoise, but which 

even mathematicians like Bolzano and Cauchy could not fully understand. 

Finally, we affirm that there is an important connection between the relationship 

between the discrete and the continuum and that between language and intuition. At the turn of 

the eighteenth and nineteenth centuries, continuity was transformed from something intuitive, 

dynamic, and specific to the physical sciences into a static concept written down in language. 

In this way, the continuum was explained in terms of the discrete. And the relationship between 

intuition and concept is fundamental to understand any educational debate, since it concerns 

the relationship between psychological and logical aspects, formal and social, objective and 

subjective, and so on. 
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Final considerations 

Throughout the article, we have shown that the problem of the relationship between the 

notions of continuum and discrete goes back to antiquity, and already in the classical period of 

Ancient Greece, the tension over the nature of the relationship between these notions led to 

philosophical and mathematical debates that marked an impasse that was not resolved until 

many centuries later. 

With the Scientific Revolution, there were significant changes in the understanding of 

the relation between continuum and discrete quantities, and in this context, there were 

significant developments in calculus, initiating a transformation in mathematics that was not 

completed until the 19th century, when there was a real revolution in the foundations of what 

is known as differential and integral calculus. 

If we examine the historical relationship between the discrete and the continuum, we 

conclude that they are complementary, in the sense that they cannot be reduced to each other, 

since they are interrelated. An example of this is the calculus itself, which, although it deals 

mainly with continuum quantities, could only be fundamental with the use of discrete concepts, 

such as the notion of limit and the sum of series, so that in order to have a global understanding 

of its historical development, it is necessary to approach it from the point of view of 

complementarity, developed above all by Otte (1994, 2003) – and systematized by Clímaco et 

al. (2024). 

Today, this relationship is present in various areas of applied mathematics. In the theory 

of digital representations, for example, the ability to represent the real line, which is continuum, 

in discrete computer systems is extremely important, which shows how important the 

complementarity approach is in making it possible to analyze and understand various 

phenomena more accurately. However, we recognize that reality is always more complex than 

we can represent it; some phenomena are better understood from a continuum point of view, 

while others are better understood from a discrete one. Then there are those more specific 

phenomena that may not fit perfectly into either perspective or those that reconcile the two 

perspectives simultaneously – so a complementary approach is fundamental to understanding 

phenomena in their entirety. 

From an educational point of view and in the schooling process, understanding these 

aspects is important because it provides those involved in the educational process with a more 

comprehensive, solid and in-depth view of mathematical concepts: numbering systems, 

graphical representation of functions and the notion of limit, which makes it possible to 
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strengthen learners' ability to reason mathematically – so that they are better able to look at 

mathematical problems from a broader perspective and to transpose concepts into different 

forms and contexts of representation. 

Understanding the history of the notion of continuity, as well as the complementarity of 

the discrete and the continuum, is fundamental for the professor to be able to use learning 

strategies that allow students to explore both continuum and discrete aspects of the 

mathematical concepts being taught, and to make connections between mathematics and its 

practical application. 
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