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Abstract 

The objective of this article is to highlight the potential of Conway's theory compared to the 

classical concept of number with a view to contributing to the development of Epistemological 

Reference Models for teaching Differential and Integral Calculus. The search for a single 

answer to the epistemological question “What is a number?” has mobilized Mathematics 

epistemologists for centuries, considered essential for the foundation of this concept. John 

Horton Conway, an English mathematician from Princeton University, dedicated himself to 

researching this issue and resulted in a theory presented in the 1970s. In this article we bring 

elements about this theory highlighting its contributions to the evolution of the foundation of 

the concept of number. Conway's definition of number meets the complementarity of the 

intensional and extensional aspects of this concept, bringing advantages to Mathematics 

teaching. Scientific investigations and results of teaching practices in the field of teaching have 

encouraged questions about the importance of the role that the concept of real numbers has for 

learning Calculus and Real Analysis. Add to this question, and for Mathematics in general, and 
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for the formation of analytical thinking, and for mathematical thinking? The reflections carried 

out in this article aim to raise epistemological and cognitive aspects about the classical 

construction of number, seeking to have an impact on current epistemology. 

Keywords: Real number, Complementarity, Conway number, Epistemological reference 

model.  

Resumen 

El objetivo de este artículo es resaltar el potencial de la teoría de Conway frente al concepto 

clásico de número con miras a contribuir al desarrollo de Modelos de Referencia 

Epistemológicos para la enseñanza del Cálculo Diferencial e Integral. La búsqueda de una 

respuesta única a la pregunta epistemológica “¿Qué es un número?” ha movilizado durante 

siglos a los epistemólogos matemáticos, considerados esenciales para la fundación de este 

concepto. John Horton Conway, matemático inglés de la Universidad de Princeton, se dedicó a 

investigar este tema y dio como resultado una teoría presentada en la década de 1970. En este 

artículo traemos elementos sobre esta teoría destacando sus aportes a la evolución de la 

fundamentación del concepto de número. . La definición de número de Conway cumple con la 

complementariedad de los aspectos intensional y extensional de este concepto, aportando 

ventajas a la enseñanza de las Matemáticas. Las investigaciones científicas y los resultados de 

las prácticas docentes en el campo de la enseñanza han fomentado cuestionamientos sobre la 

importancia del papel que tiene el concepto de números reales para el aprendizaje del Cálculo 

y Análisis Real. ¿Agregar a esta pregunta, y para las Matemáticas en general, y para la 

formación del pensamiento analítico, y para el pensamiento matemático? Las reflexiones 

realizadas en este artículo pretenden plantear aspectos epistemológicos y cognitivos sobre la 

construcción clásica del número, buscando incidir en la epistemología actual. 

Palabras clave: Número real, Complementariedad, Número de Conway, Modelo de 

referencia epistemológica. 

Résumé 

L'objectif de cet article est de mettre en évidence le potentiel de la théorie de Conway par 

rapport au concept classique de nombre en vue de contribuer au développement de modèles 

épistémologiques de référence pour l'enseignement du calcul différentiel et intégral. La 

recherche d’une réponse unique à la question épistémologique « Qu’est-ce qu’un nombre ? a 

mobilisé les épistémologues mathématiques pendant des siècles, considéré comme essentiel 

pour le fondement de ce concept. John Horton Conway, un mathématicien anglais de 
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l'Université de Princeton, s'est consacré à des recherches sur cette question et a abouti à une 

théorie présentée dans les années 1970. Dans cet article, nous apportons des éléments sur cette 

théorie soulignant ses contributions à l'évolution du fondement du concept de nombre. . La 

définition du nombre de Conway répond à la complémentarité des aspects intensionnels et 

extensionnels de ce concept, apportant des avantages à l'enseignement des mathématiques. Les 

recherches scientifiques et les résultats des pratiques pédagogiques dans le domaine de 

l'enseignement ont suscité des interrogations sur l'importance du rôle que joue le concept de 

nombres réels dans l'apprentissage du calcul et de l'analyse réelle. Ajouter à cette question, et 

pour les mathématiques en général, et pour la formation de la pensée analytique, et pour la 

pensée mathématique ? Les réflexions menées dans cet article visent à soulever les aspects 

épistémologiques et cognitifs de la construction classique du nombre, cherchant à avoir un 

impact sur l'épistémologie actuelle. 

Mots-clés : Nombre réel, Complémentarité, Numéro Conway, Modèle de référence 

épistémologique. 

Resumo 

O objetivo deste artigo é destacar potencialidades da teoria de Conway em ralação ao conceito 

clássico de número, com vistas a contribuir com o desenvolvimento de Modelos 

Epistemológicos de Referência para o ensino de Cálculo Diferencial e Integral. A busca de 

resposta única para a questão epistemológica acerca do que é número tem mobilizado 

epistemólogos da Matemática por séculos, a teoria de John Horton Conway é considerada 

essencial para a fundamentação desse conceito. Trata-se de um matemático inglês da 

Universidade de Princeton que se dedicou a pesquisar essa questão e obteve como resultado 

uma teoria apresentada na década de 1970. Neste artigo serão apresentados elementos sobre 

essa teoria, bem como as contribuições dos estudos de Conway para a evolução da 

fundamentação do conceito de número. A definição de Conway para número atende à 

complementaridade dos aspectos intensional e extensional desse conceito trazendo vantagens 

para a didática da Matemática. Investigações científicas e resultados de práticas docentes no 

âmbito da didática têm fomentado questionamentos sobre a importância do papel que o conceito 

de número real tem para a aprendizagem do Cálculo e da Análise Real. Acrescenta-se a essa 

pergunta, e para a Matemática de um modo geral, e para a formação de um pensamento 

analítico, e para o pensamento matemático? As reflexões realizadas nesse artigo têm por 

pretensão levantar aspectos epistemológicos e cognitivos sobre a construção clássica de 

número, buscando repercutir sobre a epistemologia vigente. 
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Palavras-chave: Número real, Complementaridade, Número de Conway, Modelo 

epistemológico de referência. 
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Conway’s notion of real number and the principle of complementarity, some 

contributions to the development of epistemological reference models 

Niels Bohr’s term “complementarity” has been used by various authors to capture the 

essential aspects of the cognitive and epistemic development of mathematical and scientific 

concepts. Michael Otte (2003, p. 205) conceives of complementarity according to the dual 

notion of extension and intension of mathematical terms. 

The notion of intension of mathematical terms is characterized by describing the 

relations between classes of mathematical objects, as well as their structural relations, but it is 

important to highlight that it does not describe the mathematical object itself, i.e., axiomatic 

systems in the sense of Peano and Hilbert or an axiomatic approach to real numbers do not 

describe the mathematical term number. The extension of this concept must be sought. 

The extension of mathematical terms is characterized by providing the description of 

mathematical objects, as well as the interpretation and possible applications of axiomatic 

systems. 

The debate on the relationship between the intensional and extensional views of 

mathematics particularly and intensely affects the concept of number. The intensional view, 

which implies ordinality and axiomatic descriptions, appears first and receives severe criticism 

from those who privilege mathematical applications. 

The duality between these two views is revealed by Russell in his book Philosophy of 

Mathematics, published in 1919, which deals with numbers and everything related to number. 

Peano’s approach is insufficient to provide an adequate basis for arithmetic. First, 

because we are not able to know whether there is any set of terms verifying Peano’s axioms, 

secondly, we want our numbers to count ordinary objects, and this requires that our numbers 

have a definite meaning, not merely that they have certain formal properties (Russell, 2007, p. 

10). 

According to Russell, in order to conceptualize a number with some extension, which 

is real, one must understand “numbers as a number of quantities” and give an application to the 

concept thus defined by demonstrating the existence of sets of arbitrary cardinality. Obviously, 

this can only be done axiomatically. In doing so, however, the notion of axiom should not be 

understood instrumentally in the Peano-Hilbertian sense; the term should rather be conceived 

in the Euclidean tradition, i.e., as an intuitively evident truth and as a precondition of 

mathematics. It is for this reason that Russell introduces the “axiom of infinity.” 

We have to ascertain or make it plausible that there are in fact infinite collections or sets 

in the world in order to be able to find numbers (Russel, 2007, p. 77). 
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In Russell’s way of thinking, arithmetic intuition must be replaced with the intuition of 

set theory. This may seem strange, as the axiomatization of arithmetic has been caused by the 

awareness that we are unable to fully understand number, even more to establish formal laws 

that numbers satisfy. Russell apparently replaces number with the intuitive concept of set as a 

foundation for these formal laws. 

Nearly half a century later, mathematics education worldwide attempted to repeat this 

deed, with little success. Mathematics is not a quasi-empirical science, which establishes its 

methods by the property meanings of its objects; rather, the objects have to be constructed 

simultaneously with the rules and methods of reason. 

Dedekind was also not ready to imagine an axiomatic definition of number, because 

after recognizing the essential characteristics of such a system, he still asks: “does such a system 

exist in the reality of our ideas?” (Dedekind in his letter to Keferstein in 1890). He considered 

an infinite totality of things attributing to us, human subjects, the ability to infinitely repeat 

certain ideas or mental actions, as if we were adding them one to another. Dedekind considered 

his thought experience as a proof of its logical existence and, he was not concerned, like Russell, 

with the meaning of the individual symbols of number. Unlike Dedekind, Russell thought that 

one can never reach infinite totalities by mere enumeration, and he considered it an empirical 

fact “that the mind is not capable of repeating the same act infinitely”. A complementarian 

approach is induced by the impossibility of defining mathematical reality independently of 

cognitive activity itself.  

For Thom (1972 apud Otte, 2003, p. 203) “the real problem facing the teaching of 

mathematics is not rigor, but rather the problem of developing a ‘meaning’ of the ‘existence’ 

of mathematical objects”. For Otte, a modern axiomatic theory has become, to a certain extent, 

a dual theory, in the sense that this set of axioms and postulates does not only determine the 

intension of the theoretical terms, but also constitutes the extensions or references and 

applicability of this theory. 

For example, the objects of Euclidean geometry seem to be given by intuition, being, in 

a certain way, independent of the theory. In Hilbert’s geometry the situation is completely 

different, because to answer the following questions “what is a point?” or “what is a number?”, 

a axiomatic description of relations or laws by which these entities are governed is necessary. 

This complementarity becomes visible, and distinguishable from mere duality, only 

from a genetic perspective, which focuses on the mathematical character of our knowledge. 

Only from this perspective is the relationship between matter and object, beyond the object 
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itself, focused on. According to Otte (2003), the notion of complementarity is particularly 

relevant for any study of the epistemological foundations of mathematics education. 

The conceptualization of number proposed by Conway guarantees this 

complementarity, since it is a formally rigorous theory and can be interpreted by several classes 

of games. 

It is these reflections on the notion of number, especially on real number, that interest 

us in this article. The historical and epistemological aspects of the definition of numbers 

reverberate in Conway’s proposal, therefore it has advantages over the classical ones. It is 

expected that, with this potential, it will bring essential elements for the construction of 

Epistemological Reference Models (ERM), aiming at the teaching of Differential and Integral 

Calculus. 

The notion of real number is one of the essential pillars of Mathematical Analysis, as 

well as of Differential and Integral Calculus. The teaching and learning of these areas of 

Mathematics require the treatment and study of properties of real numbers, such as density, 

order and completeness, which are essential for the rigorous demonstration of theorems 

necessary for the understanding of concepts, for example, limit, continuity and derivative. 

We believe that Epistemological Reference Models for the teaching of Differential and 

Integral Calculus can play a fundamental role in learning, as they provide conceptual and 

methodological structures that guide the pedagogical approach and assist in the monitoring and 

questioning of established knowledge. This is because, like Gascón (2014), we admit that one 

of the important roles of Didactics in Mathematics is to question mathematical knowledge. And 

for this reason, we focus this text on questioning the classically established concept of real 

number. 

This questioning is based on the principle of complementarity, as presented by Otte 

(2003), since it allows the analysis of epistemological and cognitive aspects related to 

mathematical objects, and can contribute to the development of Epistemological Reference 

Models, mainly by favoring questioning and epistemological surveillance of established 

mathematical knowledge. 

We admit, as Gascón (2014, p. 100), that: 

[...] to take the processes of didactic transposition as an object of study, the teacher needs 

to critically analyze the epistemological models of mathematics that are dominant in the 

institutions involved and, thus, free himself from the uncritical assumption of such 

models. This is what epistemological emancipation consists of, while institutional 

emancipation refers to the need for the teacher (and the science of didactics) to free 

himself from the dependencies that accompany the position of “teacher” (subject of a 
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given school institution), that of “noosphere” (subject of the noosphere, that is, author 

of textbooks, study plans, curricular documents, teacher training texts, etc.) and, also, 

that of “mathematician guardian of orthodoxy” (subject of the institution that produces 

and preserves knowledge). Obviously, epistemological emancipation constitutes a 

particular aspect, an essential first step, of institutional emancipation that could be 

defined, in general, as the liberation from subjection to the dominant ideology in the 

institutions that are part of its object of study, i.e., the emancipation not only from 

epistemological provincialism, but also from all didactic, pedagogical and cultural 

provincialism (Gascón, 2014, p. 100, translation by the author). 

The most common (or classical) approaches to real numbers, especially in textbooks on 

Mathematical Analysis or Differential and Integral Calculus, raise discomforts and 

inconveniences and have generated debates and discussions of a historical and epistemological 

nature. 

At the heart of these discussions is, for example, the lack of a single answer to the 

question “What is a number?”, and also the impossibility of definitions of the concept of number 

considering the dual condition of intensionality and extensionality. 

We indicate as classical the approaches to real numbers: as a set of equivalence classes 

of Cauchy sequences of rational numbers (completion of the set of rationals), as the set of cuts 

of rationals (Dedekind cuts) or as a complete ordered field with respect to the operations of 

addition and multiplication (axiomatic conceptualization). 

The work of mathematicians in different areas of study presupposes the use of numbers, 

from natural to transfinite3, and the inconvenience of the lack of a single answer to the question 

“what is a number?” gains strength in the epistemological debate (Fonseca, 2010). Here we 

defend the possibility of envisioning the evolution of mathematical ideas of the different types 

of numbers, through history, in addition to the epistemological emancipation of more traditional 

or classical approaches. 

The study of the historical evolution of mathematical concepts is not synonymous with 

harmony, but rather with conflicts and complexity, with the questioning of established 

knowledge. 

Our considerations regarding the conceptualization of number are based on the principle 

of complementarity, since, according to this principle, mathematical objects have a dual nature, 

that is, on the one hand they can be characterized axiomatically (intensionality), on the other 

they must be complemented by possible applications, i.e, models that translate their logical 

processes (extensionality), as indicated by Otte (2003). Considering this reference, when 

 
3 A transfinite number is one whose cardinality is greater than C (continuous). “one of the most striking results of 

Cantor's Mengenlehre is that there are such numbers” (Boyer, 1949, p.297) 
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analyzing a mathematical object, we seek to identify and explain the non-dissociation of the 

aspects that make up this duality. 

The conceptualization of real number, proposed by Conway (2001), highlights historical 

and epistemological potentialities in relation to classical conceptualizations. 

The text below is divided into sections that aim to contemplate, respectively, 

considerations about the nature of numbers, a brief introduction to Conway’s theory, the 

principle of complementarity, the questioning of classical approaches to real numbers in light 

of the precepts of complementarity, as well as Conway’s own proposal and, finally, the final 

considerations. 

Considerations on the nature of numbers 

Historically philosophers and mathematicians have made several criticisms of the 

conceptions about the nature of numbers, as exposed by Barker (1969) and Russell (2007). 

The question “should a definition for the mathematical object ‘number’ start from the 

assumption that it is purely an object of thought or should it be based on external things 

that are part of our sensible reality?” has always been involved in philosophical or 

epistemological debates about the nature of numbers (Fonseca, 2010, p. 16). 

In this article, this issue is considered taking into account the principle of 

complementarity, as established by Otte (2003), and a possible reformulation may encompass 

other mathematical notions, highlighting the potential that this principle presents to analyze 

mathematical notions from an epistemological and cognitive point of view.  

Historically, we can observe that when trying to answer questions about the nature of 

numbers, the arguments used by mathematicians and philosophers suggest a debate between 

the hierarchy involving Pure and Applied Mathematics (Barker, 1969).  

In fact, the development of the concept of number was not harmonious at all, for 

example, negative numbers and complex numbers were not accepted and considered doubtful 

for a long time, acquiring the status of number only in the 19th century.  

Frege (1992, p. 30) was one of the mathematicians who argued that negative numbers 

and irrational numbers should be analyzed and subjected to a number credential; this defense 

involves discussions about the nature and definition of such numbers. 

From the 19th century onwards, real numbers were logically well founded by some 

mathematicians such as Richard Dedekind, Karl Weierstrass, Charles Méray and Georg Cantor. 

Since then, it has been widely accepted that the system of real numbers is constructed starting 

from the natural numbers, and, through successive constructions, the integers, the rational 

numbers and finally the real numbers are obtained (Fonseca, 2010). 
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Dedekind, for example, can legitimately be named as the first to have constructed real 

numbers from rational numbers. However, when confronted with the question, “What 

is a number?”, he responded with a general theory of ordinals that gives status to 

integers, but that cannot be applied directly to real numbers, as we can see in his text 

The Nature and Meaning of Numbers (DEDEKIND, 1901, p. 21). How can we say that 

a real number is a “number”? (Fonseca, 2010, pp. 136-137) 

According to Fonseca (2010, p.18), the classical approaches to real numbers (Dedekind 

cuts, equivalence classes of Cauchy sequences of rational numbers and the axiomatic approach) 

present epistemological and philosophical drawbacks, such as the impossibility of answering 

the question “What is a number?”, and the construction of numbers in a unique way, in addition 

to not providing complementarity between the intensional and extensional aspects in the 

conceptualization of real numbers. 

Considering the drawbacks previously mentioned, we point to the theory developed by 

Conway (2001) that allows the construction of numbers in a unique way, from natural to 

transfinite numbers and that can be carried out through sets (guaranteeing their intensional 

character) and some classes of games (guaranteeing their extensional character). This theory 

can be conceived through a duality, with an axiomatic characterization and models (games) that 

provide the interpretation of its terms and explain properties that constitute the 

conceptualization of numbers (Fonseca, 2010). 

We present below a brief introduction to the main ideas of Conway’s theory (2001) that 

permeate its construction. Later, we will make considerations regarding its potential when 

confronted with the classical approaches to real numbers, guided by the principle of 

complementarity (Kuyk, 1977; Otte, 2003). According to this principle, mathematical objects 

have a dual nature, i.e., they can be characterized axiomatically, but they must be complemented 

by interpretations or applications, models that translate their properties. We argue that 

analyzing a mathematical object from the perspective of complementarity means seeking to 

identify its capacity to make inseparable the aspects that make up this duality (Fonseca, 2010). 

A brief introduction to Conway’s ideas 

Conway’s notion of number, developed in the 1970s, is a generalization of Dedekind’s 

cuts and “deserves the qualification of new not only because of the time in which it was 

presented, but because of the epistemological advances that it enables” (Fonseca, 2010, p. 21). 

This notion of number makes it possible to address epistemological questions, for 

example, “what is a number?” and, in its construction, encompasses the intensional and 
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extensional aspects of the concept of number, in addition to enabling the construction of natural 

numbers to real numbers with a single procedure, overcoming classical approaches. 

Conway conceptualizes number using the notion of cut, in addition to a specific class of 

games and set theory. 

Conway’s notion of cut is a generalization of Dedekind’s notion insofar as it does not 

require the set of rationals as a starting point, encompassing all “large” and “small” 

numbers: real numbers such as 0, 1, ..., n, -1, 1/2, 2 ,  , ...; transfinite numbers such 

as   (the first infinite ordinal); and also infinitesimal numbers such as 1/ . The 

definition of order, in the set of cuts, is achieved by taking a special class of games as 

models of “generalized cuts” (Fonseca, 2010, p. 22). 

We emphasize that Conway criticizes the construction of real numbers from rational 

numbers through Dedekind’s cuts, claiming that the distinction between the “old” and the 

“new” rational seems artificial, but is essential (Conway, 2001, p. 4). 

Although Conway uses a generalization of Dedekind’s method, what is important and 

new is that he does not presuppose rational numbers. At the beginning, he uses empty sets and 

constructs a broader class of numbers, called ‘Surreal Numbers’, including real numbers, 

transfinite numbers and infinitesimal numbers, in addition to complex numbers, i.e., ‘Surreal 

Numbers’ encompass all numbers, according to Fonseca (2010). 

Conway generalizes Dedekind’s method by considering two classes of numbers E (left 

class) and D (right class), such that no element of class E is greater than or equal to any element 

of class D. He then defines number as the set whose elements are the two classes E and D, i.e., 

the set {ED}. 

Conway’s definition for a number x = {ED} assumes that classes E and D are classes 

of numbers defined before x. In other words, the construction of numbers occurs by recurrence. 

Let’s see how this occurs. 

The empty set is used to construct the first number {}. This number is zero, i.e., 

{} = 0. From it, other numbers are obtained by finding their two classes: the one on the 

left and the one on the right. The number 1, for example, will be the number {{0}}, the 

number 2, the number {{0,1}}, the number 3, the number {{0,1,2}}, and thus all the 

whole numbers are obtained. The representation of rational and irrational numbers in Conway 

(2001, p. 4).  

Number is game  

The number/game association developed by Conway (2001) considers certain classes of 

games, those in which: a) there are only two players; b) one of them is the winner; c) only a 
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finite number of moves are allowed. The Hackenbush game class is one that fits into Conway’s 

game classes. This class is derived from the well-known NIM game governed by the 

mathematical theory developed by Bouton (1901). In our research, we chose a version of the 

Hackenbush game class. 

This version of the Hackenbush game is composed of colored pieces, blue and white, 

and its rules are as follows: Player A must remove blue pieces, while player B removes white 

pieces. The configuration of a game must be such that the pieces are overlapped and one of 

them connected to a horizontal line. 

The players play alternately. Each player must remove only one piece of the color 

assigned to him/her. If a piece is removed, the pieces that are overlapping will be automatically 

erased. The player who first runs out of pieces of his/her color to remove will lose the game. 

Figure 1 shows four examples of Hackenbush games. 

 

 

 

Figure 1. 

Examples of Hackenbush games. 

For example, in game (a) in Figure 1, only player A has the possibility of a move; 

therefore, he wins regardless of who starts the game. 

In game (b), as we can see, the situation is different from the previous one, since both 

players have the possibility of a move, as follows: if player A starts the game by removing the 

blue piece furthest from the line, B can remove a white piece also furthest from the line. Then 

A will have only one piece to remove and B will win the game. If player B starts the game, he 

can use a strategy analogous to the previous one, and in these conditions player A will win 

regardless of B’s moves. In this case, the player who starts loses. 

In game (c), the same situation described in the previous paragraph will occur, i.e., the 

player who starts loses. In example (d), the following happens: if player A starts the game, he 

removes the blue piece that is connected to the line, automatically erasing the pieces that are 

overlapping it. In this case, player A will immediately win the game, since B will not be able 

to remove any pieces. If player B starts the game, he will remove the only white piece and 

(a) (b) (c) (d) 
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consequently erase the blue piece above it. And player A will also win, as he will still have one 

chance to play. In other words, player A always wins. Below, we will indicate some specific 

games and the numbers associated with them. 

Zero game/zero number  

A zero game is one in which the player who starts the game loses, that is, the game in 

which the player who starts loses. Below are some zero games. 

 

 
 

Figure 2. 

Zero-value Hackenbush games. 

 

Conway associates the zero game with the number zero. The zero game according to the 

configuration (a) indicated in Figure 2 is associated with the number zero represented by 

{}. This is the first number constructed by Conway and one of the representations of the 

number zero. The empty set on the left side of the bar indicates the absence of moves for player 

A, while the empty set on the right side represents the absence of moves for player B. 

To construct new numbers, it is necessary to define the following order relation in the 

set of games: a game is positive (or greater than zero) if player A wins regardless of who starts 

the game. Similarly, when the advantage is for player B, that is, when B wins regardless of who 

starts the game, the game is negative (or less than zero). 

Thus, the association between game zero and number zero is effective. Let us move on 

to other numbers. 

First, we will indicate how a given game J is associated with an integer number x, 

pointing out how the elements of classes E and D that define the number x associated with it 

are obtained. This is done by recursion, as follows: each time a player removes one of the pieces, 

game J is reduced to another game J’ whose associated number is x’. This number x’ will be an 

 

(a) 

(b) (c) (d) (e) 
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element of class E or D of x, depending on whether the player who removed the piece is player 

A or B, respectively. 

In Figure 3 below, there are some examples of games and the respective integers 

associated with each of them. The games are indicated by the configuration of the pieces and 

the number associated with it is indicated below the horizontal line. The numbers 0, 1 and -1 

arranged next to each piece (vertically) are the numbers associated with the games to which 

they are reduced when the respective piece is removed. The numbers 0, 1 and -1 are, as 

previously stated, in each case, elements of classes E and D of the numbers 1, 2, -1 and -2. 

 

 

Figure 3. 

Games/numbers 1, 2, -1 and -2. 

 

Let us now detail each case: Game (a): the game consists of only one blue piece. In this 

game, only player A has a piece to remove. When this piece is removed, the game is reduced 

to game zero. The player who removed the piece was player A, so the number zero will be an 

element of the left class E defining the number x associated with game (a). Player B has no 

pieces to remove and so the right class D defining x is the empty class. Therefore, the number 

x associated with game (a) is the number {{0}} = 1. In other words, the game with only one 

blue piece (a) is game 1 and the number associated with it is the number 1.  

Game (b) is game 2, and the number associated with it is the number {{0,1}} = 2.  

Game (c) consists of only one white piece. There is, therefore, no piece for player A to 

remove, which implies that E is empty. And class D will be composed of zero, because, when 

player B removes the white piece, game (c) is reduced to a null game. The number x associated 

with game (c) is {{0}}. 

Let us show that {{0}} is the number -1. In fact: it is negative, because it is associated 

with a negative game (Player B always wins). And, defining the sum of two games J and J’ as 

a game J” (J+J’=J”), such that the pieces of J are placed next to the pieces of J’ and supported 

on the horizontal line, we have that 1+ (c) = 0, as in game (a) in Figure 4 below. And so 

{{0}} = -1.  

(a) (d) (b) (c) 

1

o 

2

o 

-1 -2 

0

o 

1 

0 0 

-1 

0 
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Similarly, we obtain the number -2 = {{–1, 0}}. Two numbers x and –x whose sum 

is zero are said to be opposite numbers. In general, the positive integer n is defined as n={{n-

1}}. All integers are constructed in a similar way.  

 

 

Figure 4. 

Numbers 1, -1, 2 and -2. 

 

Let us now analyze a new game indicated in Figure 5. 

 

 

Figure 5. 

A new number. 

Let us check what number is associated with it. In fact, it turns out that: 

(1) There are possible moves for both players; 

(2) It is a positive game, since player A has an advantage, and consequently the number 

associated with it is a positive number. 

(3) In this game, although the advantage is with player A, player B has a possible move. Its 

representation by means of sets is {{0}{1}}, since: 

 

(4)  

 
 

? 

1 

(a) (b) 

2 

? 

0 

1 
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(5) Using the sum of games, we obtain game (b) in Figure 6. However, it turns out that this 

is not a zero game, since in this case the advantage is with player B. We try a new possibility 

by playing with (c). We conclude that game (c) in Figure 7 is a zero game. 

 

 

Figure 6. 

Construction of the number  
1

2
. 

 

The game configuration (c) can be represented by the equation 2x + (–1) = 0, whose 

solution is  
1

2
..  

That is, game (a) in Figure 6 corresponds to the number {{0}{1}}, which is the number 

1

2
. Its opposite is obtained by a game resulting from the inversion of the moves of A by B. The 

result is the number –
1

2
. = {{–1}{0}}. 

Other rational numbers can be constructed from these and others constructed previously. 

 

Figure 7. 

Construction of the number  
1

4
. 

In game (a) in Figure 7, the advantage is for player A, so this game is associated with a 

positive number. Player B has two possible moves, and can be represented by {{0}{
1

2
, 1}} or 

{{0}{
1

2
}}.  

A new attempt leads us to construct the sum of games, as in (b), obtaining a game in 

which the advantage is for player B, and therefore not zero. A new attempt can be made with 

? 𝟏/𝟐  -1 1/2   -1 

(a) (b) (c) 

 
1/2

⬚
 

1 

0 

-1 -1 

(a) (b) (c) 

1 

0 
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game (c), whose sum results in a game in which the first player loses, that is, a zero game. Thus, 

the new number associated with game (a) in Figure 7 is the solution to the equation: 

2x + 
1

2
+ (-1) = 0, i.e., x = 

1

4
. Therefore 

1

4
.  = {{0}{

1

2
, 1}} or simply                   

1

4
 = {{0}{

1

2
}}. And  –

1

4
= {{–

1

2
}{0}}. 

So far, we have not associated any game with rational numbers such as 
1

3
  or irrational 

numbers. One of the reasons for this is that in order to associate games with such numbers, we 

will admit Hackenbush games that have an infinite configuration of pieces. It is important to 

emphasize that such games also satisfy the initial rules. Even considering infinite pieces for the 

players, it is a game that can be played finitely, since, from the first movement made by one of 

the players, all the pieces overlapping the removed piece will be erased, making the game finite. 

We also emphasize that in Conway’s theory such numbers are constructed from dyadic 

numbers, and have an infinite process. 

According to Conway and Guy (1999, p. 299), the set “a, b, c,...  d, e, f,... defines the 

simplest number strictly superior to all numbers a, b, c,... and strictly inferior to all numbers d, 

e, f,...”, this definition, associated with the rule developed by Elwin Berlekamp4, allows 

establishing the correspondence between real numbers and the Hackenbush game. 

The rule developed by Berlekamp, Conway and Guy (2001) is as follows: the first pair 

of pieces of different colors that appear counting from bottom to top will represent the “binary 

comma”, the blue and white pieces that follow this pair are the digits 1 and 0, respectively, 

which appear to the right of the comma, with a last 1 being added in the case where the 

configuration of pieces that make up the game is finite. The whole part is equal to the number 

of pieces that appear before the pair that represents the comma.  

Let us look at some examples. The game associated with the rational number 
1

3 
  has an 

infinite and periodic configuration, as shown in Figure 8. In binary notation, the number 
1

3 
 is 

represented by 0.010101..., and by means of sets as follows:  

1

3 
 = 0.01; 0.0101; 0.010101; ... ...; 0.0101011; 0.0111; 0.011; 0.1 

 

 
4 Elwyn Berlekamp was born in Dover, Ohio, on September 6, 1940. He has been Professor Emeritus of Mathematics, Electrical 

Engineering, and Computer Science at the University of California, Berkeley, since 1971. He is known for his work in 

information theory and combinatorial game theory. With John Horton Conway and Richard K. Guy, he wrote the book Winning 

Ways for Your Mathematical Plays. 
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Figure 8. 

Hackenbush game corresponding to the number 
1

3 
. 

 

As we know, irrational numbers have an infinite and non-periodic binary representation, 

and we can use Berlekamp’s rule to associate sets with irrational numbers. Let us look at an 

example. The irrational number e, whose representation in binary notation is 10.101101..., and 

through sets we have: 

e = {10.101; 10.1011; 10.101101; ... | ...; 10.11001; 10.1101; 10.11} 

This number corresponds to the set indicated in Figure 9. 

 

 . 
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0 

1 

1 

1
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Figure 9. 

Game associated with the irrational number e. 

 

So far, we have presented the ideas behind Conway’s theory, shown the interpretation 

of some numbers through a specific class of games and their representations through sets. Next, 

we discuss the principle of complementarity. 

The notion of complementarity 

The article Complementarity, Sets and Numbers by Otte (2003) raises several questions 

about numbers. Otte uses the principle of complementarity to analyze the epistemological and 

cognitive development of these concepts, highlighting the necessary inseparability of the 

intensional and extensional aspects in the conceptualization of number. This treatment 

considers “complementary two opposing concepts which, however, correct each other 

reciprocally and are integrated in the description of a phenomenon” (Abbagnano, 1982, p. 144). 

According to Otte (2003), the complementarity between the intensional and extensional 

conceptions is intrinsically related to the concept of number, but is not restricted to it, and can 

be used to analyze the historical and epistemological development of other mathematical 

objects, as was also defended by Kuyk (1977). Both argue that complementarity occurs 

naturally, and there is no hierarchy between the intensional and extensional aspects. 

1 
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For us, the principle of complementarity defended by Kuyk (1977) and Otte (2003) can 

contribute to mathematical praxiology in the development of Epistemological Reference 

Models, since it allows the analysis of established mathematical knowledge, based on 

intensional and extensional aspects. 

The distinction between the terms intensional and extensional has been debated in 

contemporary philosophy and logic: 

This pair of terms was introduced by Leibniz to express the distinction that the Logic of 

Port-Royal had expressed with the pair comprehension-extension and the logic of Stuart 

Mill had expressed with the pair connotation-denotation [...]. The use of these two terms 

was adopted by Hamilton: “The internal quantity of a notion, its intensionality or 

comprehension, is constituted by different attributes of which the concept is the sum, 

i.e., of the several connected characters of the concept itself into one whole thought. The 

external quantity of a notion or its extension is constituted by the number of objects 

which are thought mediately through the concept” (Lectures on Logic, 2nd ed., 1866, I, 

p. 142). [...] The intension of a term is defined by Lewis as “the conjunction of all other 

terms each of which must be applicable to that to which the term is rightly applicable”. 

In this sense, the intension (or connotation) is delimited by every correct definition of 

the term and represents the intention of the person who uses it, hence the primary 

meaning of “meaning”. The extension, however, or denotation of a term is the class of 

real things to which the term applies (Lewis, Analysis of Knowledge and Valuation, 

1950, p. 39-41). The same determinations are given by Quine: the intension is the 

meaning, the extension is the class of entities to which the term can be truly attributed. 

The adjectives intensional and extensional are used analogously [...]. (Abbagnano, 

1982, p. 549) 

In mathematical objects, the notion of intension characterizes the relations between 

classes, as well as their structural relations, but this does not exhaust the conceptualization. We 

can take axiomatic systems as an example, such as those used by Peano and Hilbert, or even an 

axiomatic approach to real numbers (complete ordered field). Normally, an axiomatic approach 

does not deal with objects that exist concretely, but rather with general relations or ideal objects. 

Philosopher and mathematician Bertrand Russell (2007) severely criticized the 

axiomatic method, because for him axioms as non-specific terms need to be interpreted and 

specified, establishing connections with certain applications. He argues: “First, Peano’s three 

primitive ideas – namely, ‘0’, ‘number’ and ‘successor’ – are susceptible to infinitely many 

different interpretations, all of which will satisfy the five primitive propositions” (Russell, 2007, 

p. 23). 

Based on Russell’s arguments, one can infer the search for a definition for number that 

contemplates the mathematical nature, considering the way it is conceived by man, its 

applications and the description of the object itself, aspects that are not considered only with 
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the notion of intension in the axiomatic method, for example, in the axiomatic conceptualization 

of real number. 

Considering the impossibility of conceiving mathematical objects independently of their 

representations and of the cognitive activity itself, the notion of extension becomes essential, 

since it concerns the interpretation of such objects, as well as the applications, characterizing 

models of the theory. 

For Otte (2003), an axiomatic theory must be conceived according to the principle of 

complementarity, that is, as a pair, satisfying the intensional aspect, which describes the 

relations between its theoretical terms through axioms, and the extensional aspect with 

references or extensions of such terms, explaining applications, interpretations or models of the 

theory. 

We emphasize that we should not conceive complementarity as a simple duality 

between the two aspects mentioned, but rather as complementary within the construction of the 

theoretical framework (Otte, 2003, p. 205). For Bachelard (2004, p.14), 

“[...] purely deductive knowledge is, in our view, nothing more than the mere 

organization of schemes, at least until the root of abstract notions is established in 

reality. In fact, the very advancement of deduction, by creating abstractions, requires a 

continuous reference to the data that essentially surpasses the logical”. 

The debate on the relationship between the intensional aspect and the extensional views 

of Mathematics was particularly intense regarding the concept of number, as it can be seen in 

Russell (2007) and Barker (1969). 

In complementarity, a constituent part of mathematical activity is the constructive 

procedure based on basic qualities as “building material”; and that the second constituent part 

of mathematical activity is knowledge about mathematical constructions (including basic 

qualities), as well as knowledge about the world, the formulation of this knowledge then 

happens in deducible models (Kuyk, 1977, p. 156). 

Real numbers and the notion of complementarity 

In this section, we consider the classical approaches to real numbers (axiomatics, 

equivalence classes of Cauchy sequences of rational numbers and Dedekind cut) based on the 

principle of complementarity and highlight theoretical potentialities in relation to the proposed 

conceptualization of number developed by Conway. 
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As we know, the axiomatic approach to real numbers results from the presentation of a 

list containing elementary facts accepted as axioms, explaining how these mathematical objects 

relate, so that the theorems that constitute the theory can be demonstrated from them. 

These axioms make the set of real numbers equipped with the operations of addition 

and multiplication into a complete ordered field. Within this axiomatic approach, there are no 

type of description, interpretation or application for the mathematical object (real number); only 

the relations between the objects (real numbers) are emphasized, unilaterally characterizing the 

intensional aspect of these objects (Fonseca, 2010). 

The notion of intension only establishes relations between classes of mathematical 

objects (structural relations). The axiomatic approach to real numbers does not describe the 

mathematical object itself, but only shows how operations should be performed with these 

numbers, treating them as ideal objects. In other words, the exclusively axiomatic method does 

not guarantee the extensional aspect of the concept of number (Fonseca, 2010). 

Considering the principle of complementarity, the axiomatic approach to real numbers 

will always be incomplete, as it does not encompass the extensional aspect of these numbers. 

Richard Dedekind’s proposal for the construction of real numbers presupposes rational 

numbers and their properties. It develops the concept of real numbers based on a purely logical 

framework, the essence of which lies in ordinality. 

Traditionally, to obtain numbers, from natural numbers to real numbers, the following 

path can be used: natural numbers can be characterized by Peano’s axioms; then, the set 

of integers is constructed by means of equivalence classes of ordered pairs of natural 

numbers; the next step is to construct rational numbers by means of equivalence classes 

of ordered pairs of integers, and finally the real numbers by means of Dedekind cuts or 

by equivalence classes of Cauchy sequences (of rational numbers) (Fonseca, 2010, 

p.126). 

In the process of constructing numbers, from natural numbers to real numbers, whether 

through Dedekind cuts or equivalence classes of Cauchy sequences, it must also be considered 

that with each extension from one set to another, all properties must be demonstrated again. 

We note that, in such a construction, from the point of view of complementarity, only 

logical deductions are considered, without interpretations or reference models for the numbers 

(Fonseca, 2010). 

In addition, there is a certain type of rupture in the transition from rational numbers to 

real numbers, characterized by a change in method: operations with ordered pairs (of natural 

numbers or integers) are abandoned in order to use “new” objects, Dedekind cuts or equivalence 

classes of Cauchy sequences (Fonseca, 2010). 
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In relation to cuts, Dedekind postulated that every cut has a separating element (supreme 

of class A or infimum of class B). The effect of such a postulate is the creation of irrational 

numbers, which leads to the completion of the field of real numbers. 

“Philosophically, Dedekind’s definition of irrational numbers involves a very high 

degree of abstraction, since it does not place any restrictions on the nature of the mathematical 

law that defines the two classes A and B” (Courant; Robbins, 2000, p. 86). 

We consider that in such approaches possible models, applications or interpretations of 

numbers are not explored, therefore, extensional aspects are not contemplated and the desired 

complementarity between the intensional and extensional aspects of the concept of number does 

not occur. 

In complementarity, a constituent part of mathematical activity is the constructive 

procedure based on elementary facts (which can be given axiomatically). Another part is the 

knowledge about mathematical constructions (including elementary facts) and knowledge 

about the world, which is linked to the applications of the concepts involved in mathematical 

activity (Kuyk, 1977, p. 156). 

According to Otte (1993, p. 226), the object of Mathematics or the content of 

mathematical activity can in no way be defined absolutely and independently of the means of 

mathematical activity. 

As Courant and Robbins (2000, p. 106) state, “in one way or another, explicitly or 

implicitly, even under the most intransigent formalist, logical or axiomatic aspect, constructive 

intuition will always remain the vital element in Mathematics”.  

According to Fonseca (2010, p. 158), “a complementary approach between the 

intensional and extensional character of mathematical concepts is necessary because it 

considers mathematical reality as intrinsically linked to cognitive activity itself. 

Mathematician George Cantor proposed a construction for real numbers, based on 

rational numbers and their properties. He used convergent sequences of rational numbers to 

construct real numbers. In this construction, a real number is an equivalence class of Cauchy 

sequences of rational numbers. We confirm here that our considerations about the construction 

of numbers step by step, from natural numbers to real numbers by Dedekind cuts, apply to the 

construction of real numbers through the equivalence classes of Cauchy sequences. 

If we construct the real numbers by means of Dedekind cuts, we will obtain a complete 

ordered field, whose elements are sets of rational numbers. If we use the Cantor process, 

the complete ordered field we obtain is formed by equivalence classes of Cauchy 

sequences of rational numbers. They are two complete ordered fields that differ in the 
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nature of their elements, but not in the way their elements behave. In other words, they 

are isomorphic (Fonseca, 2010, p. 129). 

We note that in these two constructions of real numbers, only the intensional aspects of 

numbers are considered, there is no mention of the extensional aspects. 

We defend here the relevance of considering new ways to approach numbers, new 

references and models. Following this defense, we point to the approach proposed by Conway 

(2001), since it provides in its core some axioms and definitions based on set theories, which 

allows exploring the intensional aspect of the concept of number, and guarantees the 

interpretation of such numbers by a specific class of games, that is, it provides models for the 

interpretation of numbers, considering the extensional aspect. 

“In this theory, games do not simply play the role of applying axiomatics; they provide 

an interpretation and an intrinsic model to the theory itself, since the ordering of numbers is 

inspired by games” (Fonseca, 2010, p. 130). We emphasize that in this theory, there is no 

hierarchy between the intensional and extensional aspects. An approach to numbers, from 

natural to real, through Conway’s theory can be carried out without breaking procedures, 

contrasting with what we saw in the proposals of Dedekind and Cantor. 

In Conway’s theory (2001), we can construct numbers, simultaneously, through sets and 

through games, which are an empirical model, enhancing creativity, conjectures, motivation 

and experimentation, characteristics that are related to mathematical activity through 

investigation processes. 

This construction involving the extensional aspects of the concept of number can serve 

to support the understanding of the logical apparatus, involving definitions, deductions, 

theorems and their respective demonstrations, contemplating the intensional aspects. 

Here we are signaling the potential that Conway’s theory (2001) has for conceptualizing 

numbers, from natural to transfinite, in a unique way and guaranteeing the principle of 

complementarity between the intensional and extensional aspects. We could use Conway’s 

ideas to present a new foundation for real numbers, since he stated that he taught his theory, in 

undergraduate courses, as the theory of real numbers (Conway, 2001, p. 27). 

Final Considerations 

With Conway’s (2001) proposal for the construction of numbers, we can present an 

answer to the question "what is a number?", which encompasses natural numbers to transfinite 

numbers. He himself answered this question as follows: "number is a game" (Conway, 1999, 

p. 300). 
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Here, we seek to show the potential of his theory for the construction of numbers, 

highlighting that it guarantees complementarity in the conceptualization of number, 

simultaneously contemplating the intensional and extensional aspects, which brings 

epistemological, philosophical and cognitive advantages. 

Another aspect defended here deals with the possibility of using the principle of 

complementarity in the development of Epistemological Reference Models, since this principle 

is a powerful theory for questioning established mathematical knowledge, allowing us to 

analyze whether the intensional and extensional aspects are contemplated. 

In this article, we use the case of real numbers as an example of analysis, questioning 

the classical approaches to the principle of complementarity and indicating a new theory that 

presents epistemological advantages. In this questioning, we also seek support in the historical, 

epistemological and philosophical developments of the concept of number. Thus, we propose 

the use of such a principle to question knowledge, maintain vigilance and allow the 

emancipation advocated by Gascón (2014, p. 100) and we intuit that its use in Theoretical 

Reference Models may be promising. 

This article aims to contribute to Mathematics Education in general, and in particular, 

to the development of Epistemological Reference Models, under two distinct perspectives: 

theoretical and practical. The first, of a theoretical nature, involves the epistemological context 

of Mathematics. In the text, we illustrate how to question the nature and criteria of truth that 

mathematicians use, considering a rigorous analysis of the diversity of conceptual forms 

involved in mathematical notions, with particular emphasis on the concept of real number. 

The second is of a more practical nature and aims to support reflections on the 

conceptualization of real number. In this sense, the study can provide valuable insights for the 

development of new pedagogical approaches, especially in Higher Education. By exploring 

innovative ways of presenting the concept of real number, we intend to motivate empirical 

research to investigate its suitability in practice. 

We aim to contribute both to theoretical advancement and to practical application in 

Mathematics Education. By addressing the diversity of conceptual forms in the theoretical field 

and proposing new pedagogical approaches in the practical field, we believe that it will be 

possible to enrich the teaching and learning of mathematical notions. 
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