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Abstract 

In this theoretical essay, we intend to present task proposals and praxeological analyzes in an 

Reference Epistemological Model (REM) for teaching Differential and Integral Calculus, 

giving new meaning to the diffusion of the notion of limit of a function by definition. The 

aforementioned REM has as its epistemological and methodological assumption the 

Anthropological Theory of Didactics by Yves Chevallard and the ideas of Top Down and 

Bottom up attentional processing. Data production for this study occurs via praxeological 

analysis based on tasks extracted from textbooks and a priori analysis of the constructed REM. 

As a main result, it was observed through the a priori analysis of the tasks that made up the 

REM, that the tacit knowledge necessary to solve the tasks can be evoked by their structure, 
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while in bottom-up processing the use of imagery resources helps in focusing paying attention 

to important conceptual aspects present in the proposed tasks. 

Keywords: Limit of a function, Attentional mechanisms, Epistemological model of ref-

erence. 

Resumen 

En este ensayo teórico se presentan propuestas de tareas y análisis praxeológicos en un Modelo 

de Referencia Epistemológico (MER) para la enseñanza del Cálculo Diferencial e Integral, 

dando un nuevo significado a la difusión de la noción de límite de una función por definición. 

El mencionado MER tiene como presupuesto epistemológico y metodológico la Teoría Antro-

pológica de la Didáctica de Yves Chevallard y las ideas de procesamiento atencional de arriba 

hacia abajo y de abajo hacia arriba. La producción de datos para este estudio se produce me-

diante un análisis praxeológico basado en tareas extraídas de libros de texto y un análisis a 

priori del MER construido. Como resultado principal, se observó, a través del análisis inicial 

de las tareas que conformaron el MER, que el conocimiento tácito necesario para resolver las 

tareas puede ser evocado por su estructura, mientras que, en el procesamiento ascendente, el 

uso de imágenes Los recursos ayudan a centrar la atención en aspectos conceptuales importan-

tes presentes en las tareas propuestas. 

Palabras clave: Límite de una función, Mecanismos atencionales, Modelo epistemoló-

gico de referencia. 

Résumé 

Dans cet essai théorique, des propositions de tâches et d'analyses praxéologiques sont 

présentées dans un Modèle Épistémologique de Référence (MER) pour l'enseignement du 

Calcul Différentiel et Intégral, donnant un nouveau sens à la diffusion de la notion de limite 

d'une fonction par définition. Le REM susmentionné a pour postulat épistémologique et 

méthodologique la Théorie Anthropologique de la Didactique d'Yves Chevallard et les idées de 

traitement attentionnel top-down et bottom-up. La production de données pour cette étude se 

fait via une analyse praxéologique basée sur des tâches extraites des manuels et une analyse a 

priori du MER construit. Comme résultat principal, il a été observé, à travers l'analyse initiale 

des tâches qui composent le MER, que les connaissances tacites nécessaires à la résolution des 

tâches peuvent être évoquées par sa structure, tandis que, dans le traitement de bottom-up 

l'utilisation de ressources d'imagerie permet de concentrer l'attention sur des aspects 

conceptuels importants présents dans les tâches proposées. 
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Mots-clés : Limite d'une fonction, Mécanismes attentionnels, Modèle épistémologique 

de référence. 

Resumo 

Neste ensaio teórico, apresenta-se propostas de tarefas e análises praxeológicas em um Modelo 

Epistemológico de Referência (MER) para o ensino do Cálculo Diferencial e Integral 

ressignificando a difusão da noção de limite de uma função pela definição. O referido MER 

tem como pressuposto epistemológico e metodológico a Teoria Antropológica do Didático de 

Yves Chevallard e as ideias de processamentos atencionais top-down e bottom-up.  A produção 

de dados desse estudo ocorre via análise praxeológica a partir de tarefas extraídas de livros 

didáticos e análise a priori do MER construído. Como principal resultado, observou-se, por 

meio da análise inicial das tarefas que compuseram o MER, que os conhecimentos tácitos 

necessários para a resolução das tarefas podem ser evocados por sua estrutura, enquanto, no 

processamento bottom-up, o uso de recursos imagéticos auxilia na focalização da atenção para 

aspectos conceituais importantes presentes nas tarefas propostas. 

Palavras-chave: Limite de uma função, Mecanismos atencionais, Modelo epistemoló-

gico de referência.  
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 A proposal for an reference epistemological model for the study of limits through 

dialogue via attention mechanisms 

This work presents task proposals and praxeological analyzes in an Reference 

Epistemological Model (REM) for teaching Differential and Integral Calculus. Briefly, an REM 

can be understood as a network of praxeologies whose dynamics must be experimentally 

contrasted, given that it is a scientific hypothesis and, at the same time, specific to the researcher 

(Fonseca et al., 2014; Ruiz-Munzón et al., 2011). 

Taking Mathematics Didactics as a starting point, this set of principles, concepts and 

theories guide the way teachers teach Mathematics and how students learn topics about this 

area of knowledge. An REM is certainly capable of defining beliefs about mathematical 

knowledge, the cognitive processes involved in learning Mathematics, the most effective 

teaching methods, among other important aspects for educational practice; therefore, the 

adopted REM serves as a basis for building teaching and learning strategies in Mathematics. 

According to Sierpińska (1994), an epistemological model in Mathematics Didactics 

must consider both mathematical and pedagogical knowledge. This means that it is necessary 

to take into account not only the logical and formal structure of mathematical concepts, but also 

the difficulties and challenges that students face when learning these concepts. 

No educator can afford to omit knowledge content. It is the content of knowledge that 

is of interest to Didactics, as opposed to general pedagogical theories. It is clear that 

these “common mechanisms” can provide a theoretical basis for considerations and 

serve in the terminology used to describe conclusions regarding problems of 

understanding and decision-making in teaching. However, they are never the ultimate 

goal of research (Sierpińska, 1994, p. 98, our translation). 

Following this line of thought, da Ponte et al. (2016) highlight the importance of 

considering the interactions between the different actors involved in the Mathematics teaching 

and learning process, such as teachers, students and teaching materials. An effective 

epistemological model must be able to integrate these different dimensions and promote a more 

dynamic and contextualized approach to teaching Mathematics. Therefore, we emphasize the 

need to reflect on students' previous conceptions regarding Mathematics, as these conceptions 

can significantly influence learning. Thus, an epistemological model, in Mathematics Didactics, 

must take into account not only the object of knowledge to be taught, but also the students' 

previous conceptions and aspects of cognition that will integrate the conditions and/or 

restrictions for learning knowledge in game.  

Based on these works, we understand that an epistemological model, in Mathematics 

Didactics, must be flexible enough to account for the multiple forms of representation and 
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communication present in the teaching context. In this way, it is possible to guarantee a more 

inclusive and diverse approach to teaching mathematics, promoting more meaningful and 

autonomous learning on the part of students. 

One of our proposals is to discuss the tooling and theoretical support necessary to 

develop an REM. When we talk about “cognitive processes involved”, “students’ perceptions 

and mental representations” and “multiple forms of representation and communication”, we 

realize that only the mathematical objects themselves, which live from “mathematical 

knowledge”, are not sufficient in preparation of a REM. Therefore, we used some Neuroscience 

techniques to base the model, with an emphasis on attention mechanisms. 

Attention is a fundamental cognitive process for learning, as it allows the selection and 

focusing of relevant stimuli for information processing. According to Posner and Petersen 

(1990), attention can be divided into three distinct neural networks: the alert network, 

responsible for monitoring the environment; the spatially oriented network, which directs 

attention to certain areas of space; and the executive network, involved in cognitive control and 

problem solving. 

In the context of teaching Differential and Integral Calculus, attention mechanisms play 

a crucial role in understanding complex mathematical concepts. According to Zeki (2002), 

visual perception is one of the main forms of processing mathematical information, being 

essential for identifying patterns, relationships and properties of mathematical objects. 

Therefore, by directing students' attention to specific aspects of differential and integral 

equations, it is possible to activate prior knowledge (top-down processing) for solving tasks 

that can be combined with figural elements, which will, in turn, activate, the bottom-up 

mechanism (evoking visual sensory aspects), to facilitate students' understanding of the object 

studied. 

Furthermore, emotions also play an important role in regulating attention during 

learning. According to Relvas (2023), they directly influence neural activity related to selective 

attention, modulating the prioritization of emotionally relevant stimuli. Thus, strategies that 

stimulate positive emotions in students can increase their motivation and engagement with 

mathematical content. However, the emotional aspect will not be the object of analysis in this 

work. 

Another relevant point in developing an epistemological model for teaching Calculus is 

metacognition, that is, knowledge about our own cognitive processes. According to Schraw et 

al. (2006), students who have developed metacognitive skills are able to monitor and regulate 

their attention more efficiently during complex tasks, such as solving mathematical problems. 
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Therefore, encouraging students to reflect on their own thoughts and strategies can contribute 

to a better understanding of mathematical concept. 

We are convinced that attention mechanisms play a fundamental role in learning 

Differential and Integral Calculus. By understanding how our ability to focus and concentrate 

works, educators can use more effective pedagogical strategies to facilitate the assimilation of 

content by students. Furthermore, considering emotional and metacognitive aspects when 

developing the epistemological model can further enhance students' mathematical learning. 

Attention mechanisms 

Exact science subjects are often considered challenging and intimidating by many 

students. They require a high level of abstraction and logical reasoning, which can generate 

anxiety and stress in students. According to a study carried out by Pekrun et al. (2007), anxiety 

in relation to these subjects is associated with low self-efficacy and self-esteem among students. 

Furthermore, such subjects can negatively impact the psychosocial aspect of students 

by reinforcing gender and racial stereotypes. According to research carried out by Steele and 

Aronson (1995), women and ethnic minorities tend to feel less capable in science subjects due 

to social stigmatization and cultural pressure. This could lead to a decrease in the interest and 

motivation of these groups in pursuing careers in Science and Technology. 

On the other hand, some studies demonstrate that learning Exact Sciences subjects can 

have a positive impact on students' cognitive and emotional development. According to Boaler 

(2013), problem-based Mathematics teaching stimulates creativity, critical thinking and 

conflict resolution, contributing to the global development of students. 

It is important to highlight that teachers play a fundamental role in promoting the 

psychosocial well-being of students in Exact Sciences subjects. A study carried out by Hembree 

(1990) highlights the importance of emotional support from teachers in reducing students' 

anxiety in relation to Mathematics. Pedagogical strategies that value diversity, promote gender 

equity and encourage collaboration among students are also essential to creating a more 

inclusive and welcoming environment. 

Emotional security, in turn, is not a guarantee of success in the cognitive aspect, 

although it facilitates this path through training and improvement of attention mechanisms. 

Attention mechanisms play a fundamental role in the teaching-learning process in general and 

more precisely in Differential and Integral Calculus. Attention is responsible for directing the 

perception and processing of information, directly influencing the understanding and retention 

of mathematical concepts. In the context of learning Calculus, two theoretical models are often 
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used to explain attention mechanisms: bottom-up and top-down. To this end, we will consider 

the approach taken in Sarter et al. (2001). 

Bottom-up processing refers to spontaneous and automatic attention, directed by 

external sensory stimuli. In this case, the person may be attracted by the visual or auditory 

presentation of mathematical content, focusing their attention on specific elements, such as 

graphs, equations or verbal explanations. This type of attention is essential for identifying 

patterns and regularities in calculation problems, facilitating the resolution of the proposed 

questions. 

 

 

Figure 1a. 

Experimento atencional de Helmholtz realizado em 1894 (Gazzaniga et al., 2006) 

On the other hand, the top-down model involves controlled and voluntary attention, 

guided by the student's expectations, prior knowledge and individual goals. In this work, the 

student uses their previous experiences with Calculus to direct their attention to the most 

relevant aspects of the subject, such as fundamental concepts, problem-solving techniques or 

practical applications. Top-down processing allows the student to organize information in a 

meaningful and contextualized way, facilitating the understanding and memorization of 

mathematical concepts. 

Together, the bottom-up and top-down models contribute to effective learning of 

Differential and Integral Calculus. While bottom-up attention helps to quickly identify 

important information in mathematical problems, top-down attention allows for a more 

structured and reflective approach to the content studied. By combining these two attentional 
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mechanisms, teachers can promote deeper and more meaningful learning of mathematical 

concepts among students. 

 

Table 1. 

Proposals: how the bottom-up mechanism can help in learning Differential and Integral 

Calculus 

Bottom-up 

1. Use of concrete and practical examples to introduce the basic concepts of Differential and 

Integral Calculus. 

2.  Encouraging the resolution of simple problems before addressing more complex issues. 

3.  Encouragement of active participation by students in the construction of knowledge, through 

practical and experimental activities that demonstrate the applications of calculation in real life. 

4.  Gradual introduction of mathematical concepts, starting with the fundamentals of algebra and 

geometry before moving on to Calculus itself. 

5.  Carrying out periodic reviews and fixation exercises to consolidate student learning at each stage 

of the teaching-learning process. 

6.  Fostering the development of students' critical and analytical skills, encouraging them to 

question and explore different approaches to solving mathematical problems. 

7.   Application of gamification techniques in teaching differential and integral calculus, as a way 

to engage students and make learning more dynamic and interactive. 

8.   Use of technological resources, such as specific software for mathematical calculations, to help 

students visualize and understand the concepts presented in the classroom. 

9.   Promotion of interdisciplinarity in teaching calculus, relating mathematical content with other 

areas of knowledge, such as Physics, Chemistry and Engineering. 

10. Establishment of a close relationship between teachers and students, creating a welcoming and 

motivating environment for learning Differential and Integral Calculus. 
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Table 2. 

Proposals: how the top-down mechanism can help in teaching and learning Differential and 

Integral Calculus 

Top-down 

1. Clear definition of learning objectives and goals: allow the teacher to precisely establish 

which are the fundamental concepts that students must master in Differential and Integral 

Calculus. 

2. Organization of the didactic sequence: it is possible to structure the content in a 

hierarchical manner, prioritizing the understanding of broader concepts before moving on to more 

specific details. 

3. Contextualization of mathematical concepts: relate the concepts of Differential and 

Integral Calculus with practical situations in students' daily lives, facilitating their understanding 

and application. 

4. Encouragement to solve complex problems: by presenting students with challenges that 

require the integration of different Calculus concepts, the top-down method favors the 

development of students' analytical and critical skills. 

5. Encouragement of autonomy and self-education: students are encouraged to seek new 

sources of information and develop independent research skills in the area of Differential and 

Integral Calculus. 

6. Use of technological resources: use of digital tools such as graphic software and 

simulators, expanding the possibilities of visualization and experimentation with mathematical 

concepts. 

7. Interdisciplinary integration: by adopting a holistic perspective in the Differential and 

Integral Calculus approach, the top-down method favors the connection between different areas 

of knowledge, enriching the educational process. 

8. Continuous and personalized feedback: provide individualized feedback to students, 

identifying their specific difficulties in learning Differential and Integral Calculus and proposing 

strategies to overcome them. 

9. Encouragement of metacognitive reflection: by promoting a reflective approach to the 

learning process itself, students develop greater awareness of their cognitive strategies when 

studying Calculus. 

10. Promotion of creativity and innovation: teachers can encourage students to explore new 

ways of thinking and solving problems in the context of Differential and Integral Calculus, 

encouraging creativity and originality in the construction of mathematical knowledge. 

Conscious use of the top-down mechanism allows students to be able to direct their 

attention to specific aspects of the content, filtering relevant information and ignoring 

distractors. By using mental organization and cognitive elaboration strategies, students are able 

to process information more effectively. 

Limits 

The concept of limit is fundamental in Real Analysis; It results in several other 

important ideas, such as derivatives, integrals, continuity and optimization. Despite being 

considered basic, many people with training in the field of Exact Sciences have difficulty fully 

understanding this concept. The term “limit” has several meanings, but here it refers to the 
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value to which a real function approaches as the elements of its domain accumulate around a 

specific value. For those who do not pursue careers in Mathematics, a lack of understanding of 

the concept of limits may not be as problematic; however, for higher-level Mathematics 

students and teachers, this understanding will directly affect their ability to advance into more 

complex courses or applications in a wide range of areas. Currently, the teaching of this notion 

– not the intuitive idea, but the formalization – in Calculus is addressed by the formalization 

based on quantifiers and developed by Weierstrass: 

The number L is the limit of the function f(x), where x tends to x0, if given any arbitrarily 

small number ε, another number δ can be found such that for all values of x differing 

from x0 by less than δ, the value of f(x) differs from L by less than ε. (Boyer, 1949, p. 

287) 

This is not exactly the way the concept of limit appears in Calculus books today, but it 

is very close to the current one. From here, the authors' experiences in teaching Differential and 

Integral Calculus, Real Analysis or Complex Analysis follow. In the initial stage of a Calculus 

or Analysis course, the context is that of real functions (its range is the set of reals) of one real 

variable (its domain is a subset of the reals); In this locus, the concept of limit is usually 

presented. Bringing more mathematical rigor to Weierstrass's definition, the notion of limit is 

formulated as follows: let f be a function (real and of one real variable) and p be an accumulation 

point for f (or for the domain of f), the limit of function f as x tends to p is equal to L if, and 

only if, given arbitrary ε > 0, there exists, from this fixed ε, δ > 0 such that 0 < |x - p| < δ ⇒ 

|f(x) - L| < ε. In other words, if the distance from x to p is less than δ, where x is a point in the 

domain of f distinct from p (arbitrary, with this condition), implying that the distance from f(x) 

to L is less than ε. 

This fact is represented graphically as follows: 

 

Figure 1b. 

Graphic-symbolic representation of the limit.  

The expression represented in Figure 1b summarizes the famous approach of limits by 

epsilons and deltas, which we will denote by ε-δ. Here it is worth explaining the starting point 

of the first way of analyzing this concept. Although it has been said that this concept is seen at 

an initial stage in Calculus subjects, the experiences reported follow this limit definition 

presented, at review level, in more advanced courses, such as Vector Calculus (for functions of 

several variables) and Analysis Real in institutions in three Brazilian states (Bahia, BA, Mato 
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Grosso, MT and São Paulo, SP) where the first author taught the aforementioned subject. When 

reviewing the concept of limit, the students formulated the following questions: 

• What is an accumulation point? 

• What does it mean for a point to accumulate in a value? 

• Right after presenting the definition, the professor says that the idea is to make epsilon 

and delta tend to zero. Why? 

• Is epsilon variable or constant? Is it fixed or is it arbitrary?  

• Is Delta variable or constant? Is it fixed or is it arbitrary? 

• Is x variable or constant? Is it fixed or is it arbitrary? 

• Is f variable or constant? Is it fixed or is it arbitrary? 

• What does “x - p” between the bars mean? 

• Why 0 < |x - p|? (After all, if x = p, we have |x – p| = |p – p| = 0.) 

The aforementioned limit definition, simply recorded in Figure 1, mobilizes the 

following approaches: 

1. Logical connectives (“imply”). 

2. Quantifiers (“exists”, “for all”, both can be considered from Naive Set Theory). 

3. Variables. 

4. Module function. 

5. Distance (from the module function). 

6. Accumulation point. 

7. Actual function. 

8. Function and its descriptors (domain, range, law). 

In Calculus classes, the concept of limit is often considered one of the most complex by 

students (Karatas et al., 2011; Swinyard & Larsen, 2012). Identifying difficulties in 

understanding Limits is important for their relationship with other mathematical concepts. 

Equip students with the conceptual tools necessary to address a range of mathematical and 

applied problems, which involve the foundation of differential and integral calculus, the 

understanding of infinitesimal concepts, the development of abstract reasoning and the 

formalization of the concept of changes which, in turn, , will allow you to analyze how a 

function behaves as its variables approach certain values, involves the use of the limit of a 

function, theorems related to the concept of limit and determining whether the limit exists 

according to the formal definition. Students' ability to achieve these skills depends on adequate 

understanding of the formal definition of that notion.. 
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However, the mathematical object lacks adequate experience within the institutional 

arrangement normally in force. Consider, for example, the graphical representations in Figures 

2 and 3. 

 

Figure 2. 

Gráfico no plano xy em forma de “V”.  

 

Figure 3. 

Representação gráfica da distância entre dois números na reta real.  

 

One of the authors, in didactic experiments in Differential Calculus classes at a federal 

university in Western of Bahia (a Brazil’s State), raises the question: when the word “module” 

(in the context of real numbers) is pronounced, which of these figures appears in your “mental 

visualization”: Figure 2 or Figure 3? The majority responds, without hesitation: Figure 2. Going 

into the investigative aspect, it was observed that there is no a priori association between 

“distance” and “module”. This question, as well as the draft answers, guide the REM proposed 

here in a certain way, as they signal that there is a possibility for notions about attentional 

mechanisms to contribute to the learning of the aforementioned object of knowledge. 

Furthermore, attention is a fundamental mechanism for learning in any area of 

knowledge. When it comes to the topic of “limits”, the ability to concentrate and focus becomes 
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even more relevant, as it requires reflection, self-control and the ability to establish personal 

and logical restrictions. Regarding the aforementioned question about the representation that 

students make in relation to the word module, an REM based on attentional mechanisms takes 

into account the role of the figures that represent the object without leaving aside the tacit 

knowledge of the students.  

Studies in the field of neuroscience have demonstrated that attention is regulated by 

specific regions of the brain, such as the prefrontal cortex, responsible for executive functions 

such as planning, decision-making and emotional control (Cosenza & Guerra, 2009). Attention 

becomes even more important when it comes to learning about limits, as this topic demands a 

greater cognitive effort to understand the concept and procedures for calculating the limit of a 

function by definition, since the usual approach at the CDI institution occurs from more abstract 

levels to concrete applications or situations. 

The concepts of “derivative” and “integral” allow us to analyze the global behavior of 

functions, going beyond the simple local study provided by the limit. The derivative measures 

the rate of change of a function in relation to its independent variable, providing information 

about the slope of the curve at a given point. The integral allows you to calculate the area under 

a curve, making it possible to find solutions to optimization problems and volume calculations.. 

While the limit focuses on the specific behavior of functions, the derivative and integral 

provide a more comprehensive and complete view of their global behavior. Also, through a 

change of framework, new functions can arise from a given real function. They allow you to 

analyze trends, identify critical points and carry out complex calculations that would be 

impossible with just the concept of limits. From the point of view of teaching organizations for 

the CDI, both the derivative and the integral arise from the concept of limit. In this way, it is 

possible to say that the concepts of derivative and integral are complementary to that of limit. 

They 

are conceived as pragmatic models of magnitudes considered as mental objects giving 

rise to a mathematical activity that has its own legitimate level of rationality, albeit 

different from the standard level underlying the formal aspects of limits, for example 

“static” definitions using quantifiers. This model allows us to defend the usefulness of 

taking into account an epistemological obstacle called empirical positivism as a grid for 

interpreting students' reactions to tasks that involve limits, either alone or in relation to 

other concepts, such as derivatives, integrals , etc. The scientific value of this 

epistemological obstacle lies in its ability to encompass and make sense of increasingly 

broad types of errors (Job & Scneider, 2014, p. 3). 

As we see in the excerpt above, the outcome referred to in the previous paragraph is 

perhaps justified by the fact that the concept of limit of a function is conceived as a pragmatic 
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model, which implies methodological strategies for dissemination with this bias of application 

to other objects of knowledge. 

Praxeological organization and didactic transposition 

The Anthropological Theory of Didactics (ATD) is based on the idea that educational 

practice is influenced by specific praxeologies, that is, sets of knowledge and practices that 

guide the actions of the subjects involved in the teaching and learning process. According to 

Chevallard and Joshua (1985), praxeologies are composed of knowing how to do (technical 

knowledge) and knowing how to teach (pedagogical knowledge), which are related in a 

dialectical way. 

In this sense, ATD highlights the importance of the relationship between knowing how 

to do and knowing how to teach, highlighting that both must be considered in an integrated way 

in the planning and execution of educational activities. This integration allows for a more 

holistic approach to knowledge, contributing to a greater understanding of the cognitive 

processes involved in learning. 

Furthermore, ATD distinguishes between ostensive and non-ostensive dialectics. 

Ostensive dialectics refer to the explicit and conscious processes that occur during didactic 

interactions, while non-ostensive dialectics refer to the implicit and unconscious processes 

present in educational practices. According to Chevallard (1994), the recognition of these two 

dimensions is fundamental for a critical analysis of the pedagogical strategies adopted. 

The institution is a central element in ATD, as it represents the social, cultural and 

political context in which praxeologies develop. According to Chevallard and Joshua (1982), 

institutions play a determining role in the configuration of school knowledge and in the 

organization of relationships between teachers, students and other educational agents. In this 

way, ATD proposes a complex and multidimensional approach to education, considering not 

only individual aspects, but also collective and social aspects. 

About the REM proposal 

What praxeologies are evoked by students regarding the intuitive notion of “limit” of a 

function and the formal definition? Although pedagogical projects for Mathematics courses, for 

example, mention the presentation of the definition of limits as part of the syllabus of a Calculus 

course, there are no justifications or sufficient details to guide how this subject is dealt with in 

the classroom. With an experimental objective in Higher Education Didactics, the following 

task was presented: “How to build a graphic scheme coherent with the formal definition of 
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limit? How can this scheme help in graphically representing the limit?” The aforementioned 

task is, in fact, the background for the question of this study: “How to build a graphical 

representation model for the limit of a function?”. This question is generic, but will be limited 

to the context of real functions of one real variable, considering the usual topology of sets of 

real numbers. 

First hypotheses for model construction 

Let's assume that students have already had contact with the formal concept of limits 

from previous courses or stages in a Calculus or Analysis course. The idea now is to graphically 

represent the limit, since the institutionality of Calculus Teaching brings, in addition to the 

analytical concept and algebraic manipulations, the graphic representation of various objects of 

the ecology of a regular Calculus course. It can even be seen that the presentation of the concept 

of various objects is motivated by graphic records justified in the face of a better understanding 

of the topic through imagery resources, for example: function (Figure 4); continuity and 

discontinuity (Figure 5); derivative (Figure 6) and integral (Figure 7). And for limits? What is 

the “canonical” graphical representation of a limit? 

 

Figure 4. 

Graphing a real function of one real variable. 
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Figure 5. 

Graphing a discontinuous function.  

 

 
Figure 6. 

Graphical representation to motivate the definition of derivative via “secant lines that 

approach the (local) tangent line at a point on the graph”.  

 

Figure 7. 

Graphical representation to motivate the definition of integral via area calculation by 

“approximations using rectangles to fill an area limited by the graph of a function that does 

not change sign over an interval”.  
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The question posed as central is broken down into several other questions, therefore 

highlighting the ecological imbalance regarding the theme “limits”: 

- How to differentiate the study of a function from the study of the graph of a function? 

- How to understand the limit on the graph of any function? 

- Are the functions commonly covered in the Calculus course sufficient for the study of 

limits? 

The last question illustrates how the Teaching of Calculus is not as general as it is 

intended to be (in the speech or in the syllabus): the functions adopted as examples or exercises 

are of the following types: 

a) constant, that is, f(x) = k, where k is a fixed real number; 

b) polynomial of degree n, that is, f(x) = a0 + a1x + … + anxn, where a0, a1, …, an are 

real numbers, an ≠ 0 and n > 0 is a natural number; 

c) power, that is, f(x) = xk, where k is any fixed number and the domain of f can be 

changed depending on the value of k; 

d) exponential, that is, f(x) = ax, where a is a base for an exponentiation: a is a non-zero 

real number and different from 1; 

e) logarithmic, that is, f(x) = logax, where a is a base for a logarithm: a is a non-zero real 

number and different from 1; 

f) trigonometric, for example, f(x) = sin(x), f(x) = cos(x), etc.; 

g) hyperbolic trigonometric, f(x) = sinh(x), f(x) = cosh(x), etc.; 

h) modular, that is, f(x) = |x|: |x| is worth x, if x ≥ 0 and |x| is -x if x < 0..  

We note that the presentation of the types of functions listed above requires a more 

rigorous definition. Let's take the exponential as an example and consider the function f(x) = 

2x, with x being any real number. If x = 3, for example, it is known from Basic Education that 

23 = 2·2·2 = 8, that is, f(3) = 8. However, since x is any real number, it can assume the value x 

= π. What is f(π), that is, how to calculate 2π? This topic constitutes very fertile ground for 

future productions and will not be discussed in detail here. Furthermore, the functions 

mentioned, except for the modular one, are of class C∞, that is, for any natural m, the derivative 

of order m exists (they are “infinitely” differentiable). And, in the universe of real functions (to 
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a real variable), the chance of randomly choosing a function of class C∞ is zero, that is, the 

typical functions of a Calculus course are “artificial”, pointing out, among others, for the 

disparity between mathematical modeling and the empirical mechanism of data as “Nature 

offers”. 

A change of presentment 

As mentioned, although they are not the same object from a conceptual point of view, 

“function” and “function graph” are constantly confused. This is an a priori element considered 

in REM: taking the graph as a starting point for studying functions makes it difficult to 

understand limits. Let us remember that a function f: Dom →CDom, in which Dom⊂ℝ and 

CDom⊂ℝ are the domain and range of f respectively, is governed by a law that “combines” 

elements of the domain with elements of the range. This way of “combining” elements from 

sets considered distinct is formalized through the notion of ordered pair. For example, given a 

function f, the pair (a,b)∈Dom×CDom is interpreted as follows: “b is in function of a” or “b = 

f(a)”. The graph of f, in turn, is the meeting of all pairs combined using this function: 

graph(f) = {(x,f(x)), where x∈Dom(f)}. 

If we consider the definition of a function through ordered pairs (as in a Set Theory 

course), the distinction between a function and its graph is mathematically rigorous, as in 

practice the objects are indistinguishable. It is worth highlighting that Dom×CDom⊂ℝ×ℝ =  

ℝ2, and it is for this reason that the graph of a function is represented in the Cartesian plane. 

However, it is possible to graph a function before the “join” between domain and 

codomain.  

 

Figure 8. 

Graphical representation of a function without the graphical sketch on the plane. 
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The set of real numbers ℝ is, justifiably, represented by an oriented Euclidean straight 

line; Therefore, this set is called a real line or, simply, a straight line. The sets Dom and CDom 

are subsets of ℝ; thus, the graphic representation adopted in Figure 8. The rounded line 

indicates the functional relationship between Dom and CDom, revealing a bottom-up resource 

regarding attention in relation to the teaching object. 

In didactic experiments with a CDI class in which the first author works, observations 

were made that indicate that the non-joining between Dom and CDom gives a better idea of the 

behavior of the function when analyzing only the way in which it varies (graphically) in its 

codomain. 

 

Figure 9. 

Graphical representation of domain, codomain and image of the functions f(x) = x2 and 

g(x) = |x| by two oriented straight lines. Both have the same image: the range [0, +∞].  

 

  

Figure 10. 

Representation of the respective graphs of the functions f(x) = x2 and g(x) = |x| in the 

Cartesian plane.  
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We leave the following warning: the representation in Figure 10 is “myopic”, as 

functions that are known to be distinct can be represented in an identical way. 

Praxeological organization 

Let us return to the concept of limit, in its formal definition: the limit of the function f 

as x tends to p is equal to L if, and only if, given arbitrary ε > 0, there exists from this fixed ε, 

δ > 0 such that 0 < |x - p| < δ ⇒ |f(x) - L| < ε. Let us consider the following two subtasks. 

Subtask 1: Graph the limit, if any, of the function f(x) = x3 as x tends to -2. 

• Attention Mecanismo (top-down): Observe, with some degree of rigor, the logical rules 

that allow a mathematical conclusion and the necessary technologies, especially the 

prerequisites, with a view to understanding the subtask. 

• Specific praxeology (task, technique, technology and theory): The subtask was given. 

The technique can be thought of in a few steps. The first AP is the algebraic 

manipulation, with geometric understanding, of the highlighted modules: 0 < |x - p| < δ 

means “p - δ < x < p + δ and x ≠ δ”; |f(x) - L| < ε means “L - ε < f(x) < L + ε”. Therefore, 

the organization of the modules, in the definition, presupposes the search for candidates 

in the intervals ]p – δ, p + δ [ and ] L – ε, L + ε [. The next step is to find suitable epsilon 

and delta values to satisfy the condition, so the epsilon-delta values change throughout 

the search. We note that this search for epsilons-deltas is finite for two crucial reasons: 

a) the computational limitation and b) the time limitation of the subjects who carry out 

the “epsilon-delta” search! Therefore, the proposed graphical representation does not 

constitute a demonstration of the existence of the limit. Therefore, a reasonable proposal 

is to compare the values of f(x), in the range, to a fixed point; Suppose without loss that 

this point is the origin, 0 (zero). Technology is “limits”, and the associated theorems and 

theory are Real Analysis.  

• Attention mechanism (bottom-up): use of colors for the different objects treated. 

Theoretical considerations:  
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i. It makes sense to calculate the limit when x tends to -2, since -2 is an accumulation 

point of ℝ, the domain of the function f(x) = x3. 

ii. The existence of candidates for the limit will depend on the distance from f(] p – δ, p + 

δ [) to the zero point. More specifically, the length of the interval f(] p – δ, p + δ [) will 

be indicative of the existence of a candidate for the limit: if this length increases, we 

will consider that there are no candidates; if this decreases, then a candidate may exist 

(if the intervals were compact, for example, [p – δ, p + δ], the Embedded Interval 

Theorem would be able to guarantee the existence of the candidate to the limit). 

iii. To choose the limit candidate, we will proceed in a completely intuitive way. Let's cause 

a “major” and a “minor” disturbance, and observe how the function behaves. The values 

in the middle column (from -15.525 to -8.0012) and those in the right column (from -

3.375 to -7.9988) are the calculations for f(-2-δ) and f(-2+δ) respectively. By these 

calculations, a threshold candidate is -8. 

iv.  

Table 3 

Limit Candidate Calculation 

___________________________________________________________________________ 

δ -2-δ -2+δ 

0,5 -15,625 -3,375 

0,4 -13,824 -4,096 

0,3 -12,167 -4,913 

0,2 -10,648 -5,832 

0,1 -9,261 -6,859 

0,01 -8,120601 -7,880599 

0,001 -8,012006001 -7,988005999 

0,0001 -8,001200060001 -7,998800059999 
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__________________________________________________________________________________ 

iv. In turn, the image adopted will be that of straight segments, representing real intervals; 

if a function is continuous on a real interval I, then its image f(I) will also be an interval; 

the concept of continuity usually appears after the concept of limit (based on the usual 

literature on this topic adopted in Brazil). So, let’s start by “skipping over steps” in this 

graphical representation.  

v. We adopted the heuristic procedure. Assuming that the limit is, in fact, equal to -8, we 

will create the domain-image representations on different lines, in the search for epsilon-

delta. For each ε, the interval ]-8-ε, -8+ε[ will be called Jε; for each δ, the interval ]-2- 

δ, -2+ δ[ will be called Iδ. 

 

Figure 11. 

Geometric representation of ε and δ according to data in Table 3. 

 

For the function considered, fixed ε = 1, note that δ = 0.1 is such that f(Iδ)⊂ Jε. 

Therefore, fixed ε = 1, δ = 0.1 meets the condition for validating the search for a limit. Note 

that this behavior remains even if there are values of ε greater than 1, which makes this search 

inappropriate. Therefore, the search may become interesting with values less than 1 and greater 

than 0. In fact, the idea is to make ε tend to zero. In this work, the Geogebra software was used 

to generate this type of image. For ε = 0.5, we already found computational restrictions to make 

the graphical registration. 
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Subtask 2: Graph the limit, if any, of the function f(x) = tg(x) as x tends to π/2-. Note: 

the notation used is lateral limit and tending to π/2- means approaching π/2 but always by 

values strictly smaller than π/2. 

The attention mechanisms and specific praxeology are the same as in Subtask 1. 

Theoretical considerations:  

i. It makes sense to calculate the limit when x tends to π/2, since π/2 is an 

accumulation point of the domain of the function f(x) = tg(x). It is important to 

note that π/2 is not part of the domain of the tangent function. Comment: this is 

a very important aspect with regard to attention mechanisms, because, in most 

cases involving student-teacher relationships in the classroom, we find that the 

calculation of the limit of a function f(x) when x tends to p is done without 

observing the fact that p is an accumulation point of the domain of f. 

ii. The existence of limit candidates will depend on the distance from f(] p – δ1, p - 

δ2 [) to the zero point, with 0 < δ2 < δ1, since it is a left-side limit. More 

specifically, the length of the interval f(] p – δ1, p - δ2 [) will be indicative of the 

existence of a limit candidate in conditions analogous to Subtask 1. 

 

Table 4 

Limit Candidate Calculation 

___________________________________________________________________________ 

        δ1      π/2-δ1 

            

tg       δ2     π/2-δ2 

                

tg              length_image 

0,500 1,071 1,830 0,250 1,321 3,916 2,086 

0,400 1,171 2,365 0,200 1,371 4,933 2,568 

0,300 1,271 3,233 0,150 1,421 6,617 3,384 

0,200 1,371 4,933 0,100 1,471 9,967 5,033 

0,100 1,471 9,967 0,050 1,521 19,983 10,017 

0,010 1,561 99,997 0,005 1,566 199,998 100,002 

 
__________________________________________________________________________________ 
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The “length_image” column is the length of the interval ] f(p – δ1), f(p – δ2) [, with the 

specified deltas. These calculations point to the non-existence of a limit, but without presenting 

a formal demonstration of this fact.  

Based on an a priori analysis and didactic experiments in a Differential Calculus class 

composed of 40 students from undergraduate and bachelor's Mathematics and Civil 

Construction Engineering courses, we infer that the REM presented in this section proved to be 

a valid teaching resource in teaching- limits learning, but it cannot be said that it is invested 

with the necessary rigor to be characterized as a mathematical demonstration. 

Final considerations 

Teaching limits is a fundamental topic in Mathematics, being essential for 

understanding various concepts and applications. In this sense, the epistemological approach to 

teaching limits must consider students' attention mechanisms, seeking to create strategies that 

facilitate learning and promote a greater understanding of the concept. 

By taking into account students' attention mechanisms, it is possible to identify which 

points arouse the most interest and engagement, allowing the teacher to adapt his teaching 

methodology and make classes more dynamic and participatory. Furthermore, by using 

resources that stimulate students' concentration and focus, such as practical activities and 

contextualized examples, it is possible to achieve more favorable conditions for understanding 

the objects studied and ensuring better absorption of the content. 

Another important aspect to be considered in the epistemological approach to teaching 

limits is spaced repetition. Revisiting the same content at regular intervals helps with 

memorization and consolidation of information. Therefore, by creating a study plan that 

includes periodic reviews of limit concepts, it is possible to strengthen students' understanding 

and ensure more solid learning. Furthermore, it is essential to encourage students’ autonomy in 

learning, allowing them to develop skills such as self-assessment and self-regulation. 

By providing tools for students to monitor their own progress and identify their 

difficulties, greater responsibility for learning is promoted and a collaborative environment 

among peers is encouraged. In short, adopting an epistemological approach that takes into 

account students' attention mechanisms when teaching limits allows creating an environment 

conducive to the construction of mathematical knowledge. Through the combination of 

strategies that stimulate students' interest, concentration and autonomy, it is possible to promote 

meaningful and lasting learning in this fundamental field of Mathematics. 
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