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Abstract 

Since ancient times, mathematics has displayed a high level of creativity and impressive 

dynamism. However, in teaching/learning programs, they appear as relics to be displayed 

within the walls of the school. To break with this archaism, Statistics has emerged as the part 

of mathematics that can shed light on its dynamism and societal roots. Here, too, computational, 

and theoretical aspects have left little room for a clear understanding of the concepts studied. 

The aim of this article is to show, through the epistemological study of the notion of standard 

deviation, how the study of the evolution of concepts can help us understand their meaning and 

serve as a resource for their teaching. 
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Desde la antigüedad, las matemáticas han demostrado un altísimo nivel de creatividad y una 

dinámica impresionante. Sin embargo, en los programas de enseñanza y aprendizaje aparece 

como una reliquia que debe exhibirse entre los muros de la escuela. Para romper con este 

arcaísmo, la Estadística ha surgido como la parte de las matemáticas que puede arrojar luz sobre 

su dinamismo y sus raíces sociales. También en este caso, los aspectos computacionales y 

teóricos han dejado poco margen para una comprensión clara de los conceptos estudiados. El 

objetivo de este artículo es mostrar, a través de un estudio epistemológico de la noción de 

desviación típica, cómo el estudio de la evolución de los conceptos puede ayudarnos a 

comprender su significado y servir de recurso para su enseñanza. 

Palabras clave: Desviación típica, Estudio epistemológico, Interpretación, Estadísticas. 

Resumo 

Desde a antiguidade, a matemática tem demonstrado um nível muito alto de criatividade e uma 

dinâmica impressionante. Entretanto, nos programas de ensino e aprendizado, ela aparece como 

uma relíquia a ser exibida dentro das paredes da escola. Para romper com esse arcaísmo, a 

Estatística surgiu como a parte da matemática que pode lançar luz sobre seu dinamismo e suas 

raízes sociais. Também nesse caso, os aspectos computacionais e teóricos deixaram pouco 

espaço para uma compreensão clara dos conceitos estudados. O objetivo deste artigo é mostrar, 

por meio de um estudo epistemológico da noção de desvio padrão, como o estudo da evolução 

dos conceitos pode nos ajudar a entender seu significado e servir como um recurso para ensiná-

los. 

Palavras-chave: Desvio-padrão, Estudo epistemológico, Interpretação, Estatísticas. 

Résumé 

Les mathématiques, depuis l’antiquité, ont montré un niveau de créativité très élevé et un 

dynamique impressionnant. Cependant, dans les programmes d’enseignement-apprentissage, 

elles apparaissent comme des vestiges à exposer dans les murs de l’école. Pour rompre cet 

archaïsme, la Statistique est apparue comme la partie des mathématiques qui vienne éclairer 

son dynamise et son ancrage sociétal. Là également, les aspects calculatoires et théoriques ont 

laissé peu de place à une claire compréhension des concepts étudiés. Cet article a pour objet de 

montrer, à travers l’étude épistémologique de la notion d’écart type, comment l’étude de 

l’évolution des concepts permette de comprendre leur sens et serve de ressources pour leur 

enseignement.  

Mots-clés : Écart type, Étude épistémologique, Interprétation, Statistique. 
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Clarification of the epistemological study of the concept of standard deviation 

Epistemology is the name of the discipline that studies the way we know (Fourez and 

Larochelle, 2002). For Dorier (1997), the word "epistemology" covers a variety of conceptions, 

but in mathematics, it plays the role of mediator between historical and didactic work. While 

the history of mathematics recounts the events of the past that marked the creation of 

mathematical objects, the didactics of mathematics studies the process through which 

mathematical objects are transmitted and acquired and explains the links between the teaching 

and learning of mathematical objects. But to do this, didactics needs epistemology to study how 

mathematical objects are created, the obstacles encountered in creating these objects and the 

interactions between different mathematical objects. For the didactician, epistemology 

meditates on historical culture, to facilitate its restoration as a learning object and a teaching 

tool. 

Dorier (1997) draws on the different conceptions of the word "epistemology" to define 

the adjective "epistemological" in the context of mathematics (p.16). For him, an 

epistemological study is a study of the evolution4 of mathematical knowledge. Thus, to better 

understand a mathematical teaching object, the researcher must go back to the sources of 

knowledge and analyze the process that leads from the production of this object in scholarly 

knowledge to its constitution as an object of knowledge to be taught. 

Thus, in Statistics, the epistemological study of the concept of standard deviation 

describes the evolution of the concept, the conditions of its creation, its uses, the process of its 

passage from scholarly knowledge to knowledge to be taught, and the distance that exists 

between the mathematical object, the object of teaching and the object taught. However, in this 

text, we limit ourselves to describing the context in which the concept of standard deviation 

was constructed, to deduce an interpretation.  

Appearance, origins, and persistence of observation errors 

In the fields of Astronomy5 and Geodesy6, problems of objectivity of measurements 

carried out on the same celestial or terrestrial object were often raised by scientists. We think 

of a measurement as the determination of the number of elements that make up a finite set of 

objects (e.g., measuring the number of particles in the universe), or as the association of a 

physical quantity with a number by comparison with a reference unit of the same kind (e.g., 

 
4 In this context, evolution means progress, stagnation, or decline. 
5 Astronomy is the science of the stars and the universe. 
6 Geodesy is the science of determining the shape of the earth and measuring its dimensions to draw maps. 
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measuring the volume of a pile of sand, measuring the temperature of a body, measuring the 

length of a stick, measuring the area of a surface). In the first case, the result of the measurement 

is a number without a unit, and in the second case, the result of the measurement is a number 

expressed in the chosen reference unit. 

Eighteenth-century astronomers and their predecessors noted a glaring disparity 

between the results of measurements of a quantity related to an astronomical or geodesic object. 

Indeed7, measurements made by several different observers on the same object, or the same 

quantity produced different results (fifty people each measuring the dimensions of the same 

table produced the same number of results); several measurements made by the same observer 

on the same quantity also produced different results (a person weighing an object a thousand 

times to determine its mass may obtain a thousand different masses). The same was true of the 

results obtained when several objects of the same kind were measured by the same observer (a 

pediatrician taking the body temperature of twenty-five-year-olds would end up with twenty 

different values). 

The astronomers of the Age of Enlightenment, convinced that a measured magnitude of 

any object has only one "true value" (exact value of the magnitude), attributed the disparity in 

measurement results to observational errors. They thus qualified all measurements as 

subjective, since they were tainted by random errors, i.e., errors linked to chance from an 

unknown source. Random measurement errors are classified into three types: systematic errors, 

accidental errors, and statistical dispersion. 

Systematic errors are most often caused by the measuring device (manufacturing 

defect, adjustment error, etc.). They can be avoided by the observer but are generally difficult 

to detect. 

Accidental errors occur by chance. For example, when an observer measures an object 

several times with an optical instrument (direct observation8) to determine its true value, he 

obtains various results with errors, despite having taken all the necessary precautions to make 

an accurate measurement. These persistent errors are unavoidable and may be due to the 

observer's dizziness when taking measurements, to anarchic variations in atmospheric 

refraction, to various vibrations, etc. All these accidental errors may be due to the observer's 

inability to make an accurate measurement. All these accidental errors will have an impact on 

the accuracy of the measurement, i.e., because of these unavoidable errors, the measurement 

 
7 Here, we use examples from contemporary society to help the reader understand. 
8 Direct observations are those made directly on a quantity. Example: measuring the length of a table, the mass of 

a stone, .... 
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made will never be accurate. The observer can repeat the same measurement ten times, a 

hundred times, a thousand times, etc., as many times as he likes, and still obtain ten, a hundred, 

a thousand, etc., different values: this is statistical dispersion. The situation is even more 

complicated in the case of indirect observations9, where the result is obtained by combining 

several equations involving several unknowns (Bru, 2006). 

The errors noted in direct and indirect observations of astronomical and geodetic 

phenomena were an obstacle to the existence of Astronomy and Geodesy as robust, objective, 

and universal natural sciences. Indeed, a universal natural science cannot be based on errors 

and subjectivity. Accidental errors in astronomical and geodetic measurements presented 

considerable challenges, some of which we identify in the next section. 

The challenges of astronomical and geodetic errors 

Measurement errors presented major challenges for society, as well as for scientific 

knowledge. The first challenge was linked to the development of maritime trade, and therefore 

to the need to provide navigators with techniques that would enable them to accurately 

determine their position at sea, thanks to the observation of the stars (Noel and Tilleuil, 2005). 

These errors were at the root of many maritime disasters (Armatte, 2004). The second challenge 

is linked to the existence of Astronomy and Geodesy as universal sciences. In the field of 

geodesy, the problem of the shape of the earth and the degree of flatness of the globe were 

posed. If the first problem was solved by expeditions, the second remained a matter of 

speculation for a long time. In fact, the evaluation of the earth's flattening coefficient gives rise 

to an alarming disparity depending on the pairs of measurements taken, which highlights the 

interplay of errors that disqualifies each determination (Ibidem). 

Because of the challenges posed by astronomical and geodetic errors, scientists tried to 

eliminate them by looking for systematic errors in measuring equipment, identifying other 

sources of error that could be eliminated and increasing the accuracy of measuring instruments, 

but they were unsuccessful. Despite all their efforts, there were still irreducible residual errors. 

So, they called on geometers to find solutions to the problem of measurement variability by 

modeling irreducible errors. This gave rise to the theory of observation errors, the aim of which 

 
9 Indirect observations are those made on several quantities linked by an equation with fixed but unknown 

coefficients. (Example: to determine the volume 𝑉 of an object in the shape of a cone of revolution, you need to 

measure the height of the cone ℎ and the radius of the base disk 𝑟. In fact, 𝑉 =
1

3
𝜋𝑟2ℎ). Determining the volume 

of a cone of revolution is an indirect observation. 
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is to model measurement errors to estimate the unknown "true value" of a quantity measured 

several times. The causes of residual (accidental) errors will never be known, because "in its 

metaphysical nature, the accidental error is an epistemic error" (Armatte, 2010). 

Modeling observation errors 

In the previous section, we explained that measurements derived from direct and indirect 

observations always contain unavoidable errors from unknown sources. The challenges posed 

by these accidental errors led astronomers to call on geometers to model errors with the aim of 

reducing them. The measurement chosen is that which contains the smallest possible error, and 

which contains the essential information contained in the various observations made. 

Here, we explain the contribution of mathematics to solving the problem of modeling 

observation errors. The question mathematicians had to answer was: how can several 

measurements of the same quantity of the same measurable object be combined to minimize 

the final error on the "true value" of that quantity? 

To address this issue, mathematicians committed themselves, around 1750, to modeling 

astronomical and geodetic errors under two conditions and for three main reasons. To model 

observational errors, mathematicians required that these be made under roughly the same 

conditions, with the same precautions, and be independent. Furthermore, the errors to be 

modeled must be irreducible by physical means, and their sources must be unknown. 

Mathematicians are therefore committed to modeling only accidental errors. The three main 

reasons why mathematicians decided to model errors were: 

1. the tools needed to calculate measurement errors were already available at the time: 

probability calculus and differential calculus.  

2. measuring equipment was more efficient, so there was no longer a huge difference 

between the different values found. They were approximately equal.  

3. certain problems, such as the shape and dimensions of the earth, had not yet been solved. 

At this level, mathematicians were seeking to estimate the true value of a quantity of 

an object for which several measurements had been taken, yielding different results.  

To make this estimate, they first had to make a choice. Indeed, scientists were torn between two 

ideas: (1) make a single "good measurement" or (2) make several measurements and take their 

middle ground. 

In the early days of research, mathematicians, who were not necessarily practicing 

astronomers, preferred to choose a single "good measurement" rather than make several 
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measurements and take their middle ground. They were unable to justify their choice, but it 

seems that the marked improvement in measuring instruments had guided their decision.  

Another reason why these mathematicians opted for a single "good measurement" was 

that some of them were convinced that, in the case of mainly indirect observations, errors would 

increase as a function of the aggregation of equations resulting from measurements. 

Alongside mathematicians who favor a single "good" observation, there are others who 

have opted for the second choice, i.e., multiplying measurements and taking their middle. 

Scientists who disagreed with the choice of a single good measurement proposed other methods 

of reducing accidental errors, the most common of which was the search for an error "medium".  

Many scientists opted for a middle of several observations as the value likely to 

represent the true value of a quantity, but they hadn't specified whether this middle was the 

arithmetic mean, the harmonic mean, the geometric mean or the median. Nor did they provide 

convincing explanations; most of them were guided by intuition. For example, Tycho Brahe 

(1546-1601) implicitly used the arithmetic mean to eliminate observational errors in a set of 

data on planetary motion. Roger Cotes (1682-1716) also advocated the arithmetic mean 

indirectly. In fact, in an appendix to his Harmonia Mensurarum, published posthumously in 

1722, Cotes proposes the use of a weighted average whose coefficients are inversely 

proportional to the "dispersion" of observations, to determine the exact position of a point for 

which he has 4 observations, not all of which are equally reliable (Droesbeke and Tassi, 1990). 

Ruggero Boscovich (1711-1787) and Thomas Simpson (1710 -1761) were also in favor of a 

mean of observations or mean of errors, but the mathematical form of this mean or of the best 

medium that would represent a set of measurements had still not been identified. The problem 

of finding an appropriate medium remained unresolved.  

The search was on for an error distribution law that would enable us to select the 

optimum medium containing the smallest possible error. Scientists are then led to explore such 

an error distribution law and determine the average error over a set of measurements. 

Standard deviation: the average error over a set of measurements 

In this section, we focus on the reasoning of Carl Frederich Gauss, which led to the 

discovery of the standard deviation. At the start of his work, Gauss put forward the thesis that 

all measurements of physical quantities obtained during observations are inevitably marred by 

errors of varying magnitude, despite all the care that the experimenter may take in making the 

observations.  



 

530                                                            Educ. Matem. Pesq., São Paulo, v. 26, n. 1, p. 523-538, 2024 

What's more, these errors result from several generally distinct sources. Thus, he 

classifies measurement errors into two categories according to the nature of their sources: 

regular or constant errors, and irregular or fortuitous errors. Regular errors are those generally 

produced in observations of the same nature, i.e., observations in which the same object is 

measured several times. For each observation, either the same error is committed by the 

observer, or the error committed depends on an imperfect subdivision of the measuring 

instrument or other identifiable circumstances. In short, these errors, if not identical, depend on 

circumstances essentially linked to the results of the observation. In this case, the source of the 

error may be known from the results obtained. Errors originating from these identifiable sources 

are called constant errors. These are the systematic errors defined above. For example, if we 

repeatedly measure the current intensity in an electric circuit using the same ammeter for each 

observation, and we record as many results as observations, then we can say that the ammeter 

is faulty.  

The errors recorded in this case are regular errors linked to the faulty ammeter, and to 

eliminate them we need to repair or replace the device. Irregular errors are those made in 

observations of different natures or of the same species. Their sources depend on variable 

circumstances that are independent of the observer. It is impossible to accurately identify the 

sources of irregular errors from observation results. Indeed, as Gauss states: 

Certain causes of error depend, for each observation, on circumstances that are variable 

and independent of the result obtained: these errors are called irregular or fortuitous, and 

like the circumstances that produce them, their value cannot be calculated. Such are the 

errors that arise from the imperfection of our organs, and all those that are due to 

irregular external causes, such as, for example, the trepidations of the air that make 

vision less sharp; some of the errors due to the inevitable imperfection of the best 

instruments belong to the same category. Examples include the roughness of the inner 

part of the level, lack of absolute rigidity, etc. (Gauss, 1855, p. 9). 

Errors that Gauss describes as irregular or fortuitous are unavoidable accidental errors. Like his 

predecessors, Gauss opted to model accidental errors rather than systematic ones. Accidental 

errors cannot be eliminated, but Gauss asserts that their influence can be reduced as much as 

possible by a skillful combination of observational results. Gauss's method for reducing 

accidental errors is known as the method of least squares. 

Gauss considers the "true value" of a measured quantity, which we call G, as a function 

with several unknowns. In other words, the true value V of a physical quantity is a function that 
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can be written as ap + bq + cr + ds + ..., where a, b, c, d, ... are observables (numbers that vary 

from one measurement to another, but are known) and p, q, r, s, . . . are unknowns: V (p, q, r, 

s, . . .) = ap + bq + cr + d s + …. This "true value" is a theoretical value. 

Parameters p, q, r, s, … are m (𝑚 ∈  ℕ ∖ {0;  1}). 

Considering a natural number n as large as possible, Gauss assumes that he has 𝑛 quantities 𝐺1, 

𝐺2, . . ., 𝐺𝑛 of the same kind and true values 𝑉1, 𝑉2, . . ., 𝑉𝑛 respectively. It also assumes that the 

observations of these quantities respectively give the measured values 𝑀1, 𝑀2, . . ., 𝑀𝑛 and that 

the realization of one observation has no influence on that of another. Each of the n measured 

values 𝑀1, 𝑀2, . . ., 𝑀𝑛 depends on the parameters p, q, r, s, . . .. 

Gauss is interested in errors, which are the variations between the true values 𝑉1, 𝑉2, . . 

., 𝑉𝑛 and the measured values 𝑀1, 𝑀2, . . ., 𝑀𝑛. If the errors are denoted ∆1, ∆2, . . ., ∆𝑛, where 

∆𝑖 is the error committed on the measurement of true value 𝑉𝑖 for 𝑖 =  1, . . . , 𝑛, then we can 

write: ∆1= 𝑀1  − 𝑉1, ∆2= 𝑀2  −  𝑉2, . . ., ∆𝑛= 𝑀𝑛  −  𝑉𝑛. 

Gauss distinguishes three situations that can arise when measuring quantities: (1) the 

number of functions is strictly less than the number of unknowns (n < m). (2) the number of 

functions is equal to the number of unknowns (n = m). (3) the number of functions is strictly 

greater than the number of unknowns (n > m). In other words, the number of observed quantities 

is either strictly smaller than, equal to or strictly greater than the number of unknown parameters 

on which the values 𝑉1, 𝑉2, . . ., 𝑉𝑛 depend. He is particularly interested in the latter situation. 

In the first case, the problem is indeterminate and therefore has no solutions. In the second case, 

the problem is determinate, i.e., it admits at most a single solution. In the third case, the problem 

is overdetermined, and it is to this problem that scientists are struggling to find a theoretically 

and empirically justifiable solution.  

Now that the problem has been identified, Gauss associates with the error ∆ a 

discontinuous function, unknown in practice, which he calls 𝜑 and such that 𝜑(∆) is the 

probability that the error ∆ is made. Next, he imposes natural conditions on this function. 

Indeed, he describes the following: 

First, let's assume that the situation in all the observations is such that there is no reason 

to regard any one of them as more accurate than another, i.e., that equal errors in each 
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of them must be regarded as equally probable. The probability of an error ∆ being made 

in one of the observations will be a function of ∆, which we will call 𝜑(∆). Although 

this function cannot be assigned in a precise manner, we can at least state that it must 

become maximum for ∆ = 0, have in most cases the same value for equal values of ∆ 

and of opposite signs, and, finally, and vanish when ∆ is given a value equal to or greater 

than the maximum error ; 𝜑(∆) must therefore, strictly speaking, be assigned to the class 

of discontinuous functions, and if, for ease of calculation, we allow ourselves to 

substitute an analytical function, the latter must be chosen in such a way that it tends 

rapidly towards 0 from two values of ∆, one greater, the other less than 0, and that 

outside these two limits it can be considered as zero. Now the probability that the error 

lies between ∆ and a quantity ∆  +  𝑑∆ that differs infinitesimally little from it, will be 

expressed by 𝜑(∆)𝑑∆, and, consequently, the probability that the error lies between D 

and D′ by ∫ φ(∆)d∆
D′

D
. This integral, taken from the largest negative value of ∆ to its 

largest positive value, or more precisely from ∆ =  −∞ to ∆ =  +∞, will necessarily 

have to be equal to 1. So, we have ∫ φ(∆)d∆ = 1
+∞

−∞
. 

By the above quotation, Gauss means that the function φ verifies the following 

conditions: 

• 𝜑(∆) reaches its maximum at ∆= 0 and decreases from 0. This means that 𝜑(∆) is maximum 

if the observed value is exactly the true value of the quantity G. Furthermore, small errors are 

more numerous than large errors, or it is more common to make small errors than large ones. 

•  𝜑(∆)  =  𝜑(−∆). 𝜑 is even and the observed values are symmetrical with respect to the true 

value of quantity G, i.e., the errors are symmetrical with respect to 0. Two errors with opposite 

signs and the same absolute value have the same chance of occurring - same probability of 

occurrence. 

•  φ is a positive analytical function for values of ∆ within the error limits, and zero for values of 

∆ outside these limits. If ∆ ∈ ]𝐷;  𝐷′[ then 𝜑(∆) >  0; otherwise 𝜑(∆)  =  0. 

•  ∫ φ(∆). 𝑑∆ = 1
+∞

−∞
.  In an orthogonal reference frame, the area of the part of the plane bounded 

by the x-axis, the curve of 𝜑 and the straight lines of equations 𝑦 =  𝐷 and 𝑦 = 𝐷′ is equal to 

unity. 

Under these conditions, the probabilities that measurements on 𝐺1, 𝐺2, . . ., 𝐺𝑛 give 

𝑀1, 𝑀2, . . ., 𝑀𝑛 are respectively 𝜑(∆1), 𝜑(∆2), . . . , 𝜑(∆𝑛).  
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Observations such as ∆1= 𝑀1  − 𝑉1, ∆2= 𝑀2  −  𝑉2, . . ., ∆𝑛= 𝑀𝑛  −  𝑉𝑛 are 

considered mutually independent events, so the probability of the intersection of the events is 

equal to the product of the probabilities of the different events. This translates into: 

ℙ(𝑉1 = 𝑀1, 𝑉2 = 𝑀2, . . . , 𝑉𝑛 = 𝑀𝑛) =  ℙ(𝑉1 = 𝑀1) × ℙ(𝑉2 = 𝑀2) ×. . .×  ℙ(𝑉𝑛 = 𝑀𝑛). 

The probability of the intersection of the events is denoted Ω. Then we have: 

𝛺 =  ℙ(𝑉1 = 𝑀1) × ℙ(𝑉2 = 𝑀2) ×. . .×  ℙ(𝑉𝑛 = 𝑀𝑛). 

Now, ℙ(𝑉𝑖 = 𝑀𝑖) =  𝜑(∆𝑖) so, 𝛺 =  𝜑(∆1) × 𝜑(∆2) ×···× 𝜑(∆𝑛). 

At this point, Gauss confirms that "the most probable system of values of p, q, r, s, … 

corresponds to the maximum of 𝛺". 

So,  

𝑑Ω

𝑑𝑝
= 0,

𝑑Ω

𝑑𝑞
= 0,

𝑑Ω

𝑑𝑟
= 0, …. 

𝛺 depends on the parameters 𝑝, 𝑞, 𝑟, 𝑠, . .. so we can equate it with the likelihood function. It's 

simpler to work with the logarithm of this function than with the function itself, since on the 

one hand, we're looking for the parameter values at which the likelihood function 𝛺 reaches its 

maximum, and on the other, both it and its logarithm admit the same maximum. Then: 

ln(𝛺) = ln[𝜑(∆1) × 𝜑(∆2) ×···× 𝜑(∆𝑛)]. 

ln Ω = ln[𝜑(∆1)] + ln[𝜑(∆2)] + … + ln[𝜑(∆𝑛)].        (2.1)   

Deriving this last equality with respect to the variables 𝑝, 𝑞, 𝑟, 𝑠, …, we obtain the 

following equations: 
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At present, the problem could be solved by elimination if the nature of the function 𝜑′ 

or that of 𝜑 were known, but since the function 𝜑 cannot be determined a priori, Gauss 

approached the question differently by looking for "a function tacitly accepted as a basis, by 

virtue of a simple and generally accepted principle". It was at this point that he turned to the 

arithmetic mean. Indeed, he describes it as follows: 

It is customary to regard as an axiom the hypothesis that if a quantity has been obtained 

by several immediate observations, made with the same care in similar circumstances, 

the arithmetic mean of the values observed will be the most probable value of this 

quantity, if not in all rigor, at least with a large approximation, so that the safest thing is 

always to stop there. 

So, the problem now is to choose the function 𝜑 such that the arithmetic mean is the 

representative value of the observed values. Gauss poses: 

𝑉1 = 𝑉2 = ⋯ = 𝑥 et  𝑥 =
𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛

𝑛
.  

Ω = 𝜑(𝑀1 − 𝑥) × 𝜑(𝑀2 − 𝑥) × … × 𝜑(𝑀𝑛 − 𝑥). From equality (2.1), Ω is maximum if: 

[𝜑(𝑀1 − 𝑥)]′

𝜑(𝑀1 − 𝑥)
+

[𝜑(𝑀2 − 𝑥)]′

𝜑(𝑀2 − 𝑥)
+ ⋯ +

[𝜑(𝑀𝑛 − 𝑥)]′

𝜑(𝑀𝑛 − 𝑥)
= 0.           (2.2) 

Let's ask ∆𝑖= 𝑀𝑖 − 𝑥 and 𝐹(∆𝑖) =
[𝜑(𝑀𝑖−𝑥)]′

𝜑(𝑀𝑖−𝑥)
=

[𝜑(∆𝑖)]′

𝜑(∆𝑖)
, for all 𝑖 = 1, … , 𝑛.  
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Furthermore, [𝜑(𝑀𝑖 − 𝑥)]′ = (𝑀𝑖 − 𝑥)′ × 𝜑′(𝑀𝑖 − 𝑥) = −𝜑′(𝑀𝑖 − 𝑥) i.e. 

[𝜑(∆𝑖)]′ = −𝜑′(∆𝑖). So, 𝐹(∆𝑖) = −
𝜑′(∆𝑖)

𝜑(∆𝑖)
. 

According to (2.2), 𝐹(∆1) + 𝐹(∆2) + ⋯ + 𝐹(∆𝑛) = 0.                                           (2.3) 

𝐹(−∆𝑖) =
[𝜑(−∆𝑖)]′

𝜑(−∆𝑖)
. Since the function 𝜑 is even, then 𝜑(−∆𝑖) = 𝜑(∆𝑖) and, 

 [𝜑(−∆𝑖)]′ = [𝜑(𝑥 − 𝑀𝑖)]′ = 𝜑′(−∆𝑖) = 𝜑′(∆𝑖). 

Then, we have, 𝐹(−∆𝑖) =
𝜑′(∆𝑖)

𝜑(∆𝑖)
= −𝐹(∆𝑖). It appears that F is an odd function. 

Furthermore, 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛 = 𝑛𝑥.  

This implies that ∆1 + 𝑥 + ∆2 + 𝑥 + ⋯ + ∆𝑛 + 𝑥 = 𝑛𝑥.  

Hence, ∆1 + ∆2 + ⋯ + ∆𝑛= 0. We deduce that ∆2 + ⋯ + ∆𝑛= −∆1. 

So, 𝐹(∆2 + ⋯ + ∆𝑛) = 𝐹(−∆1) = −𝐹(∆1). 

According to (2.3), 𝐹(∆2) + ⋯ + 𝐹(∆𝑛) = −𝐹(∆1).  

𝐹(∆2 + ⋯ + ∆𝑛) = −𝐹(∆1) et 𝐹(∆2) + ⋯ + 𝐹(∆𝑛) = −𝐹(∆1) then we deduce that 𝐹(∆2 +

⋯ + ∆𝑛) =  𝐹(∆2) + ⋯ + 𝐹(∆𝑛). Hence F is a linear function. 

Linear functions that verify the equality 𝐹(∆2 + ⋯ + ∆𝑛) =  𝐹(∆2) + ⋯ + 𝐹(∆𝑛) are of the 

𝐹(∆𝑖) = 𝑘∆𝑖 where 𝑘 is a constant. 

𝐹(∆𝑖) = 𝑘∆𝑖 ⟺ ∫ 𝐹(∆𝑖)𝑑∆𝑖= ∫ 𝑘∆𝑖𝑑∆𝑖. 

                              ⟺ ∫ −
𝜑′(∆𝑖)

𝜑(∆𝑖)
𝑑∆𝑖= ∫ 𝑘∆𝑖𝑑∆𝑖. 

                               ⟺ ∫
𝜑′(∆𝑖)

𝜑(∆𝑖)
𝑑∆𝑖 = ∫ −𝑘∆𝑖𝑑∆𝑖. 

                                                                  ⟺ ln 𝜑(∆𝑖) = −
1

2
𝑘∆𝑖

2 + ln 𝑘1 où 𝑘1 is a positive 

constant.                                       ⟺ 𝜑(∆𝑖) = exp (−
1

2
𝑘∆𝑖

2 + ln 𝑘1) 
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                                                 ⟺ 𝜑(∆𝑖) = exp (−
1

2
𝑘∆𝑖

2) × exp(ln 𝑘1) 

                               ⟺ 𝜑(∆𝑖) = 𝑘1exp (−
1

2
𝑘∆𝑖

2).  

With the function φ determined, it now remains to determine 𝛺. We have: 

Ω = ∏ 𝜑(∆𝑖) = ∏ 𝑘1exp (−
1

2
𝑘∆𝑖

2)

𝑛

𝑖=1

𝑛

𝑖=1

. 

Ω = (𝑘1)𝑛 × exp (
1

2
∑ −𝑘∆𝑖

2

𝑛

𝑖=1

) . 

Ω = (𝑘1)𝑛 × exp (−
1

2
𝑘 ∑ ∆𝑖

2

𝑛

𝑖=1

) . 

𝛺 is maximal if and only if k is positive, i.e., if ∑ ∆𝑖
2𝑛

𝑖=1 is minimal. And, in this case, x is the 

arithmetic mean of the 𝑀𝑖 measurements. 

If the measurement errors ∆1, ∆2, . . ., ∆𝑛 are made by performing measurements of 

respective values 𝑀1, 𝑀2, . . ., 𝑀𝑛 then the squared least error to be feared from these 

observations is 
∑ ∆𝑖

2𝑛
𝑖=1

𝑛
. The least error to be feared then becomes √

∑ ∆𝑖
2𝑛

𝑖=1

𝑛
.  

In 1893, during a lecture he gave at the Royal Society in London, Karl Pearson gave the mean 

error to be feared the name standard deviation and denoted it by the Greek letter σ (Dodge, 

2010).  

Conclusion 

The standard deviation, formerly known as the mean error, to be feared, was born during 

research in which it was not central. In fact, it was discovered between the 18th and 19th 

centuries during the search for a law of error distribution. The aim of this research was to make 

Astronomy and Geodesy objective and viable sciences. This shows that what was an accident 

of history has become an effective tool for studying the notion of dispersion, and an object of 

teaching. 
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At the end of this study, we were able to show that mathematical concepts are not 

epistemological absolutes. They are human constructs, and their teaching should take this into 

account, restoring the vicissitudes that marked their moment of discovery.  The study showed 

that the arithmetic mean only makes sense if we want to estimate the true theoretical value of a 

physical quantity. When we have a physical quantity whose true value we don't know, and for 

which we have a set of measurements that are not very far apart, then we can take the arithmetic 

mean of the measurements as an approximate value of the true value of this quantity. In this 

case, we lose information about the true value of the quantity. The information lost is the 

distance between the arithmetic mean of the measured values and the true value of the quantity 

from which the measurements were taken. It represents the precision, uncertainty, or margin of 

error for which the arithmetic mean is the approximate value of the "normal value" of a quantity. 

It is called the standard deviation. 

The error contained in the arithmetic mean of a set of measurements is smaller than the error 

contained in each measurement of the set. 

What research has not yet shown is that epistemological study is a potentially effective 

tool for teacher training. It would enable teachers to identify the historical development of the 

concepts to be taught, the losses and additions in the process of creating and transposing the 

concepts to be taught. A historical and epistemological study would also provide resources for 

both teachers and teacher trainers. 
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