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Abstract 

The article aims to propose an alternative epistemological model (MEA) for teaching 

calculation in Mathematics degrees, using Isaac Newton's Principia. To achieve our objective, 

we start from the following research question: What are the mathematical objects or historical 

artifacts present in Principia that will provide support for the creation of this Alternative 

Epistemological Model? In order to answer the question and achieve our objective, a historical, 

epistemological and contextual analysis of the aforementioned work was carried out, making it 

possible from there, in a process of didactic transposition and using the Anthropological Theory 

of Didactics (TAD), the elaboration of a MEA for the teaching of calculation for degrees in 

Mathematics. 
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Resumen 

El artículo tiene como objetivo proponer un modelo epistemológico alternativo (MEA) para la 

enseñanza del cálculo en las carreras de Matemáticas, utilizando los Principia de Isaac Newton. 

Para lograr nuestro objetivo, partimos de la siguiente pregunta de investigación: ¿Cuáles son 

los objetos matemáticos o artefactos históricos presentes en Principia que brindarán apoyo para 

la creación de este Modelo Epistemológico Alternativo? Para dar respuesta a la pregunta y 

lograr nuestro objetivo, se realizó un análisis histórico, epistemológico y contextual del citado 

trabajo, posibilitando a partir de allí, en un proceso de transposición didáctica y utilizando la 

teoría antropológica de lo didáctico, la elaboración de MEA para la enseñanza del cálculo para 

licenciaturas en Matemáticas. 

Palabras clave: Modelo epistemológico alternativo, Enseñanza del cálculo, Didáctica 

de las matemáticas. 

Résumé  

L'article vise à proposer un modèle épistémologique alternatif (MEA) pour l'enseignement du 

calcul dans les cours de licence (licenciatura) de mathématiques, en utilisant les Principia 

d'Isaac Newton. Pour atteindre notre objectif, nous partons de la question de recherche suivante 

: Quels sont les objets mathématiques ou les artefacts historiques présents dans Principia qui 

serviront de support à la création de ce modèle épistémologique alternatif ? Afin de répondre à 

la question et d'atteindre notre objectif, une analyse historique, épistémologique et contextuelle 

du travail précité a été réalisée, permettant à partir de là, dans un processus de transposition 

didactique et en utilisant la théorie anthropologique de la didactique, l´élaboration de MEA 

pour l'enseignement du calcul pour les diplômes en Mathématiques. 

Mots-clés : Modèle épistémologique alternatif, Enseignement du calcul, Didactique des 

Mathématiques. 

Resumo 

O artigo tem como objetivo propor um Modelo Epistemológico Alternativo (MEA) para o 

ensino de cálculo nas licenciaturas em Matemática, usando os Principia de Isaac Newton. Para 

lograr nosso objetivo, partimos da seguinte questão de pesquisa: Quais são os objetos 

matemáticos ou artefatos históricos presentes nos Principia que darão subsídios para a criação 
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desse Modelo Epistemológico Alternativo? Para respondermos à questão e atingirmos nosso 

objetivo, foi realizada uma análise histórica, epistemológica e contextual da obra citada, sendo 

possível a partir daí, em processo de transposição didática e utilizando a Teoria Antropológica 

do Didático (TAD), a elaboração de um MEA para o ensino de cálculo para as licenciaturas em 

Matemática. 

Palavras-chave: Modelo epistemológico alternativo, Ensino de cálculo, Didática da 

matemática. 
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Principia by Isaac Newton: A proposal for an epistemological reference model for 

comprehensive teaching in mathematics teaching degree courses. 

This article uses the theoretical assumptions of didactics of mathematics, such as the 

anthropological theory of the didactic (ATD) and the reference epistemological model (REM), 

to propose an alternative for calculus classes. Thus, the objective of our article is to propose an 

alternative epistemological model (AEM) for teaching calculus in mathematics teaching 

degrees, using the Principia4 by Isaac Newton. 

Starting from the conjecture that, despite calculus, especially the teaching of integrals, 

being a very present object in mathematics education research5, these works do not exhaust the 

range of possible methodological approaches for classes on this mathematical object. Therefore, 

it becomes relevant for the field of study of didactics of mathematics and mathematics education 

to propose an EAM for teaching the introduction of integrals, more precisely, the calculation of 

the area under a curve, for mathematics teaching degrees, using the mathematical organizations 

present in the Principia. 

To construct the EAM, excerpts from the work under study, especially the one referring 

to the mathematical object, which is the focus of our research, must undergo a process of 

didactic transposition. According to Chevallard (1985), didactic transposition is a process in 

which scientific knowledge is transformed into knowledge to teach, i.e., transforming a 

mathematical object of knowing, produced by a mathematician, into an object of school 

knowing, that is, into a didactic organization. 

Our research problem emerges when addressing the idea of constructing an 

epistemological model for teaching the notion of integrals to prospective mathematics teachers. 

We recall, based on Corazza’s (2003) words, that “... to constitute a research problem is... to 

ask whether that element of the world –of reality, things, practices, reality– is so natural in the 

meanings that are its own...” (p. 118), to ask: 

What are the mathematical objects or historical artifacts present in the Principia that will 

provide support for the creation of this alternative epistemological model? 

In an attempt to answer this question, we formulate the following hypothesis: In Isaac 

Newton’s work Mathematical Principles of Natural Philosophy, one can find mathematical 

objects or historical artifacts that could subsidize the creation of an alternative epistemological 

model for teaching calculus in mathematics teaching degree courses. 

 
4The work Philosophiæ Naturalis Principia Mathematica [Mathematical Principles of Natural Philosophy] 

published by Isaac Newton (1643-1727) in 1686, also known as Principia, the plural of principium, comprises 

three books. 

5 Validated by the Capes Thesis Bank. 
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Due to the nature of this research, the methodological procedures can be divided into 

two moments, the first related to the history of mathematics when seeking to construct a text 

based on mathematical objects or historical artifacts contained in the book Mathematical 

Principles of Natural Philosophy, and the second, related to the construction of the alternative 

epistemological model, using these mathematical objects or historical artifacts. 

About the first moment: when seeking subsidies in history, the research is classified in 

the list of qualitative research of the documentary bibliographic type under a historical-

descriptive approach since it proposes to investigate the various historical contexts that led to 

the epistemological development of calculus in the 17th century. 

In this research, we argue that these subsidies are present in the book Mathematical 

Principles of Natural Philosophy as the book brings some of the foundations of Newtonian 

calculus. However, as it is a book originally published in 1686, its language and epistemology, 

the truths that validate it, are no longer current. Therefore, a didactic transposition is necessary. 

About the second moment: we will use some concepts from didactics of mathematics, 

more specifically from the anthropological theory of the didactic (ATD), such as mathematical 

organization (MO) and didactic organization (DO), as explained below: 

Chevallard (1999) defines didactic organization as the set of types of tasks, techniques, 

technologies, etc., mobilized for concrete study in a concrete institution, while Bosch 

(2001) calls mathematical organization an entity composed of types of problems or 

problematic tasks, kinds of techniques that allow solving the types of problems, 

technologies, or discourses (“logos”) that describe and explain the techniques. This 

theory underpins and organizes technological discourses (Ordem & Almouloud, 2010, 

p.70). 

Thus, according to what was explained by Chevallard (1991), Bosch (2001), and Ordem 

and Almouloud (2010), we can say in general that an MO is mathematical knowing produced 

by a university institution, in which there is no teaching intention, and that a DO can originate 

from a MO that, when undergoing a process of didactic transposition (Chevallard, 1991) in an 

institution, assumes a teaching intention. 

Therefore, to meet the objective of this research, which is to develop an alternative 

epistemological model for teaching notions of calculus for mathematics teaching degree 

courses using mathematical organizations present in the Principia and through a process of 

didactic transposition that can be understood as “... the passage from an object of knowing to 

an object of teaching...” (Chevallard, 1991 apud Almouloud, 2007, p.113), these organizations 

will be mobilized in teaching activity, with an intention in an institution, that is, they will be 

didactic organizations (Dos). 
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The issue of modeling mathematical objects 

The didactic transposition developed by Chevallard (1991) in his first reflections on 

mathematics teaching aimed to distinguish the different knowings involved in the teaching and 

learning process. According to the mathematician, it was necessary to distinguish between the 

mathematics of the teacher, the mathematics of the student, and the mathematics of the 

researcher, as each of these individuals uses a mathematics with its own characteristics  

For this reason, the mathematics to teach in schools or colleges is necessarily the result 

of other mathematics that has undergone a process of didactic treatment. These mechanisms 

that allow the transition from an object of knowing to an object of teaching are grouped under 

the name of didactic transposition. 

 

The theory of didactic transposition categorizes mathematical objects into:  

paramathematical: Tools that are used to describe and study other 

mathematical objects; 

mathematical: In addition to being valuable instruments for studying other 

mathematical objects, they become objects of study in themselves; 

proto-mathematical: They have properties used to solve some problems 

without acquiring the status as an object of study or as a tool for studying other 

objects. (Almouloud, 2007) 

 

However, the insufficiency of this classification in the process of reflection on 

phenomena related to didactic processes gave rise to a new theory, the ATD. In other words, 

this theory emerges to expand the relationship between mathematics and individuals because:  

Chevallard emphasizes that mathematical knowing organizes a particular form of 

knowledge, the product of human action in an institution characterized by anything that 

is produced, used, and taught, besides being able to eventually transpose the institutions. 

(Almouloud, 2007) 

From this perspective, Chevallard (1999) lays the foundations for the development of a 

didactic anthropology in which the object of study is the relationship between the teacher and/or 

student and mathematical knowledge. For example, the teacher and the student facing a 

theorem.  

Therefore, from the development of this theory, some theoretical precepts emerge, 

which guide those who use it. We will present the most necessary ones to achieve the objective 

of this work.  
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Some notions of the ATD and REM: 

 Yves Chevallard’s TAD (1991, 1992, 1999), resulting from the problem of didactic 

transposition between institutions, is considered a fundamental analysis tool in the didactics of 

mathematics6. This theory follows the guiding line of the Programa Epistemológico de 

Investigação em Didática da Matemática [Epistemological Research Program in Didactics of 

Mathematics] created in the 1970s from Guy Brousseau’s studies, which gave rise to the theory 

of didactical situations (TDS). 

 The ATD situates mathematical activity and, consequently, the activity of studying 

mathematics within human activities and social institutions. According to Almouloud (2007), 

“The ATD studies the conditions of possibility and functioning of didactic systems, understood 

as subject-institution-knowing relationships (about the didactic system addressed by Brousseau, 

student-teacher-knowing)” (p.111). 

 Therefore, for this theory, mathematical activity and mathematics teaching are 

considered anthropological phenomena, according to the following reflection: 

The ATD is based on the understanding that human beings act by coming together in 

groups—institutions—that impose a particular way of doing and thinking on the 

development of their activities. In this sense, a teacher’s doing, when solving an 

equation in class or correcting their students’ exams, take as reference constructions 

developed in institutions, resulting from a collective production in which that teacher 

participated and participates, but which they assume as their own (Andrade, 2012). 

In this sense, the ATD ensures that such actions can be described in their 

accomplishment by a model that Chevallard (1991) summarizes in the word praxeology. So, to 

support this process of analysis, study, and explanation of such didactic actions, the ATD 

employs three primitive elements as follows:  

Institutions (I): the social instances that guide the individual in the way they act and 

think.  

 Individuals (X): subjects who become active when they occupy the place that people 

occupy in institutions. By occupying certain positions in institutions, individuals make 

institutions exist.  

 
6  The didactics of mathematics was born approximately 40 years ago, and, although it is certainly a human science 

‒a science of human activities in society‒ it carries the ambition of constructing rigorous theories that can 

constitute models for the analysis of teaching and learning phenomena in mathematics. Mathematics in a 

didactic environment: a social environment designed for teaching (Almouloud, 2007 p.13). 
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And the object (O): fundamental element of the ATD, which, in turn, postulates that 

“everything is an object” and that it only exists from the moment in which an individual (X) or 

an institution (I) recognizes it as existing. 

According to this theory, an individual’s relationship with an object of knowing is only 

established when the person enters an institution in which that object exists. Likewise, the 

institutional activities of a teaching environment (school, study group, classrooms) are linked 

to the institutional activities requested of individuals. In this way, the praxeological relations of 

individuals (X) with the objects (O) in institutions (I) are made through four notions.  

These notions are the task (T), the technique (τ), technology (ө), and theory (Θ); notions 

that allow us to model mathematical activities as a social practice and which will be briefly 

presented below: 

First: Task (T), which is nothing more than an action with a well-defined objective, for 

example, finding the GCD, measuring the height, and drawing the quadrilateral. These tasks 

become routine when they are no longer challenging to execute. 

There is one or a certain number of techniques to carry out a given task. The second 

notion, technique (τ), must be recognized by the institution that problematized the task (T). 

According to Almouloud (2007), “... alternative techniques may exist in other institutions...” 

(p.115). The techniques correspond to the way of doing/solving/performing the corresponding 

task.  

In turn, the technique that is used to perform a certain task requires the individual to use 

a particular technology (ө), which is the third notion. Technology (ө) justifies the technique 

used; that is, the technology will provide logical and rational support to the technique. In this 

sense, it will be more linked to the discourse so that the technique can be understood and 

justified in carrying out the task. The last notion is theory (Θ), which justifies technology 

through scientific arguments.  

The four notions: types of tasks (T), technique (τ), technology (ө), and theory (Θ) make 

up a complete praxeological organization [T/τ/ө/Θ] that is subdivided into two blocks: (1) the 

practical-technical block [T/τ], formed by certain types of tasks and a technique corresponding 

to the knowing-how-to-do; (2) the technological-theoretical block [ө/Θ], containing a theory 

that justifies a technology. 

To illustrate these fundamental notions, we will present an example in which the objects 

of calculation are related to the ATD: 
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Calculate the derivative of a function f on point xo of its domain is a type of task for 

which there is the technique of calculating the limit of a function at a point, with a 

technological-theoretical environment on functions, their graphical representations, and 

function limits (Mateus, 2007). 

However, the theoretical principles that guide those who research and/or apply the ATD 

in their studies go beyond these ideas. In this sense, this study uses what is known in the ATD 

as epistemological models, which can be classified as dominant, of reference, or alternative. 

The first type is the most common and serves as an epistemological basis for the knowledge 

studied in an educational context. However, this model is not always suitable for establishing a 

necessary link between teaching and learning. Therefore, according to the didactics of 

mathematics, the demand for alternative epistemological models arises, according to Pérez 

(2013): 

[…] I propose to characterize the approaches or didactic theories that form part of the 

epistemological program as those that question the epistemological models of dominant 

mathematics in the various institutions (for example, institutions and schools) and, what 

is most important, as those that explicitly elaborate alternative epistemological models 

of different mathematics areas and use them as a reference system to formulate and 

approach didactic problems. (p.71)  

In this context, the didactic scope of a DEM becomes a target for reflection when 

restrictions of this model are observed regarding its didactic use, thus raising the need to 

develop new models, that is, an AEM, as “it can be useful to guide us toward the type of didactic 

problems that the different approaches pose and address, and also about what is considered in 

each case as an acceptable response to said problems” (Gascón, 2013, p.72). 

A good example of AEM related to calculus can be found in Figueroa and Almouloud 

(2018), where the authors aim to “contribute to the teacher formative process based on 

reflections on a REM, which considers the incompleteness of institutional work related to the 

mathematical object function limit of a real variable” (Figueroa & Almouloud, 2018, p.1). 

Based on the analysis of mathematical organizations, in light of the ATD in textbooks and 

student notebooks, and a process of epistemological construction, the researchers propose a 

REM for this mathematical object.  

Still about REM, Bolea’s research (2010) questions the dominant epistemological 

model that is used to introduce algebra as being generalized arithmetic and discusses the scope 

of this model:  

According to Gascón (1993; see also Bolea, 2003), the usual epistemological model of 

school algebra highlights the similarities between arithmetic and algebra and tries to 
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present the second as a continuation of the first, as generalized arithmetic. This model 

does not fit the vision of an algebra whose objectives and techniques radically differ 

from arithmetic. (Bolea, 2010, p.582) 

 In her research, the author proposes an epistemological model for teaching whole 

numbers, arguing that the reference epistemological model is insufficient to support all 

phenomena related to teaching these numbers. 

 Regarding the teaching of calculus, the dominant epistemological model taught in the 

vast majority of teaching degree courses7 is what follows the direct line of the calculus by 

Gottfried Wilhelm Leibniz (1646-1716), which uses the idea of infinitesimals in a 

predominantly algebraic approach and employs the idea of limits and functions “incorporated” 

by Augustin-Louis Cauchy (1789-1857). On the other hand, for several reasons, the explanation 

of which goes beyond the objectives of this work, Newton’s calculus developed using the 

method of the first and last ratios of quantities in a geometric approach was practically 

abandoned. 

 Assuming that some DEMs do not support all phenomena related to a mathematical 

object, as is the case with calculus, and that the construction of an alternative epistemological 

model can help in understanding them, we will launch the proposal for the construction of a 

REM for teaching calculus in mathematics teaching degree courses based on the calculus 

developed by Newton.  

To construct this REM, we developed two tasks (T) based on the MOs found in 

Principia. These MOs, in turn, undergo a process of didactic transposition to modify some 

mathematical structures and make them DOs, that is, “... the passage from an object of knowing 

to an object of teaching...” (Chevallard,1991 apud Almouloud, 2007, p.112-113).  

Some brief considerations regarding Newton’s calculus in Principia 

This section is dedicated to making a brief historical, contextual, and epistemological 

analysis of Principia. It is important to note that when presenting the method of the first and 

last ratios of quantities in his work, Newton demonstrates it in an epistemology valid for his 

time. Nevertheless, the fact that Newtonian calculus is presented shily in this work lies in the 

fact that the main objective in Principia was not to publicize his method of calculating areas 

but to demonstrate the law of gravity based on the unification of the laws that govern the 

 
7  This statement requires further investigation. It is dangerous from a methodological point of view because it 

claims that no calculus course uses alternative epistemological models. For this statement, we were based on Matos 

and Almouloud's (2010) work, which uses the reference model when analyzing the praxeologies of textbooks used 

in calculus courses. 
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movement of bodies on Earth –Newton’s laws– with the laws that govern bodies in space –

Kepler’s laws– which were already known, but not rigorously proven. Throughout his work, 

Newton enunciates his three laws, proves Kepler’s laws, and finally demonstrates the law of 

universal gravitation. In this context, calculus is a tool for calculating moving areas.  

Principia 

The work entitled Mathematical Principles of Natural Philosophy8 published by Isaac 

Newton (1643-1727) in 1686, also known as Principia –the plural form of principium–, 

comprises three books, the first two of which lay the foundations of the basic principles of 

movement and the third applies these principles to the solar system (Cohen & Westfall, 2002). 

We can say that Principia presents mathematical principles to prove the laws of natural 

philosophy. In this regard, it is worth noting, as emphasized by Alfonso-Goldfarb (1994), that, 

at that time, there were no areas of knowledge as we understand them today. At that time, 

natural scholars referred to the investigation of the whole of nature as natural philosophy. In 

this way, individuals like Newton, considered natural philosophers, analyzed different natural 

phenomena. Thus, we must understand what Newton said in his Principia when he referred to 

the purposes of his work: 

Newton (2008) [in this work] examines above all things that relate to gravity, lightness, 

elastic force, the resistance of liquids, and similar forces, whether attractive or 

impulsive; thus, I offer this work as constituting the mathematical principles of 

philosophy, since the whole task of philosophy seems to consist in this: to investigate, 

from the phenomena of movements, the forces of nature, and from these forces to 

demonstrate other phenomena, and it is to this objective that the general propositions of 

books I and II are directed. In Book III, I give an example of this in the explanation of 

the system of the world, for, from the propositions mathematically demonstrated in the 

two preceding books, I deduce in the third, from the celestial phenomena, the forces of 

gravity with which bodies tend towards the Sun and the various planets... (p.14) 

 In his preface, Newton clarifies that the first two books deal with general propositions 

that are “mathematically demonstrated.” Those propositions are later mobilized to demonstrate 

celestial phenomena, bringing mathematics closer to natural philosophy. In the third book, as 

Newton observes, he deduces “from celestial phenomena the forces of gravity with which 

bodies tend towards the Sun and the several planets.” In other words, in the first two books, 

Newton lays a solid foundation so that, in the third book, he can enunciate and prove the law of 

universal gravitation. 

 
8  Work originally written in Latin: Philosophiae Naturalis Principia Mathematica. 
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The first two books of the Principia bring several mathematical propositions organized 

axiomatically. Those propositions served to justify his demonstrations, which were geometric 

in nature and basically followed the same axiomatic structure found in Euclid’s Elements (360-

295 BC).  

 Euclid’s Elements brings an organization the author used to present and justify his 

arguments, which were definitions and axioms, which are truths accepted without proof; 

theorems, which are truths proven with the help of axioms and definitions; corollaries, which 

are statements resulting from theorems; lemmas, which are theorems that serve to help prove a 

theorem of greater importance; and propositions, which are sentences associated with another 

theorem of lesser mathematical importance. Newton uses this same argumentative rigor in his 

work, developing his proofs on the movement of bodies. For Newton, only geometry had the 

fundamental elements to demonstrate the phenomena of nature (Cohen & Westfall, 2002), 

because geometry was based on a system of accepted truths, which led to demonstrations of 

other truths.  

 Indeed, as in the Elements, Newton organized his propositions by initially presenting 

definitions and axioms, followed by theorems (propositions). Each theorem is demonstrated 

geometrically from the axioms and definitions. Some corollaries and scholia follow the 

theorems. 

Textually, the first book of the Principia (Book I) is divided as follows: Newton presents 

a preface, followed by eight definitions and three axioms or laws of motion, currently called 

Newton’s three laws. The work then presents fourteen sections comprised of propositions or 

theorems dealing with the movement of bodies. We will now present one of the definitions. 

 
Figure 1.  

Cover of the Principia published in 1686 (istockphoto, 2022) 
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Definitions 

Principia initially displays eight definitions related to the laws of motion. In the same 

way that Euclid defined the objects of geometry, Newton sought to define the objects of his 

dynamics. We can say that the definitions underpin and form the basis of the Principia. We will 

only mention the fifth definition and then present a brief explanation: 

 

Definition V -A centripetal force is by which bodies are directed or impelled, or tend in 

any manner, toward a point as a center. 

 

It is important to emphasize that Newton, by making clear what centripetal force is, 

introduces the idea that, according to Cohen and Westfall (2002), is central to Principia:  

 The concept of centripetal force expressed the perception that circular or orbital 

movement is an accelerated movement and that a body will only continue to move in a 

closed orbit as long as a force that prevents it from reaching the center (centripetal means 

“that which seeks the center”) sustains it on this trajectory. (p.273) 

Based on these definitions, Newton stated that due to this force, celestial bodies would 

move in circular or orbital trajectories in an accelerated motion and would remain in this state 

as long as the force that impels them towards the center continues to act. He called this force 

centripetal force, which is the opposite of the already-known centrifugal force (“which moves 

away from the center”). However, he had not arrived at the generalized conception of force, 

which would only happen in what is known today as Newton’s second law.  

We believe that centripetal force has a special place in Principia because Newton sought 

to understand the movement of celestial bodies. As we have seen, this force would be 

responsible for keeping one body rotating around another.  

After the definitions and axioms had been set out, eleven lemmas were presented, 

demonstrated with the assistance of the first and last ratios method. This method represents the 

contemporary concept of the limit of a function, although our focus is on integrals. We must 

epistemologically understand how Newton conceived the idea of limit in his work since, from 

a modern perspective, the definite integral is linked to the sum of infinitesimals. Newton named 

“Book I: The Motion of Bodies” the part of the Principia that brings together the eleven lemmas 

in section I and the other ninety-eight propositions distributed across thirteen more sections.  
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According to the objective of our article, we will analyze only a small part of section I, 

which includes Lemma I, which deals with the infinitely small; Lemma II, which refers to areas 

of curves; and we only state Lemma III, in addition to some corollaries. 

 Section I is titled: The method of first and last ratios of quantities, with the help of 

which we demonstrate the propositions below. 

 The lemmas presented in this section correspond to elementary notions of differential 

calculus. Even though there is no explicit reference to calculus, such as symbols or other 

terminology, we can see that the lemmas deal with the limits of areas, lines, and arcs of curves, 

as observed by the mathematician and author of calculus books: 

Delachet (1967) must give thanks to the genius of Newton, who knew how to explain 

in his Philosophiae Naturalis Principia Mathematica (published in 1687) the rules of 

his infinitesimal calculus without using the unique terminology or symbols he had 

invented in this regard. (p.35) 

In this sense, the quote corroborates our hypothesis that in the work Mathematical 

Principles of Natural Philosophy by Isaac Newton, one can find mathematical objects or 

historical artifacts that could support the creation of an alternative epistemological model for 

teaching calculus in mathematics teaching degree courses.   

In the following lemmas, Newton presents the method of calculating infinitely small 

quantities, which will serve to demonstrate his propositions about the movement of bodies. This 

method, which he calls the method of first and last ratios, consists of proving that if there are 

two infinitely small quantities and if these quantities move toward each other, they will become 

equal at the end of a specific time. The method developed by Newton is naturally intuitive, as 

we will see below: 

The lemmas 

Lemma I – Quantities, and ratios of quantities, that in any finite time continually 

converge to equality, and before the end of that time approach nearer to each other than 

for any given difference, becoming finally equal9. 

 

This lemma presents one of Newton’s main ideas of calculus. He discusses infinitely 

small quantities and the movement of these quantities, as Baron (1985) emphasizes:  

What Newton seems to be saying here is that if we have two quantities, say Q1 and Q2, 

which vary in time, and if the difference between Q1 and Q2 continually decreases in 

 
    9 Ibid., p. 71. 
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such a way that within a finite interval of time, they come closer and closer to each 

other, then we eventually have Q1=Q2 (p.31). 

The idea that quantities approach each other to the point of becoming equal in a finite 

time interval leads us to consider the importance of movement and the notion of velocity in 

formulating a limit. 

It seems to us that, in some way, Newton was looking for a satisfactory intuitive basis 

to support his calculation. The key notion in this process seems to be instantaneous velocity. 

Newton was uncomfortable with infinitesimals, which he felt had dubious geometrical 

credentials. He tried to eliminate them by proposing the idea of instantaneous velocity (Cohen 

& Westfall, 2002, p.453). 

Indeed, this seems to be reinforced by another passage where Newton observes that: 

I will not consider mathematical quantities here as composed of extremely small parts 

but as generated by a continuous movement. Lines are described, and by describing 

them they are generated, not by an alignment of parts but by a continuous movement of 

points. Surfaces are generated by the movement of lines, solids by the movement of 

surfaces, angles by the rotation of their sides, time by a continuous flow, etc. This 

genesis is based on nature and can be seen every day in the movement of bodies. (Baron, 

1985) 

However, although Newton denied infinitesimals, they are present in his study since the 

idea of instantaneous velocity implicitly implies the idea of an infinitesimal distance traveled 

by a body in a finite time (Cohen & Westfall, 2002, p.453). Newton’s denial of the 

infinitesimals was due to philosophical rather than mathematical reasons. 

We will not delve into these issues; we simply want to note here that issues about 

mathematics and nature were intertwined with many others linked to the very mathematical 

procedure. Roughly speaking, we can say that, in the 17th century, two major philosophical 

currents conflicted with each other (Meneghetti & Bicudo, 2002). On the one hand, a group of 

people argued that mathematical truths should be subjected to arithmetic to be achieved. This 

is because the objects of arithmetic would be more abstract than those of geometry. In turn, 

another group of mathematical scholars argued that man would only reach mathematical truths 

through observation and experimentation and that, therefore, the geometric method would be 

preferable to the arithmetic one because geometry, unlike arithmetic, was much closer to 

sensible reality.  

In other words, when treating nature mathematically, it would be more prudent to seek 

mathematical procedures that are more appropriate to it.   
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As is well known in Principia, Newton founded the basis of calculus on geometry. 

According to Meneghetti and Bicudo (2002, p.109), he would have been influenced by the ideas 

of Isaac Barrow (1630-77), who was his professor at Cambridge. Barrow criticized the 

arithmetization of calculation and analytical symbolism, seeking to value sensory evidence.  

The above leads us to agree with Meneghetti and Bicudo (2002) that Newton’s work 

had a more intuitive character since the treatment he gave to the “infinitely small” sought to 

avoid the idea of “infinitesimals”: 

His view of limits, for example, especially in his early work, was based on geometric 

intuitions [...]. Influenced by the 17th-century thought, he was led to think about 

ultimate geometric indivisibles, and, in his theory, he uses terms such as ratios and 

ultimate forms, expressions that stem from rigorously correct abstract interpretations, 

but which strongly suggest others, in terms of an intuitively more attractive vision 

produced by infinitesimals. Newton’s concept of limit was heavily dependent on the 

idea of the infinitely small. This dependence can be seen in his Principia, when he 

speaks of the nature of ultimate ratios… (p.111-112) 

Thus, it is in this sense that we must understand Lemma I. If we can refer to Newton’s 

idea of limit, it was based on infinitely small quantities that, when approaching each other to 

the point where there was no longer any difference between them, would become equal -instead 

of the modern notion of infinitesimal. This principle, which Newton called the method of the 

first and last ratios of quantities10, underpins the calculation of the area under a curve. 

Reference Epistemological Model 

Finding the area under a curve is one of the pillars of calculus, more precisely, of the 

study of integrals. Newton, by applying his method to parallelograms, proved that it is possible 

to find such areas, as shown in lemmas II and III, which we present below, together with some 

corollaries. 

Lemma II - Suppose that in any figure AacE, bounded by the straight lines Aa, AE, and 

the curve acE, there is any number of parallelograms Ab, Bc, Cd etc., of equal bases 

AB, BC, CD etc., parallel to a side Aa of the figure; and the parallelograms aKbl, bLcm, 

cMdn etc., is completed; then, if we suppose that the width of those parallelograms was 

progressively diminished and their number increased ad infinitum, I affirm that the final 

ratios that the inscribed figure AKbLcMdD, the circumscribed figure AalbmcndoE and 

the curvilinear figure AabcdE, will have for each other, are ratios of equality.11 

 
10 Ibid., p. 71. 

11 Ibid., p.71-72. 
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Figure 2. 

Geometric representation of Lemma II (Newton, 2008 p.72) 

 

Lemma II demonstrates that we can determine the area of a curve using the method of 

first and last ratios of quantities. 

Newton sought to show that to determine the area under a curve with center A, delimited 

by points E, c, a, as shown in the figure, we should proceed as follows: 

1-Draw any number of parallelograms inscribed in this curve. In the case of the figure, 

there are three bases: , , . 

2- With the help of other smaller parallelograms, subscribe to the curvilinear figure. In 

this case, the base parallelograms: ; , ;  will have this role. 

Newton argues that if the width of the parallelograms is made smaller and smaller, it 

will result in a higher number of them and that, in this case, if the width reduces progressively, 

the number of parallelograms will increase at the same rate until it reaches an infinite number. 

Consequently, the area of the curvilinear figure will be the area of the inscribed and 

circumscribed parallelograms. 

Newton extends this idea to parallelograms of unequal widths, stating that if these 

widths decrease ad infinitum, the area of the plane figure will also be that of the parallelograms 

(Lemma III). From these lemmas, he presents some propositions, which are: 
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Corollary I – Thus, the final sum of those evanescent parallelograms will coincide in 

all parts with the curvilinear figure12.  

 

According to our chosen translation13, the word evanescent is understood by quantities 

as small as one wants, i.e., infinitesimal. 

As the width of the parallelograms decreases, and when parallelograms of infinitesimal 

width are added, the area of the curvilinear figure coincides. 

Corollary II – The rectilinear figure, limited by the chords of the evanescent arcs ab, 

bc, cd, etc., will finally coincide even more with the curvilinear figure14.  

Thus, as the width of the parallelograms aKbl, bLcm, cMdn etc., which complete the 

curvilinear figure, is reduced, the arcs that form their diagonals are reduced infinitely until they 

become rectilinear, contributing to the figures becoming equal. 

Corollary III – In the same way, the circumscribed rectilinear figure is limited by the 

tangents of the same arcs15. 

 

Likewise, when reduced to infinity, the upper bases of the circumscribed parallelograms 

will coincide with the curvilinear figure. 

 

Figure 3. 

Parallelograms inscribed in the function graph (Geogebra.org) 

 

 
12 Ibid. p.72 

13 Translation by edusp - several translators. 

14 Ibid. p.73 

15 Ibid. p.73 
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Corollary IV – Therefore, these final figures (regarding their perimeters acE) are not 

rectilinear but curvilinear boundaries of rectilinear figures16. 

 

The segments of the figures, straight at the beginning and apparently curved at the end, 

ceasing to be rectilinear, are actually curvilinear limits of the rectilinear figures.  

Based on the analysis of the Principia, , we will present two tasks that will be solved 

using some of Newton’s arguments to find the area below the graph. At the end, we will briefly 

analyze the tasks and mobilize the ATD concepts. We will use Geogebra, a dynamic geometry 

software, to better visualize the resolution of these tasks. 

Task (T): Using Newton’s method of first and last ratios of quantities, calculate the 

approximate area under the graph of the function f(x) = −x ² + 4x in the interval [0,4]. 

To solve T, we will use Lemma II, which demonstrates that the method of first and last 

ratios of quantities determines the area of a curve. 

Thus, according to Newton, we should proceed as follows: 

1-Draw any number of parallelograms inscribed in this curve.  

Using the slider button, we can see that if the number of inscribed parallelograms is 

equal to 8, and, adding the areas, we have: 

 S1 = 8.96 units of units of area (ua)  

2- With the help of other parallelograms with the same base as item 1, circumscribe the 

curvilinear figure. 

 

Figure 4. 

Parallelograms circumscribed around the graph of the function (Geogebra.org) 

 

 
16 Ibid. p.73 



 

394 Educ. Matem. Pesq., São Paulo, v. 26, n. 3, p. 375-398, 2024 

Repeating the procedure with the slider button, when the number of circumscribed 

parallelograms is equal, it is equal to 10, and, adding the areas, we have: 

S2 = 12.16 ua 

Repeating the procedures of Lemma II, but in this case, with an increased number of 

parallelograms, we have: 

 

Figure 5. 

Increasing the number of parallelograms to 50 (Geogebra.org) 

Increasing the number of parallelograms to 50, we have the following sums of areas: 

 S1= 10.34 ua 

S2= 10.98 ua 

Increasing the number of rectangles to 1000, we have the following sums of the areas: 

S1= 10.66 ua 

S2= 10.66 ua 

 Corollary I – Thus, the final sum of those evanescent parallelograms will coincide in 

all parts with the curvilinear figure.  

Therefore, the approximate area under the graph of the function f(x) = −x ² + 4x, in the 

interval [0,4], will be 10.66 ua  

Although the method of first and last ratios of quantities is used in Principia to calculate 

the area under a curve, we can extend the idea and apply it to calculate the area under the graph 

of any function. In the following task, we will use the method to calculate the area below a line. 
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Task (T) - Using the method of equality ratios, calculate the approximate area below the 

graph of the function f(x)= x+1 in the interval [-1,3] 

 

Figure 6. 

Calculating the area in the interval [-1,3] (Geogebra.org) 

Applying Lemma II and adding the areas of the circumscribed and inscribed 

parallelograms, we have: 

S1 = 9.6 ua 

S2= 6.4 ua 

Increasing the number of parallelograms to 50 and adding the areas of the circumscribed 

and inscribed parallelograms, we have: 

            

Figure 7.  

The sum of the areas of the circumscribed and inscribed parallelogram (Geogebra.org) 
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S1 = 8.1 ua 

S2 = 7.8 ua 

Increasing the number of rectangles to 1000, we have the following sums of the areas: 

S1 = S2 = 8 ua 

Applying Corollary I, we have: 

S = 8 ua (area below the graph) 

Task analysis: 

(T): Calculate the area under the graph of a quadratic polynomial function on a given 

interval. 

(T): Calculate the area under the graph of a first-degree polynomial function on a given 

interval. 

Technique (τ): Method of first and last ratios of quantities 

Theoretical/technological discourse [ө/Θ]: Following Lemma II of the Principia, to 

calculate the area under a curve, we must add the area of parallelograms registered and 

circumscribed in it. Using the method of first and last ratios of quantities, we found that 

the greater the number of parallelograms, the more precise the area will be. And that the 

sum of the area of the inscribed and circumscribed parallelograms tends to be equal as 

the number of parallelograms increases, and their upper bases begin to be interpreted as 

part of the graph curve, meeting Corollaries I, II, III, and IV. Therefore, we can conclude 

that the area of any graph is the area of the sum of the parallelograms, whether they are 

inscribed or circumscribed in the graph. 

Figure 8.  

Analysis of T from the ATD perspective 

Final considerations 

Solving the task using Newton’s calculus shows that it allows solving problems 

involving the area under a curve, as with polynomial functions. When Newton published his 

Principia, the idea of a modern function did not exist, and his primary purpose was to calculate 

areas of moving bodies. However, task (T) showed that his procedures can be used to find areas 

below graphs of functions. 

Task (T) showed us that procedures used by Newton to calculate area, such as the use 

of the “methods of the first and last ratios of quantities,” Lemma II, and the corollaries, are tools 

that, when undergoing a process of didactic transposition, are an alternative to the current DEM, 

which uses Leibniz’s calculus. 

Finally, when presenting the solution to task (T) through theoretical-technological 

techniques and discourses using Newton’s calculus in light of the ATD, we propose an AEM 

for teaching calculus for mathematics teaching degrees. 
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