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Abstract  

This article aims to contribute to the discussion in this issue, centered around the question “How 

to develop a Reference Epistemological Model (REM) for the teaching of Calculus?”, more 

specifically considering the teaching of derivatives. The arguments presented here advocate the 

inclusion of theoretical constructs, such as the ones developed by Tall for the teaching of 

derivatives, due to their potential to make cognitive and didactical contributions to students and 

teachers, respectively. The constructs that we refer to in this text were called generic organizer 

and cognitive root of local straightness by Tall. The authors of this text consider that adding 

these constructs to an REM may foster integration between theory and practice, which is 

important for the development of Mathematics teaching. We organized our reflections by 

linking ideas related to the integration between theory and practice, the conception of an REM, 

the teaching of derivatives and Tall’s theoretical constructs. We concluded the article 

emphasizing the importance of continuously observing the prevailing epistemology of the 

concept of derivatives for teaching, aiming to find contributions that support the emancipation 

of Didactics of Mathematics and promote effective Calculus teaching.  
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Resumen 

Este artículo se propone contribuir a la discusión de este número en torno a la cuestión “¿Cómo 

desarrollar un Modelo de Referencia Epistemológico (MER) para la enseñanza de Cálculo?”, 

considerando específicamente la enseñanza de la derivada. Los argumentos aquí expuestos se 

guían por la defensa de la inclusión de constructos teóricos, como los desarrollados por Tall 

para la enseñanza de la derivada, debido a las potencialidades que tienen para agregar 

contribuciones de orden cognitivo y didáctico a los aprendices y a los profesores 

respectivamente. Los constructos a los que nos referimos fueron denominados por Tall como 

organizador genérico y la raíz cognitiva de la rectitud local. Para los autores de este texto, la 

inclusión de estos constructos en un MER puede favorecer la integración de teoría y práctica, 

importante para el desarrollo de la enseñanza de la Matemática. Organizamos las reflexiones 

encadenando ideas sobre: integración de teoría y práctica; concepción de un MER; enseñanza 

de la derivada y los constructos teóricos de Tall. Concluimos la presentación del artículo 

reforzando la importancia de la vigilancia sobre la epistemología dominante del concepto de 

derivada para la enseñanza, con vistas a la búsqueda de contribuciones a la emancipación de la 

Didáctica de la Matemática y el favorecimiento de la enseñanza del Cálculo. 

Palabras clave: Modelo epistemológico de referencia; Enseñanza del cálculo; 

Constructos teóricos propuestos por David Tall. 

Résumé 

Cet article vise à contribuer à la discussion de ce numéro autour de la question «Comment 

développer un Modèle de Référence Épistémologique (MER) pour l'enseignement du Calcul?», 

en considérant spécifiquement l'enseignement de la dérivée. Les arguments présentés ici sont 

guidés par la défense de l'inclusion de construits théoriques, tels que ceux développés par Tall 

pour l'enseignement de la dérivée, en raison de leur potentiel à apporter des contributions 

d'ordre cognitif et didactique aux apprenants et aux enseignants respectivement. Les construits 

auxquels nous nous référons ont été nommés par Tall comme organisateur générique et la racine 

cognitive de la rectitude locale. Pour les auteurs de ce texte, l'inclusion de ces construits dans 

un MER peut favoriser l'intégration de la théorie et de la pratique, ce qui est important pour le 

développement de l'enseignement des Mathématiques. Nous avons organisé nos réflexions en 

enchaînant des idées sures: l'intégration de la théorie et de la pratique; la conception d'un MER 
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; l'enseignement de la dérivée et les construits théoriques de Tall. Nous concluons la 

présentation de l'article en renforçant l'importance de la vigilance sur l'épistémologie dominante 

du concept de dérivée pour l'enseignement, dans le but de rechercher des contributions à 

l'émancipation de la Didactique des Mathématiques et de favoriser l'enseignement du Calcul. 

Mots-clés : Modèle épistémologique de référence ; Enseignement du calcul ; Construits 

théoriques proposés par David Tall. 

Resumo 

Este artigo se propõe a contribuir com a discussão deste número em torno da questão “Como 

desenvolver um Modelo de Referência Epistemológico (MER) para o ensino de Cálculo?”, 

considerando especificamente o ensino da derivada. Os argumentos aqui expostos norteiam-se 

pela defesa da inclusão de constructos teóricos, como os desenvolvidos por Tall para o ensino 

de derivada, pelas potencialidades que eles têm de agregar contribuições de ordem cognitiva e 

didática aos aprendizes e aos professores respectivamente. Os constructos aos quais nos 

referimos foram denominados por Tall por organizador genérico e a raiz cognitiva da retidão 

local. Para os autores deste texto a inclusão desses constructos, em um MER, pode favorecer a 

integração teoria e prática importante ao desenvolvimento do ensino da Matemática. 

Organizamos as reflexões encadeando ideias sobre: integração teoria e prática; concepção de 

um MER; ensino da derivada e os construtos teóricos de Tall. Finalizamos a apresentação do 

artigo reforçando a importância da vigilância sobre a epistemologia dominante do conceito de 

derivada para o ensino, com vista à busca de contribuições à emancipação da Didática da 

Matemática com o favorecimento do ensino do Cálculo. 

Palavras-chave: Modelo epistemológico de referência, Ensino do cálculo, Constructos 

teóricos propostos por David Tall. 
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Theoretical constructs proposed by Tall for teaching derivatives: reflections on the 

development of a Reference Epistemological Model (REM)  

This article aims to contribute to the field of Didactics of Mathematics by examining 

the development of a Reference Epistemological Model (REM) for teaching Calculus3. To do 

so, we focused our arguments on the concept of derivatives and on the discussion on the use of 

theoretical elements, such as the theoretical constructs proposed by Tall within the scope of 

Didactics of Mathematics. We consider that Tall’s proposition enriches theoretical and practical 

relationships and generates cognitive and didactical reflections that favor Mathematics teaching 

and learning. In order to achieve our goals, we organized this text by presenting elements that 

integrate theory and practice; the concept of REM; the teaching of derivatives and Tall’s 

theoretical constructs. 

Regarding the integration between theory and practice, Jaworski (2006) suggests that 

Mathematics Education should reflect on this integration and consider how research could 

contribute to the improvement of Mathematics teaching and learning.  

According to the aforementioned researcher, the field of Mathematics Education: 

[...] has become mature in its theoretical propositions. However, according to her, the 

status of Mathematics teaching remains the same, theoretically, not well configured and 

poorly developed. While theories provide us with lenses to analyze teaching (Lerman, 

2001), the “big theories” do not seem to offer clear perceptions for teaching or ways 

through which teaching could foster the learning of Mathematics (Jaworski, 2006, p. 

188, adapted). 

The author understands that it is necessary to promote interaction between theory and 

practice and between teachers and researchers, because using a theory 

[...] is not able to show us what teaching should encompass, but teachers and educators 

can look for it in order to understand more clearly what teaching could encompass, so 

we learn about teaching with the possibility for developing teaching (Jaworski, 2006, p. 

189, author’s emphasis). 

We agree with Jaworski (2006) that theories play a role in supporting analyses and 

providing examples, but theories themselves do not offer practical guidance or prescribe 

specific actions. It is a fact that when a theory is developed and presented, its direct applicability 

to practical situations is not guaranteed. Thus, like Jaworski (2006), we emphasize the need to 

 
3 In this text, we will adopt the term “Calculus” to express that we consider Differential and Integral Calculus of a 

real variable. 
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foster the integration between theory and practice in the field of Mathematics Education, more 

specifically in order to establish a connection between educators and researchers.  

To understand the concept of REM, Gascón (2014) says that an REM is a set of ideas, 

principles and approaches that can be used to form a theoretical or methodological framework 

for studying a specific area of knowledge; in this case, it is Mathematics teaching. This model 

provides a conceptual structure so that we can understand how mathematical knowledge is 

generated and developed and analyze didactical phenomena within an educational context. 

An REM plays a vital role in the emancipation of Didactics of Mathematics by enabling 

didactics research to break free from school codes and the Dominant Epistemological Model 

(DEM) in educational institutions, which in turn allows us to construct and give visibility to 

phenomena that remain invisible within the educational context today and that could be 

revealed by academic research studies. Gascón (2014) understands that emancipation is 

necessary in two levels: institutional and epistemological.  

The first level is characterized when the researcher aims to free themselves from the 

dependencies that accompany the position of “teacher” (a subject embedded within an 

institution), of “noosphere” (a subject of the noosphere, who could be, for example, an author 

of textbooks, curriculum plans, curricular documents, teacher education texts, etc.) and of 

“mathematician” (a subject of the institution that produces and preserves knowledge). It allows 

mathematical educators to analyze said models critically and to construct others that could 

enable the interpretation of didactical phenomena, thus contributing to autonomy in the 

construction of the object of study of Didactics of Mathematics.  

According to Gascón, for epistemological emancipation, it is necessary to consider: 

[...] didactical transposition processes as an object of study; educators should analyze 

critically the epistemological models of mathematics that prevail in institutions and, 

thus, free themselves from the uncritical assumption of such models. (Gáscon, 2014, p. 

100, our translation). 

Gáscon proposes a critical approach to didactics research, emphasizing the need for 

emancipation from an epistemological model prevailing in an institution. It means that 

researchers should examine didactical transposition processes in a critical way. By doing so, 

educators do not only identify the limitations and influences imposed by these models, but also 

aim to free themselves from accepting uncritically and passively the paradigms proposed by 

these models. This critical attitude is essential to foster new perspectives and methodologies 

that are free from prevailing and traditional impositions.  
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Moreover, using specific models to study didactical phenomena enables researchers to 

assess, correct and contrast the models with historical and didactical data from teaching 

practice, contributing to the epistemological emancipation of Didactical Science. Thus, we 

understand that it is possible to incorporate David Tall’s contributions to the development of a 

Reference Epistemological Model (REM) into the teaching of the concept of derivatives.   

About the teaching of derivatives 

Research on Calculus teaching and learning has attracted researchers all over the world 

and shown that the results related to learning have not been good. It has also been demonstrated 

by the assessment of degree programs in which Calculus is a part of the curriculum. Thus, there 

are reasons to question teaching methods and their influence on the attribution of meaning to 

Calculus concepts, particularly to the concept of derivatives.  

In a literature review on the teaching of derivatives, Escarlate (2008) identified that this 

concept is commonly presented through the “derivative / tangent line” analogy, which might 

result in a type of comprehension that is not compatible with its formal definition. Table 1 

presents this analogy. 

Table 1. 

Analogies between the derivative and the tangent line to a curve (adapted from Escarlate, 

2008, p. 34)  

DERIVATIVE / TANGENT LINE 

The notion of tangency in Basic Education (about the number of contact points) is not enough for 

the context of Calculus. 

An infinitesimal argument (derivative) is necessary to define tangency in all its generality. 

In the current structure of Calculus, the concept of derivatives is introduced before that of the 

tangency of a function at a point.   

“The derivative is the inclination of the tangent line.” The inclination may be admitted as a definition 

of the slope of the tangent line at a given point, but not as a derivative at a point. 

Difficulties in derivative learning emerge from the mistaken relationship between derivatives and 

the slope of a tangent line.  

 

The “derivative / tangent line” analogy poses challenges to learning, and they should be 

considered. One of them refers to the fact that concepts of trigonometric and geometric tangent 

are introduced in Basic Education, which may potentially limit the understanding of the concept 

of derivatives. The relationship between a tangent line and a trigonometric function can be 

established, but there is still an understanding of the tangent line to a curve that lacks rigor, with 

the interpretation that there is an interception between the line and the graph at a single point. 

That is to say, the local nature of the intersection is not discussed. Furthermore, according to 
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Escarlate (2008), the analogy (the slope of the tangent line at a point/derivative at a point) does 

not favor the knowledge of applications of derivatives, such as the study of increasing and 

decreasing intervals of a real-valued function. Thus, it is imperative to examine critically and 

expand the definition of the derivative of a function at a point beyond the aforementioned 

analogy.  

Based on this assumption, it is important to take into consideration a debate on how to 

introduce the concepts of derivative and limit in initial Calculus courses due to the formal 

definition of these concepts. An important question raised by Monaghan et al. (2023) is whether 

the definition of the concept of limit is necessary when teaching differentiation. They state that: 

Whether the limit (as a formal concept) is necessary or not when introducing 

differentiation in an introductory Calculus course is a matter of debate. […], it is not 

whether limits are important or not (they are important!), but if limits should be formally 

introduced in the teaching and learning of derivatives in an introductory Calculus 

course. (p. 92).  

Monaghan et al. (2023) say that four approaches have been proposed by research studies 

related to the teaching of derivatives: the rough and ready approach, the limits approach, the 

differential and infinitesimal approach and the kinematic approach. 

We highlight that the rough and ready approach involves working with average rates of 

change as an intuitive way of introducing derivative concepts. It makes use of functions and 

their algebraic and graphic representations, emphasizing the use of digital technologies in 

Calculus teaching. According to the authors, this approach “enables teachers and students to 

develop directly ideas of derivability at a point without a previous preparation with limits, 

infinitesimals or the kinematic approach” (Monaghan et al., 2023, p. 92). 

The concept of derivatives is defined from the concept of limit of the incremental ratio. 

According to Monaghan et al. (2023), this definition fulfils  

[...] the requirements of mathematical rigor, but, as mentioned before, students have 

considerable difficulties with limits, thus, should we build an initial approach to 

pointwise differentiation starting from a mathematical concept that students consider 

particularly difficult? (Monaghan et al., 2023, p. 99). 

To give examples of difficulties with the concept of limit, we refer to Cornu’s work 

(1991), according to whom cognitive aspects cannot be derived, exclusively, from a 

mathematical definition.  

The researcher highlights negligence on the part of teachers for considering their 

students’ “spontaneous conceptions”, because they encompass a wide range of ideas, images, 
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intuitions and knowledge acquired through their daily experiences. These experiences are not 

necessarily influenced by formal teaching methods, which leads students to modify and align 

their individual conceptions with the definition of the concept. It may potentially create 

difficulties within the learning process. For instance, mistakes might arise when students 

perceive a limit as an “insurmountable barrier” or consider the limit of a sequence as a stationary 

value in which the terms of the sequence remain the same for sufficiently large indices (Cornu, 

1991, p. 155). 

Furthermore, it is fundamental to be aware of the historical development and the 

conflicts surrounding the concept of derivatives because they may provide valuable information 

about the nature of the concept and its implications for teaching and learning. In this sense, the 

author warns us: 

It is difficult to introduce the notion of limit in mathematics because it seems to have 

more to do with metaphysics or philosophy. Mathematicians are often reluctant to speak 

about said concepts, from ancient Greece to D’Alembert, who wrote: “One can quite 

easily do without the rest of all this metaphysics of the infinite in the 

differential calculus”. Lagrange expressed a similar horror of the metaphysical aspects 

(Cornu, 1991, p. 161). 

This historical resistance to the metaphysics of infinite and to the abstract concepts 

related to differential calculus reflects the complexity involved in the understanding and 

teaching of derivatives. The notion of limit, which is essential for the development of the 

concept of derivatives, is a point of tension between pure mathematics and its philosophical 

implications. To deal with such complexity, it is crucial for educators to adopt approaches that 

make these concepts more accessible to students. It may be done through a combination of 

visual and intuitive methods that could demystify the abstraction of limits and derivatives. The 

addition of concrete examples and the use of technological tools, such as visualization software, 

could help to build a more tangible understanding of these concepts, mitigating historical 

difficulties and providing students with elements to explore and apply the concept of derivatives 

in a contextualized way. Thus, understanding the historical roots and conceptual challenges 

surrounding differential calculus may enrich pedagogical practice and foster new approaches 

to the teaching of derivatives. 

According to Ely (2021), the differential and infinitesimal approach to Calculus is based 

on the use of differentials and infinitesimals as fundamental elements to teach and understand 

Calculus. This approach aims to restore the notion of direct reference of differential notation, 

allowing a deep and intuitive interpretation of the mathematical concepts involved.  
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Infinitesimals can be understood as extremely small numbers that, although not 

rigorously defined in the 19th century, were reintroduced into mathematics through the 

development of Non-standard Analysis (Robinson, 1966) in the 1960s. This approach enables 

a formal definition of infinitesimals and allows Calculus to be rigorously performed based on 

them.  

Non-standard Analysis formally considers infinitesimals within the scope of a set of 

axioms, offering a sound basis for calculations with ‘extremely’ small numbers. This approach 

provides mathematicians with the flexibility to choose between Real Analysis and Non-

standard Analysis, allowing research and achieving results without compromising 

mathematical rigor.  

According to Monaghan et al. (2023), the concept of infinitesimals can be used as an 

alternative to the introduction of the concept of derivatives in Calculus teaching. The 

reintroduction of this concept aims to provide a different perspective, allowing the direct use of 

notations originally conceived for infinitesimals. 

In the 19th century, Calculus underwent a significant change when infinitesimals were 

removed from the curriculum due to the perception that they were not rigorously defined. Then, 

Calculus was developed in terms of limits, and most Calculus courses today avoid using 

infinitesimals; they prefer an approach based on limits to define fundamental Calculus concepts 

such as derivatives, integrals and continuity. 

In the 1960s, Non-standard Analysis, developed by Robinson (1966), enabled the formal 

definition of infinitesimals, which, in turn, allowed a rigorous development of Calculus based 

on them. Robinson demonstrated that virtually everything that can be done through limit-based 

Calculus can also be done through infinitesimal Calculus. Researchers like Tall (1980, 1981a, 

1981b, 2001) and Ely (2021) conducted studies on the application of this notion in introductory 

Calculus courses and advocated the benefits of this approach. Terence Tao (2007) also used 

Non-standard Analysis to avoid the excessively complicated management of epsilons, 

highlighting that it is not entirely foreign to the Analysis; it is just “an ultrafilter away” from it.  

The kinematic approach, indicated by Monaghan et al. (2023), explores differentiation 

through the concept of “derivative at a point”, considering the speed of motion at a specific 

time interval. It is initially illustrated through uniform motion expressed by the function, but its 

complexity rises when considering non-uniform motion, modeled by polynomial functions, for 

example. The conceptual difficulty arises when dealing with the apparent neglect of the time 

interval, when calculating average speed for a sufficiently short time interval. The conclusion 
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is the definition of the instantaneous velocity function of a moving object at time t0 as the 

derivative of the function that models the displacement of the object at t0. 

About Tall’s theoretical constructs  

The discussion on the potential of theoretical constructs for teaching derivatives should 

be based on some factors. The first aspect that we consider important in teaching is the need to 

explore examples that are not usual in the prevailing teaching practice. These examples should 

highlight the characterization of differentiable and non-differentiable functions at a specific 

point in their domains, thus enabling the development of the understanding of the concept of 

derivatives. To do so, it is necessary to expand the exploration of these types of functions, 

without limiting it to those represented algebraically by a single expression or polynomial 

functions.  This argument is used by Monaghan et al (2023) when recommending this 

diversification. They say it is important to foster 

[…] different ways of thinking of a function (equation, graph, diagram); teachers’ 

awareness that students think that functions should be given by a formula and/or be 

continuous; different families of functions (for instance, linear, polynomial, rational); 

inverse functions; and domain and range. (Monaghan et al, 2023, p. 92)  

As an example, let us consider the function b = b(x), called blancmange. Part of its graph 

is expressed in Figure 1.  

 

Figure 1. 

Graphic representation of the blancmange function, constructed in GeoGebra. (Our 

production). 

This function is represented algebraically by the sum of a convergent series of functions 

given by 𝑏(𝑥) = ∑ 𝑓𝑖(𝑥)∞
𝑖=1 , where fi: ℝ  → , defined as: 𝑓𝑖(𝑥) =

1

2𝑖−1 𝑓(2𝑖−1 ⋅ 𝑥)  and                   

f (x) = d(x, )4, with 𝑖 ∈ ℕ. 

 
4 In the metric space (ℝ, | . |), the function d: ℝ → ℝ , defined by d(x, ℤ) = inf {|x – z|, where z is an integer} is the 

function that assigns to every x the distance between x and the set ℤ. 
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The blancmange function does not have a derivative at any point in its domain and it is 

continuous at all these points. The demonstration of such fact can be found in Tall (1982). 

The second example refers to the function 𝑔: [−1, 1] →  ℝ, 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑔(𝑥) =
1

⌊
1

𝑥
⌋
 , 

where ⌊
1

𝑥
⌋ denotes the greatest integer of 

1

𝑥
, for 𝑥 ≠ 0 and 𝑔(0) = 0. 

The function g has a derivative equal to 1 at x = 0 and at the points where the function 

is continuous, because, in the latter case, the function is constant on each interval  [
1

𝑛+1
 ,

1

𝑛
[. The 

greatest integer function is not continuous at 𝐶 = {
1

𝑛
 | 𝑛 ∈  ℤ∗}. Figure 2 shows the graphic 

representation of g. 

 

Figure 2. 

Graphic representation of the function g. (Our production) 

These examples enable the analysis of the relationship between continuity and 

differentiability, as well as of derivatives of functions that are not defined by a single law of 

formation. This approach supports the development of formal concepts in Mathematics and 

expands a prevailing epistemological model in which the functions considered can be defined 

by a single expression and in which differentiability goes hand in hand with continuity. 

It is also viable to explore the notion of rate of change, connecting it to the concept of 

derivatives, in a manner similar to the rough and ready approach suggested by Monaghan et al. 

(2023). Using advance organizers 5  is mentioned as an effective tool because it provides 

immediate answers to students’ investigations and help them to understand Calculus concepts. 

 
5 According to Ausubel (2003), an advance organizer consists of “introductory material at a higher level of 

abstraction, generality and inclusiveness than the learning task itself. The function of the organizer is to provide 

ideational scaffolding (anchoring) for the stable incorporation and retention of more detailed and differentiated 

material that follows in the learning passage, as well as to increase discriminability between this situation and the 

relevant anchored ideas of the cognitive structure. The organizer should not only be explicitly related to the more 
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To introduce a generic organizer, we are guided by Tall’s statement, aiming to introduce 

how it acts. According to Tall 

[...] an organizer is something that acts in a Piagetian way, first being within an 

environment in which equilibrium is possible, then it is necessary to find a discrepant 

property that causes conflict and requires mental reconstruction leading to a new and 

rich state of equilibrium (Tall, 1986, p. 86-87). 

The definition of generic organizer entails the definition of a theoretical construct 

attached to it, called cognitive root, “a cognitive unit which is (potentially) meaningful to the 

student at the time, yet contains the seeds of cognitive expansion to formal definitions and later 

theoretical development” (Tall, 2000, p. 11). Or “an anchoring concept which the learner finds 

easy to comprehend, yet forms a basis on which a theory may be built” (Tall, 1989, p. 9). 

Examples of cognitive roots stemming from Calculus concepts are local straightness 

(rate of change/differentiation/differential equations), perceptual continuity (formal concept of 

continuity); area under a graph (integration). 

A function is considered locally straight at a point x0 within its domain if its graphic 

representation resembles a straight line when sufficiently magnified. In this case, we say that 

the function exhibits local straightness.  

In a computer environment, Tall devised the generic organizer Magnify, which “allows 

the user to home in on a graph and draw a magnified portion in a second window” (Tall, 2000, 

p. 11). In Figure 3, the graph of the real function given by the expression g(x) = sin x is 

constructed using this software. 

 

 

specific learning situations that follows, but also (in order to be apprehensible and stable) be related to the relevant 

ideas in the cognitive structure and take them into account” (p. 65 – 66). 
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Figure 3.  

Magnifying a portion of the sine function graph at x = 1 (Tall, 2000, p. 1) 

This notion should be considered in the teaching of derivatives for two reasons: the first 

one is that, according to this notion, by using “the magnification of graphs produced by a 

computer, it is possible to enable the underlying nature of the limit process to be revealed. It 

contrasts with the traditional concept of limit, in which the process is explicitly defined. This 

notion, as stated by Dubinsky and Tall (1991), introduces a new approach that enables a 

comprehension of limit through the magnification of a portion of the graph in a computer 

environment. The other reason is the establishment of the following link: 𝑓′[ derivative 

function of 𝑓 ] can be viewed as the function that associates each point (𝑥𝑜, 𝑦0) [on the graph 

of 𝑓]  with the value of the slope of the tangent line to the graph at (𝑥𝑜, 𝑦0)” (Tall, 2000, p. 11, 

adapted). 

According to Tall (2000), this perspective offers valuable information about the nature 

of the derivative function. Essentially, when examining the graph of a given function, based on 

the concept of local straightness, it is possible to conjecture at which point differentiability does 

not occur. When a function is differentiable at a point, magnifying a portion of the graph around 

this point at a proper level of magnification makes the selected area resemble a line segment, 

when displayed on a computer. 

Moreover, according to Tall, an approach in which the notion of local straightness is 

used to introduce the concept of derivatives: 



 

Educ. Matem. Pesq., São Paulo, v. 26, n. 3, p. 028-046, 2024  41 

Instead of a symbolic compression that encapsulates a process of limit in the limit object 

(the derivative), it is an embodied compression that operates on an object (the graph) to 

provide a new object (the graph of the derivative function). The student can now view 

the derivative as the function that associates the value of the slope of the tangent line 

with each point. The new task is to symbolize this view of the derivative function 

through the calculation of a good approximation, or better still, a perfect symbolic 

representation (Tall, 2013, p. 303).  

This approach may provide students with an intuitive comprehension of the concept of 

derivative and encourage the symbolization of the concept through arithmetic calculations or 

refined symbolic representations. Thus, the new proposed task is the transition from a purely 

symbolic abstraction to a more tangible and visual interpretation of the derivative. We 

understand that the notion of local straightness may compose an REM for the teaching of this 

concept.  

In Almeida (2017), the generic organizer Magnify was adapted into an application 

developed in GeoGebra to facilitate work with the cognitive root of local straightness. In Figure 

3, we present an application called “MagnifyG” and its functionality for analyzing the local 

straightness of a differentiable function at a point. The example we chose is the function y = x2 

at a specific point.  

 

 

Figure 3. 

Use of ‘MagnifyG’ for the function y = x2. 

The “MagnifyG” application consists of two viewing windows. The first window, on 

the left, contains a text field located in the lower part. In this text field, the user can insert the 

expression that defines the function, which, in this case, is y = x2. Inside this window, two points 

are highlighted. Point A lies on the x-axis, whereas point B is on the graph of the function. Point 

B has a specific condition: it shares the same x-coordinate as point A, and its y-coordinate is 

the image of the x-coordinate through function f, denoted as (x(A), f(x(A))). Initially, only point 
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A can be manipulated by the user with the mouse. When point A is moved, point B maintains 

the x-coordinate of A, while its y-coordinate is determined by the function f, thus preserving 

the original conditions. Furthermore, the first window contains a square in which point B serves 

as the intersection point of its diagonals. The length of each side of the square is twice the value 

of the sliding control h. The area of the plane that is shown in the second viewing window 

corresponds to the magnified portion of the square. The sliding control h is linked to the square. 

In the second viewing window, there are two elements: point M and a graph. Point M 

shares the same coordinates as point B, whereas the graph represents the magnified portion of 

the graph of the function specified in the text field (in this case, y = x2). The magnified part is 

highlighted by the square. The elements in this window cannot be altered by the user. This 

window has some particular characteristics: point M is always positioned in the center of the 

windows, and axis x and y are adjusted properly. Besides, the dimensions of this window are 

linked to the vertices of the square built in the first viewing window, thus defining the 

magnification. 

In Almeida (2017), a set of tasks is developed using the notion of local straightness to 

introduce the concept of derivatives. We highlight here the first set of tasks: 

The first set consists of activities in which the notion of local straightness will be used 

with the following goals: to observe the existence of a value h to which the magnified 

portion of the graph resembles a line segment; to calculate the average rate of change of 

a function at two points belonging to the magnified portion of the graph, where the graph 

resembles a line segment (Almeida, 2017, p. 138, our translation). 

In this set of tasks, there is an investigation about the calculation of the average rate of 

change of a function at two specific points within the magnified segment of the graph, where 

the graphic representation resembles a segment of a line r. In these tasks, it is suggested to 

explore the algebraic representations of the line that best approximates the tangent line t to the 

graph of this function at the point (x0, f(x0)), that is, to find an approximation of the form                        

f (x0 + k) ≈ ak + f (x0), where 𝑎 ∈  ℝ  (the slope of the line) and 𝑥0, 𝑥0 + 𝑘 ∈  𝐷𝑜𝑚 𝑓 ,                   

(with 𝑥0 being in the domain of the function f) and k is a variable for approximation, as 

suggested in the rough and ready approach described by Monaghan et al. (2023). 

In summary, David Tall’s theoretical approach for teaching derivatives, with focus on 

local straightness and on the exploration of non-polynomial functions, provides a rich and 

innovative view on the construction of the concept of derivatives. The introduction of examples, 

such as the blancmange and g, and the use of technological tools, such as the “MagnifyG” 

application, may provide students with an improved comprehension of the relationship between 
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continuity and differentiability, besides facilitating the visualization and symbolization of the 

concept of derivatives. The integration of pedagogical practices that approach the rate of change 

and use the notion of local straightness, as suggested by Tall and complemented by Monaghan 

et al. (2023), may significantly enrich Calculus teaching beyond the prevailing epistemological 

model. These approaches do not only expand the prevailing epistemological model but may 

also foster an intuitive comprehension of Calculus concepts, aiming to enable their 

formalization.  

 

Conclusion 

In this paper, we presented contributions by David Tall, a British researcher, that may 

assist in the development of an REM for the concept of derivatives. 

Tall’s theoretical contributions, such as local straightness and the analysis of non-

polynomial functions, are fundamental for the construction of an REM. Tall’s approach 

expands the current epistemological comprehension of the concept of derivatives by adding 

functions like blancmange and 𝑔: [−1, 1] →  ℝ,  defined by  𝑔(𝑥) =
1

⌊
1

𝑥
⌋
 , for 𝑥 ≠ 0  and 

𝑔(0) = 0 , which challenge current conceptions of continuity and differentiability. These 

examples do not only enrich the understanding of the concept of derivatives, but they also 

provide a theoretical foundation that can be integrated into an REM. The notion of rate of 

change, another meaningful epistemological object, is approached by graphic magnification, 

enabling an intuitive comprehension of derivatives and their graphic representation. 

It is crucial to acknowledge that, while these theoretical concepts are essential for the 

formation of an REM, practical activities that explore the concepts should be part of the Study 

and Research Path (SRP) or of Study and Research Activities (SRA). An REM should focus on 

the definition and exploration of the epistemological objects that underpin the concept of 

derivatives, while practical and investigative tasks are developed separately, promoting a 

concrete application of concepts.  

In summary, the integration of Tall’s ideas into an REM for teaching derivatives 

provides a theoretical foundation that enriches the comprehension of the concept. The functions 

explored and the notion of local straightness are valuable epistemological elements that, when 

properly integrated into an REM, help to construct a meaningful understanding of derivatives. 

However, it is important to establish a difference between the epistemological objects that form 
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an REM and the practical tasks that are part of an SRP, thus ensuring a clear and well-structured 

methodological approach to the teaching of derivatives.  

Furthermore, we understand that changing from a Dominant Epistemological Model for 

the teaching of derivatives may present challenges. Ely (2021) emphasizes we still face several 

institutional restrictions on the use of infinitesimals for the teaching of derivatives. The 

researcher says that: 

There are still several major institutional limitations on the teaching of calculus through 

infinitesimals or differentials. Students may face confusion and opposition from their 

colleagues and instructors. They might find it more difficult to interact with tutors or 

learn through standard online resources. Textbooks that use infinitesimals are (still?) not 

supported by large multimillion-dollar publishing houses. Instructors that use these 

approaches have reported resistance from some of their peers, especially 30 years ago, 

when Non-standard Analysis was less popular as a rigorous basis for the teaching of 

infinitesimals (Pittenger, 1995). These institutional factors may make teaching calculus 

through infinitesimals and/or differentials seem like swimming upstream. However, if 

not now, when will he have a good reason to bring about such a change? The benefits 

to students’ comprehension of calculus, as research has unveiled, make all efforts 

worthwhile. (Ely, 2021. p. 601). 

Thus, as stated by Gáscon (2014), it is necessary to analyze critically the Dominant 

Epistemological Model in Mathematics teaching, especially when introducing the concept of 

derivatives. Ely (2021) highlights the existence of institutional limitations to teaching calculus 

through infinitesimals, pointing out resistance from some peers and instructors. Therefore, we 

understand that it is necessary to question and reformulate the established models and that 

theoretical constructs developed within the scope of Mathematics Education could help in this 

task. 

Besides, when a Dominant Epistemological Model is analyzed, as in the case of teaching 

derivatives with the introduction of the concept through a formal definition, resistance and 

challenges related to teaching through non-conventional approaches are expected. Ely (2021) 

reports these challenges and resistance faced by those instructors who choose to teach calculus 

through infinitesimals, which include opposition from peers, difficulty in interacting with tutors 

and lack of support from major publishing houses. 

We understand that, for the development of an REM, results from research on Calculus 

teaching conducted by Mathematics Education researchers could be used to contribute 

reflections on the practice of teachers who teach Calculus-related subjects (functions, limits, 

derivatives and integrals). We highlight that it is necessary to acknowledge the importance of 

integrating theoretical results into the creation of educational resources for Mathematics 
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teaching. According to Almeida (2017), another possibility is the development of materials 

based on theoretical constructs established by other researchers in the field of Mathematics 

Education, such as “Dubinsky and Sfard, who presented cognitivist theoretical constructs that 

may be considered in the development of teaching activities” (Almeida, 2017, p. 204, our 

translation). Thus, we emphasize that an REM is an important tool for a critical analysis of 

Mathematics teaching, enabling an emancipatory and reflective approach to the teaching and 

learning process. 
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