Células-tronco fetais de membrana amniótica: o futuro da medicina regenerativa

Caroline Pinho Winck, Silvia Amélia Ferreira Lima, João Leonardo Mendonça, Fabiele Baldino Russo, Isabella Rodrigues Fernandes, Marcus Vínicius Mendes Silva, Graciela Conceição Pignatari

Resumo


Células- tronco (CT) são células indiferenciadas com capacidade de auto-renovação ilimitada e potencial de diferenciação que lhes confere um papel primordial e vital. A terapia celular com CT parece ser uma estratégia de tratamento promissor. Devido às questões éticas, encontramos dificuldades na utilização de células-tronco embrionárias (CTE). Já as células-tronco adultas (CTA) por apresentarem baixa plasticidade se tornam pouco promissoras. Com isso, há um crescente interesse em outras fontes de CT como as células-tronco fetais (CTF) que representam uma fonte de CT ainda pouco explorada. Elas são facilmente acessíveis e isoladas a partir de tecidos extra-embrionários, como a placenta e a membrana amniótica, tornando um fonte interessante já que geralmente esses tecidos são descartados após o nascimento. Essas células apresentam um crescimento rápido e alta plasticidade. Estudos com células-tronco de Membrana Amniótica (CTMA) demonstram seu fácil cultivo, além de baixa resposta imunológica, propriedades anti-inflamatórias e anti-bacterianas. Com isso a membrana amniótica pode ser considerada como uma nova e conveniente fonte de obtenção de CT.

Palavras chave: membrana amniótica; células-tronco; células-tronco fetais; placenta; anexos fetais; terapia celular.

ABSTRACT

Stem cells (SC) are undifferentiated cells capable of unlimited self-renewal and high differentiation potential, which grants them a vital and leading role. Cell therapy with SC seems to be a promising treatment strategy. Due to difficulties surrounding the use of embryonic stem cells (ESC) because of ethical issues associated with these cells and the relationship of low plasticity of adult stem cells (ASC) there is a growing interest in other sources of SC. Fetal stem cells (FSC) represent a source of SC yet unexplored. They are easily accessible and isolable from extra-embryonic tissues such as placenta and amniotic membrane, which are usually discarded after birth. They have rapid growth and good plasticity. Researches using amniotic membrane stem cell (AMSC) showcase theirs easy cultivation and high plasticity in addition to low immune response, anti-inflammatory and anti-bacterial properties. So, the amniotic membrane (AM) might be considered as a new and convenient source of SC.

Keywords: amniotic membrane; stem cells; fetal stem cells; placenta; fetal annexes; cell therapy.

Palavras-chave


membrana amniótica; células-tronco; células-tronco fetais; placenta; anexos fetais; terapia celular.

Texto completo:

PDF

Referências


ALVIANO, F.; FOSSATI, V.; MARCHIONNI, C.; ARPINATI, M.; BONSI, L.; FRANCHINA, M.; LANZONI, G.; CANTONI, S.; CAVALLINI, C.; BIANCHI, F.; TAZZARI, P.L.; PASQUINELLI, G.; FORONI, L.; VENTURA, C.; GROSSI, A.; BAGNARA, G.P. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7, 11-14, 2007.

ASAHARA, T. & KAWAMOTO, A. Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol. 287, C572–C579, 2004.

AZUARA, A.B.; PILLAI C.T.; DUA, H.S. Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol, 83:399e402, 1999.

CHANGDONG, L.; WEIYUAN, Z.; XIAOXIA J. Human –placentaderived mesenchymal stem cells inhibit proliferation and function of allogenic immune cell. Cell. Tissue Res. 330, 437-446, 2007.

FRANK H.G. & KAUFMAN P. Nonvillous Parts and Trophoblast Invasion. Pathology of the human placenta. 5,191-287, 2006.

FUKUCHI, Y.; NAKAJIMA, H.; SUGIYAMA, D.; HIROSE, I.; KITAMURA, T.;TSUJI K. Human placenta derived cells have mesenchymal stem/progenitor cell potential. Stem Cells . v.22, p.649–658, 2004.

ILANCHERAN, S.; MOODLEY, Y.; MANUELPILLAI, U. Human fetal membranes : a source of stem cells for tissue regeneration and repair?. Placenta.v.1, n.30, p.2-10, 2009.

INSAUSTI, C.L; BLANQUER, M.; BLEDA, P.; INIESTA, P.; MAJADO, M.J.; CASTELLANOS, G.;MORALEDA, J.M. The amniotic membrane as a source of stem cell. Histol Histopathol. 25:91-98, 2010.

ISMAIL, A.; RAMSIS, R.K.; SHERIF, A.; THABET,A.; GHOR, E.; Selim, A. Use of human amniotic stem cells for common bile duct reconstruction: Vascularized support of a free amnion graft Med Sci Monit, 2009; 15(9): 243-247, 2009.

KADAM, S.S, SUDHAKAR M.; NAIR P.D.; BHONDE, R.R. Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy, 2010.

KAKISHITA, K.; NAKAO, N.; SAKURAGAWA, N.; ITAKURA, T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res, 980:48e56, 2003.

KIM J.; KANG H.M.; KIM H.; KIM M.R.; KWON H.C.; GYE M.C.; KANG S.G.; YANG H.S.; YOU J., Ex Vivo Characteristics of Human Amniotic Membrane-Derived Stem Cells. Cloning and Stem Cells, v.9, p.581-94, 2007.

KONG, X.Y; CAI, Z.; PAN, L.; ZHANG, L.; SHU, J.; DONG, Y.L.; YANG, N.; LI, Q.; HUANG, X.J.; ZUO, P.P. Transplantation of human amniotic cells exerts neuroprotection in MPTP-induced Parkinson disease mice. Brain Res, 1205:108-15, 2008.

KORBLING, M.; ESTROV, Z. Adult stem cells for tissue repair - a new therapeutic concept?. N Engl Journal Med,7, 570-582, 2003.

KOSUGA, M.; TAKAHASHI, S.; SASAKI, K.; ENOSAWA, S.; LI, X.K.; OKUYAMA, S.; FUJINO, M.; SUZUKI, S.; YAMADA, M.; MATSUO, N.; SAKURAGAWA, N.; OKUYAMA, T. Phenotype correction in murine mucopolysaccharidosis type VII by transplantation of human amniotic epithelial cells after adenovirus-mediated gene transfer. Cell Transplant. 9, 687-692, 2000.

LI, C.; ZHOU, J.; G SHI.; MA, Y.; Y, YANG.; GU, J.; H, YU.; S, JIN.; WEI, Z.; F CHEN, Y JIN. Pluripotência pode ser rápida e eficazmente induzidas em células do líquido amniótico humano derivados. Hum Genet Mol, ; 18 (22) :4340-9, 2009.

LI, H.; NIEDERKORN, J.Y.; NEELAM, S.; MAYHEW, E.; WORD, R.A.; MCCULLEY, J.P.; ALIZADEH, H., Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci, v.46, n.3, p.900–907, 2005.

MARCUS, A.J.; COYNE, T.M.; RAUCH, J.; WOODBURRY, D.; BLACK, I.B. Isolation, characterization, and differentiation if stem cells derived from the rat amniotic membrane. Differentiation, v.76, n.2, p.130-144, 2008.

MIHU, C.M.; RUS CIUCA, D.; SORITAU, O.; SUŞMAN, S.; MIHU, D. Isolation and characterization of mesenchymal stem cells from the amniotic membrane. Rom J Morphol Embryol. v. 50, p.7-73, 2009.

MIKI ,T. & STROM, S.C. Amnion-derived pluripotent / multipotent stem cells. Stem Cell Rev. 2, 133-142, 2006.

MIMEAULT, M. & BATRA, S.K. Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24, 2319–2345, 2006.

OKAZAKI, T.; CASEY, M.L.; OKITA, J.R.; MACDONALD, P.C.; JOHNSTON, J.M; Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua. Am J Obstet Gynecol. v. 381, p.139:373, 1981.

PAROLINI ,O.; ALVIANO, F.; BAGNARA, G.; BILIC, G.; BÜHRING, H.; EVANGELISTA, M.; HENNERBICHLER, S.; LIU, B.; MAGATTI, M.; MAO, N.; MIKI, T.; MARONQUIU, F., NAKAJIMA H., NIKAIDO T. PORTMANN-LANZ C.B., SANKAR V., SONCINI M.; STADLER, G.; SURBEK, D.; TAKAHASHI, T.A.; REDL, H.; SAKURAGAWA, N.; WOLBANK, S.; ZEISBERGER, S.; ZISCH, A.; STROM, S.C. Concise Review: Isolation and characterization of cells from human term placenta: Outcome of the First. International Workshop on Placenta Derived Stem Cells. Stem Cells, 300-311, 2008.

PAROLINI, O.; SONCINI, M.; EVANGELISTA, M.; SCHMIDT, D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine?. Regen Med, 4:275e91, 2009.

PEAULT, B. . Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15, 867–877 , 2007.

PITTENGER, M. F.; MACKAY, A. M.; BECK, S. C.; JAISWAL, R. K.; DOUGLAS, R.; MOSCA, J. D.; MOORMAN, M. A.; SIMONETTI, D.W.; CRAIG, S.; MARSHAK, D. R. Multilineage potential ofadult human mesenchymal stem cells. Science, v.284, p.143-147, 1999.

SAKURAGAWA, N.; ENOSAWA, S.; ISHII, T.; THANGAVEL, R.; TASHIRO, T.; OKUYAMA, T; SUZUKI, S. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J. Hum. Genet. 45, 171-176, 2000.

SHI, M.; LI, W.; LI, B.; LI, J.; ZHAO, C. Multipotency of adult stem cells derived from human amnion. Sheng Wu Gong Cheng Xue Bao.Chinese. 25(5):754-60, 2009.

TAMAGAWA, T.; ISHIWATA, I,; SAITO, S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell, 17(3):125-30, 2004.

TAMAGAWA, T.; OI, S.; ISHIWATA, I.; ISHIKAWA, H.; NAKAMURA, Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell. v. 20, p. 77-84, 2007.

TROUNSON, A. The production and directed differentiation of human embryonic stem cells. Endocr. Rev. 27, 208–219, 2006.

WEI, J.P.; NAWATA, M.; WAKITANI, S.; KAMETANI, K.; OTA, M.; TODA, A. Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells,11:19e26, 2009.

WEI, J.P.; NAWATA, M.; WAKITANI, S.; KAMETANI, K.; OTA, M.; TODA, A. Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells,11:19e26, 2003.

YANG, X.X.; XUE, S.R.; DONG, W.L.; KONG, Y. Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats. Chin Med J (Engl),122:2449e54, 2009.

YEN, B.L.; HUANG, H.I.; CHIEN, C.C.; JUI, H.Y.; KO, B.S.; YAO, M.; SHUN, C.T.; YEN, M.L.; LEE, M.C.; CHEN, Y.C. Isolation of multipotent cells from human term placenta. Stem Cells, 23,3–9, 2005.