
152

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

http://doi.org/10.23925/2179-3565.2024v15i2p152-162

 RISUS - Journal on Innovation and Sustainability

volume 15, number 2 - 2024

ISSN: 2179-3565

Editor Científico: Arnoldo José de Hoyos Guevara

Editor Assistente: Vitória Catarina Dib

Avaliação: Melhores práticas editoriais da ANPAD

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING

COLLABORATION IN SOFTWARE PROJECTS
Análise de redes sociais aplicada ao entendimento da colaboração em projetos de software

Fabio R. de Miranda1,2, Marcelo A. V. Graglia1

 1Pontifical Catholic University of São Paulo, TIDD, Brazil
2Institute of Education and Research, INSPER, São Paulo, Brazil

E-mail: fabiomiranda@insper.edu.br, ra00342850@pucsp.edu.br, mgraglia@pucsp.br

ABSTRACT

In the realm of software development, collaboration is important for worker satisfaction, mitigating turnover risks

and better design of final products. The quality of collaboration in teams can indirectly assessed by the

interdependence of team members’ designs and the extent of shared authorship within a system. Our goal is to

apply Social Network Analysis to visualize collaboration on software teams. This study is situated within the

framework of software projects undertaken by undergraduate Computer Science students in a 3-week programming

sprint. Detailed data from the software development process was gathered through Github and further analyzed

using a two-mode social network and later a regular social network. Our results indicate that these techniques help

illuminate certain facets of collaboration, such as members that are isolated from the team or collaborators that

tend to concentrate too much work.

Keywords: Collaboration; Social network analysis; Software development; Software repositories.

ACEITO EM: 20/05/2024

PUBLICADO EM: 01/08/2024

mailto:mgraglia@pucsp.br

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

153

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

 RISUS - Journal on Innovation and Sustainability

volume 15, número 2 - 2024

ISSN: 2179-3565

Editor Científico: Arnoldo José de Hoyos Guevara

Editor Assistente: Vitória Catarina Dib

Avaliação: Melhores práticas editoriais da ANPAD

ANÁLISE DE REDES SOCIAIS APLICADA AO ENTENDIMENTO DA

COLABORAÇÃO EM PROJETOS DE SOFTWARE
Social network analysis applied at understanding collaboration in software projects

Fabio R. de Miranda1,2, Marcelo A. V. Graglia1

 1TIDD – PUCSP, Pontifical Catholic University of São Paulo, Brazil
2Insper Institute of Education and Research, São Paulo, Brazil

E-mail: fabiomiranda@insper.edu.br, ra00342850@pucsp.edu.br, mgraglia@pucsp.br

RESUMO

No âmbito do desenvolvimento de software, a colaboração é importante para a satisfação do trabalhador, mitigando

os riscos de rotatividade e melhor design dos produtos finais. A qualidade da colaboração em equipes pode ser

avaliada indiretamente pela interdependência dos desenhos dos membros da equipe e pela extensão da autoria

compartilhada dentro de um sistema. Nosso objetivo é aplicar a Análise de Redes Sociais para visualizar a

colaboração em equipes de software. Este estudo está situado no âmbito de projetos de software realizados por

estudantes de graduação em Ciência da Computação em um sprint de programação de 3 semanas. Dados

detalhados do processo de desenvolvimento de software foram coletados através do Github e posteriormente

analisados usando uma rede social de dois modos e, posteriormente, uma rede social regular. Nossos resultados

indicam que essas técnicas ajudam a iluminar certas facetas da colaboração, como membros isolados da equipe ou

colaboradores que tendem a concentrar muito trabalho.

Palavras-chave: Colaboração; Análise de redes sociais; Desenvolvimento de software; Repositórios de software.

mailto:mgraglia@pucsp.br

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

154

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

INTRODUCTION

Collaboration is an important component of teamwork. Research in management suggests that teams that

collaborate effectively perform better in highly complex and high-tech projects, as is typically the case with

software (Brusoni et al., 2001). Many make the case that every profession must be ready to work in software.

Programming will be increasingly a fundamental skill for all professionals, being valuable valuable across a wide

range of professions, including finance, marketing, healthcare, and even the arts (World Economic Forum, 2020).

In programming team-based projects are becoming the standard. Working together brings numerous advantages;

it makes maintaining software easier, encourages knowledge sharing, and helps systems to improve over time.

Programmers working in teams often feel more satisfied and experience better well-being (Kropp et al., 2020).

An essential tool for collaborative software projects is a version control system. Such systems serve as

repositories for software, recording every developer's contribution. This comprehensive record-keeping is not just

for supervision and documentation —it's a valuable resource for analyzing how developers work together. The

history of a software evolution monitored through its repository constitutes data that can be represented through a

social network.

This work focuses applies social network analysis (SNA) metrics to student developers collaborating on a

real software project for an actual client. In this setting, it's important to understand how team members interact

and work together. We'll look into the collaboration dynamics within the team to gain insights into how students

handle real-world software development projects as a team. Research in management suggests that teams that

collaborate effectively perform better in highly complex and high-tech projects, as is typically the case with

software.

The objective of this work is applying social network metrics and visualizations to a team project and see

if those have correspondences with certain types of contribution patterns between the collaborators.

1 COLLABORATION AND WELL BEING

Professionals who develop software have access to tools that facilitate project task division. Among these,

version control systems stand out, especially the Git system. This feature allows more than one developer to work

on the project simultaneously. This sharing method introduces different organizational possibilities for

collaborative work: at one end, there can be a simple division of tasks where each individual works on a separate

part; at the other, a more intense collaboration might occur with shared responsibility and joint authorship.

Qualifying the degree of collaboration on software projects and providing feedback on the maturity level

of the collaboration can be seen only as a way to increase productivity. But more than putting programmers in the

place of a cog in the machine of the software industry, collaborating goes beyond just enabling productivity and

mitigating turnover risks. It can increase satisfaction and well being. Agile software development methodologies,

that are collaborative, are associated with higher job satisfaction among developers, as discussed by Kropp et al.

(2020). Conversely, attributes of high-quality collaboration such as team learning can only occur when there is

psychological safety and absence of conflict (Pinheiro et al., 2023). Agile practices, such as iterative development,

frequent communication, and collaboration, create a more engaging and fulfilling work environment. The

flexibility and autonomy offered by agile methodologies can contribute to developer satisfaction. Moe et al. (2009)

conducted a survey among 34 developers belonging to five teams from three different companies, totaling 149

periodical interviews. That survey found that work teams in software development can lead to increased

productivity, innovation, and employee satisfaction.

Kropp et al. (2020) conducted a nationwide survey of software developers in Switzerland found out that

being part of collaborative processes are closely related to workers’ satisfaction. Another finding is that

collaborator’s awareness of the structure of collaboration plays a role in satisfaction. Thus, tools that mediate

collaboration help boost that awareness. The use of technological tools to mediate collaboration can ease the burden

of negotiating internally in teams and defining certain roles and protocols. The work of Andres (2012) identified

that the use of such tools increases productivity and team process satisfaction.

The quality of teamwork, which depends on collaboration, was found by Hoegl & Gemuenden (2001) to

be associated with team members’ work satisfaction and ability to learn in software development. Some agile

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

155

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

methodologies such as ASEST (Avila et al., 2021) and ASEST+ (Avila et al., 2022) go besides ceremonies for

getting the software done and include mechanisms to incorporating disagreements, construction of consensus and

improving the cohesion of the team.

Collaboration is crucial for developing complex software. One reason is that an individual’s execution

capability cannot handle the complexities of modern software, and beyond a certain complexity, it becomes

necessary to work in teams that need to collaborate functionally.

According to programming language pioneer David Parnas, Software Engineering is the development of

multi-version programs made by multiple people (Parnas, 2011). This statement underscores that team

collaboration is a vital skill for professional software development.

Surveys suggest that experienced software designers are characterized by knowing how to cooperate

(Sonnentag, 2000), and they use collaboration as part of their plan to complete a task (Sonnentag, 1998).

Whitehead et al. (2010) emphasize that software project management should establish organizational

structures that encourage collaboration, especially vital in a context where the current way of developing software

introduces many types of distance within development teams, including spatial, temporal, and socio-cultural. The

software quality can also be related to cooperation among development team members (Weimar et al., 2013). Over

the past 20 years, the rise of agile software development methodologies has emphasized individual interactions

over the uncritical use of processes and tools (Beck et al., 2001).

Merely assigning group tasks to developers or students doesn’t usually ensure that collaborative skills are

developed or that groups work productively (Bacon et al., 1999).

Katzenbach & Smith (1993) define that a team goes beyond just a group of people who work together.

There’s an expectation of joint contribution and collaboration, as well as shared accountability for results. It’s

characteristic of collaborations to deliver projects that benefit from the joint contribution of its members. The

Association for Computing Machinery (ACM, 2013) suggests integrating professional software development

practices, including collaborative teamwork, into higher education in computing.

2 VERSION CONTROL SYSTEMS AND COLLABORATION

In professional software development and practical projects at the university, tools are used that can

maintain a detailed record of how each contributor worked and which part of the software they submitted. This

detailed information can be used to measure and encourage collaboration.

While collaboration is a desired skill, it’s difficult to precisely measure and quantify. Simple collaboration

metrics, such as lines of code (Gousios et al., 2008) are easy to measure and manipulate and can create perverse

incentives, falsifying true collaboration.

Contemporary software development projects are highly amenable to ongoing analysis, as they digitally

encapsulate every contributor’s input through version control systems (VCS). These systems are ubiquitously

implemented due to their multiple advantages. One significant benefit is their ability to allow concurrent file editing

by multiple programmers without the risk of overwriting each other’s contributions. They are designed with

conflict resolution mechanisms, prompting manual review in scenarios where developers concurrently modify

identical lines of code.

The software project’s work history is important to understand the actual collaboration that took place and

monitor the process systematically.

Software repository mining (Chaturvedi et al., 2013; Vidoni, 2022) consists of analyzing project history

and source code to understand authorship, history, and development evolution. Extracted repository data, using

data mining techniques, can lead to understanding and even predictions about the software and its context.

One strategy to achieve collaboration is to measure each individual’s contribution and create incentives for

collaboration. Software repositories allow for detailed tracking. Extracting quality data from software repositories

and using it to understand team dynamics is an active research area in Software Engineering and Computing.

At first glance, it is easier to extract basic metrics, like lines of code or the number of commits. However,

the number of code submissions or lines of code are simple quantitative metrics of software development progress

and do not necessarily reflect the significance or magnitude of the contributor’s input (Jorgensen & Shepperd,

2007). The need to better quantify these contributions has led to more sophisticated metrics, such as function points

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

156

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

(Hira & Boehm, 2016) or cyclomatic complexity (McCabe, 1976). This latter measure analyzes changes in source

code by representing the program as a graph, making structural versus incremental changes more apparent. When

there is data about the software process, requirements, bugs, and customer wishes, these can also be used as metrics

of each developer’s individual contribution (Wu et al., 2016). This is an active research area, and a trend is to use

artificial intelligence and machine learning to assess a developer’s project contribution magnitude, with existing

results in this direction (Pillai et al., 2017; Ratner et al., 2017).

Social network analysis is another tool that can be used to analyze the dynamics of teams of collaborators.

SNA evaluates the relationships between individuals and entities rather than examining subjects in isolation, and

has been used in some context to analyze collaboration. For instance, Riquelme et al. (2019) analyzed interactions

in a discussion group in order to build a social network where nodes were participants and the edges between them

referred to the strength of the connection. In software development projects, SNA potentially improve

understanding of collaboration, and lead to improvements in teamwork, which in turn leading to increased

productivity, quality, and knowledge sharing (Costa et al., 2014). In the context of software, social networks have

been used in other to study the interactions and visualize communities (Gilbert & Karahalios, 2009; Jorgensen &

Shepperd, 2007; Robles et al., 2022).

3 CASE STUDY INVESTIGATING COLLABORATION THROUGH SNA

This work applies social network analysis (SNA) to a software project developed by a team of computer

science students, who assumed the roles of collaborators. The analysis aims to identify collaboration patterns and

provide insights into the team’s work dynamics.

The collaborators, junior computer science students, participated in a 3-week intensive course dedicated to

developing a project for an external organization outside the university. Throughout this document, these students

are referred to interchangeably as collaborators or programmers, given the nature of the software project.The

project’s goal was to create a system to track scholarship recipients, ensuring regular updates on their academic

progress and status, including grades, internships and expected graduation date. It was expected of the system to

come up with measures to improve compliance, such as automatically asking the scholarship recipites for updates

through WhatsApp.

The project took the final form of a website backed by a database, programmed in the Python programming

language. Being a web project, the files were a mix of Python source code, HTML formatting files and graphic

files. The project of the team was comprised of 178 files total. Those files had 862 changes made to them

cumulatively over the course of 2.5 weeks.

This took place inside a course in the computer science curriculum, and the students devoted at least 6

hours per day to the project. It took place on a period dedicated to that project and without regular classes occurring

at the same time. The project had four faculty members supervising all groups, which were six in total. Though the

social network analysis seen here focused on a single group.The group under analyss had seven

students/collaborators. Their names have been changed to random animal names in the tables and graphs presented

here. Names are consistent over analysis.

Within the scope of this analysis, the students employed Git, a widely-recognized source code version

control system, of which the most used service is hosted on GitHub. The programmers were prompted to regularly

commit their modifications to the repository, ensuring a comprehensive and retrievable record of the project’s

evolution. This archival feature not only maintains a historical narrative of the development process but also

provides the flexibility to revert changes or restore previous states of the project if required.

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

157

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

Figure 1 - Two-mode network connecting collaborators to project files. Collaborators are green nodes and files are red

The Git repositories of the project is private because the client preferred it this way. The analysis made in

this work was done in Python, using the library Pydriller (Spadini et al., 2018) to extract Github commit data and

the library NetworkX to build the social networks and compute SNA metrics. Contribution commit data contained

the collaborator id, the time, and the changes made to the file.

In the software project explored in this analysis, the social network does not form direct links between

project collaborators. Instead, interactions occur through modifications to project files. Such networks, where one

category of participants (in this case, the collaborators) are indirectly linked through another category (here, the

files), are identified as two-mode networks (Borgatti & Everett, 1997). These networks often later are converted

into a secondary social network that do contain direct connections between entities of the same kind.

In this study, a two-mode network initially maps the interactions of collaborators with files, as can be seen

in Figure 1, where collaborators appear as green nodes more along the periphery, and project files are more in the

center. The size of the collaborators’ nodes reflects the number of connections they have, and the thickness of the

lines linking collaborators to files indicates the frequency of commits to those files. The accompanying Table 1

points out a distinct characteristic of two-mode networks: given the disparity between the number of files (178)

and developers (7), the connectivity of a file, for instance urls.py, is inherently limited to seven, whereas a

developer could theoretically modify every file. “Loud Goat,” the most active contributor, engaged with 103 files.

Cute Pig

.gitignore

README.md

requirements.txt

Wild Fowl

Cute Frog

manage.py

__init__.py

asgi.py

settings.py

urls.py

wsgi.py

admin.py

apps.py

0001_initial.py

0002_alter_customuser_status.py

models.py

tests.py

views.py

Loud Goat

account_inactive.html

base.html

email.html

account_already_exists_message.txt

account_already_exists_subject.txt

base_message.txt

email_confirmation_message.txt

email_confirmation_signup_message.txt

email_confirmation_signup_subject.txt

email_confirmation_subject.txt

password_reset_key_message.txt

password_reset_key_subject.txt

unknown_account_message.txt

unknown_account_subject.txt

email_confirm.html

login.html

logout.html

cannot_delete_primary_email.txt

email_confirmation_sent.txt

email_confirmed.txt

email_deleted.txt

logged_in.txt

logged_out.txt

password_changed.txt

password_set.txt

primary_email_set.txt

unverified_primary_email.txt

password_change.html

password_reset.html

password_reset_done.html

password_reset_from_key.html

password_reset_from_key_done.html

password_set.html

signup.html

signup_closed.html

already_logged_in.html

verification_sent.html

verified_email_required.html

authentication_error.html

connections.html

login_cancelled.html

account_connected.txt

account_connected_other.txt

account_connected_updated.txt

account_disconnected.txt

login_extra.html

provider_list.html

forms.py

0002_profile_cor_ou_raca_profile_data_nascimento_and_more.py

0003_alter_profile_cor_ou_raca_alter_profile_cpf_and_more.py

base.js

base.css

Dev Wolf

logo-telles-no-text.png

logo-telles.png

placeholder.txt

base-login.css

base-login.html

background-home.png

favicon-telles.png

style.css

home.html

fundo_login.jpg

Cute Moth

login_google1.png

base-signup.html

base_login.css

user_profile-edit.html

fundo_redefinicao.png

signup.js

signup.css

google.png

0004_profile_ano_formatura_profile_ano_ingresso_and_more.py

0005_remove_profile_nome_completo_profile_nome_and_more.py

0006_alter_profile_ano_formatura_and_more.py

0007_alter_profile_cidade_atual_and_more.py

profile.html

0009_alter_profile_cidade_atual_and_more.py

background-profile.png

foto-de-perfil-padrao.png

0010_alter_profile_cidade_atual_and_more.py

0011_alter_profile_cidade_atual_and_more.py
0012_alter_profile_cidade_atual_and_more.py

fundo3.png

0013_alter_profile_cidade_atual_and_more.py

cadastro.png
dados-financeiros-azul.png

dados-financeiros-cinza.png

dados-pessoais-azul.png

dados-pessoais-cinza.png

dados-profissionais-azul.png

dados-profissionais-cinza.png

fundo-dados-pessoais.png

0014_alter_profile_cidade_atual_and_more.py

0015_alter_profile_cidade_atual_and_more.py

telles_foundation.png

0008_alter_profile_cidade_atual_and_more.py

0016_alter_profile_cidade_atual_and_more.py

0017_alter_profile_cidade_atual_and_more.py

0018_alter_profile_cidade_atual_and_more.py

0008_profile_foto_de_perfil.py

0009_alter_profile_tipo_usuario.py

Warm Shrew

decorators.py

0009_remove_profile_foto_de_perfil_profile_foto_perfil.py

0010_merge_20230531_1924.py

fundo-cadastro.jpeg

Parte1.png

Parte2.png

Parte3.png

Parte4.png

base-edit.html

edit.html

edit_form.py

edit.js

edit.css

admin.css

simbolo-telles.png

fundo-login-admin.png

0012_alter_profile_tipo_usuario.py

tag.py

search.js

search.css

base-search.html

search.html

filters.py

profile-visitor.html

tasks.py

celery.py

overview.html

base-historico.html

historico.html

0013_historicoescolar.py

0013_alter_profile_estado_atual_and_more.py

historico-escolar.html

historico-profissional.html

0014_historicoprofissional.py

0015_alter_historicoescolar_id_proprietario_and_more.py

historys.css

foto_historico.png

0014_keys.py

0016_historicoprofissional_data_inicio.py

0017_rename_data_inicio_historicoprofissional_data_ingresso.py

0018_alter_historicoprofissional_data_ingresso.py

0013_profile_ultima_atualizacao.py
Wild Newt

home.css

background_home.png

historico-academico.html

0021_rename_historicoescolar_historicoacademico.py

0021_alter_profile_ano_formatura_and_more.py

historico-academico-visitor.html

historico-profissional-visitor.html

0022_merge_20230607_1441.py

0023_alter_profile_telefone.py

65012.pdf

1_ssmb.jpg

fundo_generate_link.png

generate_link.html

fundo_search.png

fundo_search2.0.png

fundo_search3.0.png

charts.py

fundo_overview.png

history-academico.js

history-profissional.js

0024_alter_profile_cor_ou_raca_alter_profile_estado_atual_and_more.py

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

158

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

Figure 2 - Social network mapping collaborators based on shared files

Centrality measures within the network offer various insights: Degree centrality represents the number of

direct links a node has within the network, closeness centrality gauges the average distance of a node to all other

nodes, and betweenness centrality reveals a node’s frequency as an intermediary in the connections of other nodes,

often serving as a conduit or a broker. In this two-mode network, files typically act as such brokers, making the

inference of collaboration indirect and left to later, when a collaborator to collaborator social network is built.

The clustering coefficient measures the degree to neighboring nodes are connected to the same nodes. In a

two-mode network it will always be zero. For example, in this case collaborators only connect to files. In order for

this clustering coefficient be different than zero files would need to connect to files as well.

This social network graph is not yet a vision of collaboration; on the other hand, it is a visual representation

that allows for the assessment of top collaborators and those who worked on similar parts of the project, since the

graph is laid out according to connections. In this graph, we can see that the student named “Loud Goat” has a

degree of 103, which means he has made contributions to that many files. Whereas the one named “Wild Newt”

made just one. The eigenvector centrality measures how well a given node is connected to other well-connected

nodes. In the case of the two-mode network where collaborators are only connected to files, it can indicate how

often one contributes to files that receive many contributions. This measure shows that “Loud Goat” was an

important part of the project and worked on parts that were actively being developed by others. This view also

highlights the peripheral role of “Wild Newt,” who contributed to only one file that wasn’t being actively worked

on by his colleagues.

Table 1 - SNA parameters for two-mode network connecting collaborators and files

Degree Degree

Centrality

Betweenness

Centrality

Closeness

Centrality

Eigenvector

Centrality

Clustering

Coefficient

Loud Goat 103 0.56 0.58 0.54 0.43 0

Wild Fowl 77 0.42 0.34 0.47 0.37 0

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

159

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

Cute Frog 62 0.34 0.22 0.44 0.31 0

Cute Moth 45 0.24 0.15 0.40 0.23 0

Warm Shrew 24 0.13 0.03 0.37 0.13 0

Dev Wolf 19 0.10 0.05 0.36 0.11 0

urls.py 6 0.03 0.02 0.51 0.12 0

models.py 6 0.03 0.02 0.51 0.12 0

...

013...atualizacao.py 1 0.01 0.00 0.29 0.02 0

Wild Newt 1 0.01 0.00 0.34 0.01 0

The transformation from a two-mode network into a collaborator-centric social network is illustrated in

Figure 2. It’s important to note that in Figure 2 the “Cute Pig” developer is Github’s bot who initialized the project,

who was excluded from further analysis . To assess possible collaborations, the two-mode network is further

converted into a regular social network connecting the collaborators/students. The strength of the connection

between two nodes represents the number of files on which both students worked. This diagram was plotted in a

way that developers with strong connections are closer together. The plot is also useful for understanding

collaboration from the strength of connections. A cluster of developers seems to have worked intensely on the

project, while “Wild Newt” remained distant.

The parameters for this social network of developers are seen in table 2. That table shows that the degree

of connection for all collaborators is 5 or 6, meaning that they have shared contributions to project items/files with

five or six (all) other members of the project; this measure is reflected in the degree centrality as well. The

betweenness centrality is very low because, in general, no collaborator obstructs the connection between two

others. The closeness centrality is high because the network, representing the team of seven developers, is well

connected. The clustering coefficient is high because all developers are connected to essentially the same set of

neighbors.

Social network metrics can help make certain behavioral and organizational aspects more evident. Such as

collaborators that are working on several fronts of the project. That does is not necessarily but, but deserves a

diagnostic to assess if is a disfunctional group dynamic or some other issue that forced such dynamic.

 Table 2 - SNA parameters for collaborator-to-collaborator network

 Degree
Degree

Centrality

Betweenness

Centrality

Closeness

Centrality

Eigenvector

Centrality

Clustering

Coefficient

Wild

Fowl

6 1.0 0.01 1.00 0.39 0.93

Loud

Goat

6 1.0 0.01 1.00 0.39 0.93

Cute

Moth

6 1.0 0.01 1.00 0.39 0.93

Warm

Shrew

5 0.83 0.00 0.86 0.34 1.00

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

160

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

Dev

Wolf

6 1.0 0.01 1.00 0.39 0.93

Cute

Frog

6 1.0 0.01 1.00 0.39 0.93

Wild

Newt

5 0.83 0.00 0.86 0.34 1.00

Similarly, on the other end it can highlight collaborators that shared little project items with colleagues.

That may indicate that they worked in isolate because of a disfunctional dynamic in the group. It is worth

emphasizing that two collaborators sharing a project item does not necessarily mean they did consciously

coordinated their collaboration and actively shared ideas. But intense alternated contribution to some project item

can point to a productive dynamic in their partnership. At least items with intense historic of collaboration may

help identify parnetships among project members.

CONCLUSION

The SNA metrics used in this work proved useful to characterize a few patterns of behavior. The most

evident was that of collaborators that are dettached from the group, such as the “Wild Newt” student, or

collaborators that tended to concentrate work, such as “Loud Goat”. The metrics applied here could be used while

the project is being developed to elucidate the engagement of the collaborators and encourage more productive

collaboration. A concern arises if any of these metrics is used during the project or with the objective of grading.

There’s a risk of individuals prioritizing metrics even to the detriment of the ultimate behavior these metrics

indirectly aimed to evaluate (Campbell, 1979) . In an educational context, it’s no different, so it’s crucial to consider

this fact. For instance collaborators might find out how to influence their metrics, for instance commiting to files

that their colleagues have just commited to. So any SNA based metric must be complemented with other evidences

from the monitoring of the project.

The methodology adopted here can be modified to other types of projects and workers, as long as the

interactions with collaborators among themselves and with project deliverables is logged in the form of data. For

instance exchanges between people on groupware such as MS Teams and Slack, and participation on documents

shared on the cloud or on a corporate network.

This work didn’t go into detail into the temporal aspects of the collaboration. The temporal information of

the commits is available and could hightlight if collaborators that shared modules of the project alternated their

collaboration, adopted a handover aproach with the numerous contributions of a members coming before those of

other, or any other kind of dynamics. That must be investigated in a future work.

REFERENCES

ACM. (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in

Computer Science. Association for Computing Machinery.

Andres, H. P. (2012). Technology-Mediated Collaboration, Shared Mental Model and Task Performance.

Journal of Organizational and End User Computing (JOEUC), 24(1), 64–81.

https://doi.org/10.4018/joeuc.2012010104

Avila, D. T., Van Petegem, W., Libotton, A. (2021). ASEST framework: A proposal for improving teamwork by

making cohesive software engineering student teams. European Journal of Engineering Education, 46(5), 750–

764. https://doi.org/10.1080/03043797.2020.1863339

Avila, D. T., Van Petegem, W., Snoeck, M. (2022). Improving Teamwork in Agile Software Engineering

Education: The ASEST+ Framework. IEEE Transactions on Education, 65(1), 18–29.

https://doi.org/10.1109/TE.2021.3084095

Bacon, D. R., Stewart, K. A., Silver, W. S. (1999). Lessons from the Best and Worst Student Team Experiences:

How a Teacher can make the Difference. Journal of Management Education, 23(5), 467–488.

https://doi.org/10.1177/105256299902300503

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

161

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith,

J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.

(2001). Manifesto for Agile Software Development. Manifesto for Agile Software Development.

http://www.agilemanifesto.org/

Borgatti, S. P., Everett, M. G. (1997). Network analysis of 2-mode data. Social Networks, 19(3), 243–269.

https://doi.org/10.1016/S0378-8733(96)00301-2

Brusoni, S., Prencipe, A., Pavitt, K. (2001). Knowledge Specialization, Organizational Coupling, and the

Boundaries of the Firm: Why Do Firms Know More Than They Make? Administrative Science Quarterly, 46(4),

Artigo 4. https://doi.org/10.2307/3094825

Campbell, D. T. (1979). Assessing the impact of planned social change. Evaluation and Program Planning, 2(1),

67–90. https://doi.org/10.1016/0149-7189(79)90048-X

Chaturvedi, K. K., Sing, V. B., Singh, P. (2013). Tools in Mining Software Repositories. 2013 13th International

Conference on Computational Science and Its Applications, 89–98. https://doi.org/10.1109/ICCSA.2013.22

Costa, G. C. B., Santana, F., Magdaleno, A. M., Werner, C. M. L. (2014). Monitoring Collaboration in Software

Processes Using Social Networks. Em N. Baloian, F. Burstein, H. Ogata, F. Santoro, G. Zurita (Orgs.),

Collaboration and Technology (p. 89–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-

10166-8_8

Gilbert, E., Karahalios, K. (2009). Using Social Visualization to Motivate Social Production. IEEE Transactions

on Multimedia, 11(3), Artigo 3. https://doi.org/10.1109/TMM.2009.2012916

Gousios, G., Kalliamvakou, E., Spinellis, D. (2008). Measuring developer contribution from software repository

data. Proceedings of the 2008 International Working Conference on Mining Software Repositories, 129–132.

https://doi.org/10.1145/1370750.1370781

Hira, A., Boehm, B. (2016). Function Point Analysis for Software Maintenance. Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 1–6.

https://doi.org/10.1145/2961111.2962613

Hoegl, M., Gemuenden, H. G. (2001). Teamwork Quality and the Success of Innovative Projects: A Theoretical

Concept and Empirical Evidence. Organization Science, 12(4), 435–449.

https://doi.org/10.1287/orsc.12.4.435.10635

Jorgensen, M., Shepperd, M. (2007). A Systematic Review of Software Development Cost Estimation Studies.

IEEE Transactions on Software Engineering, 33(1), Artigo 1. https://doi.org/10.1109/TSE.2007.256943

Katzenbach, J. R., Smith, D. K. (1993, march, 1). The Discipline of Teams. Harvard Business Review.

https://hbr.org/1993/03/the-discipline-of-teams-2

Kropp, M., Meier, A., Anslow, C., Biddle, R. (2020). Satisfaction and its correlates in agile software

development. Journal of Systems and Software, 164, 110544. https://doi.org/10.1016/j.jss.2020.110544

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering, SE-2(4), 308–320.

https://doi.org/10.1109/TSE.1976.233837

Moe, N. B., Dingsøyr, T., Dybå, T. (2009). Overcoming Barriers to Self-Management in Software Teams. IEEE

Software, 26(6), 20–26. https://doi.org/10.1109/MS.2009.182

Parnas, D. L. (2011). Software Engineering: Multi-person Development of Multi-version Programs. Em C. B.

Jones, J. L. Lloyd (Orgs.), Dependable and Historic Computing: Essays Dedicated to Brian Randell on the

Occasion of His 75th Birthday (p. 413–427). Springer. https://doi.org/10.1007/978-3-642-24541-1_31

Pillai, S. P., Madhukumar, S. D., Radharamanan, T. (2017). Consolidating evidence-based studies in software

cost/effort estimation—A tertiary study. TENCON 2017 - 2017 IEEE Region 10 Conference, 833–838.

https://doi.org/10.1109/TENCON.2017.8227974

Pinheiro, M., Rebelo, T., Lourenço, P. R., Dimas, I. (2023). What drives team learning: Core conditions and

paths. Journal of Workplace Learning, 35(2), 146–163. https://doi.org/10.1108/JWL-06-2022-0079

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., Ré, C. (2017). Snorkel: Rapid training data creation

with weak supervision. Proceedings of the VLDB Endowment, 11(3), Artigo 3.

https://doi.org/10.14778/3157794.3157797

SOCIAL NETWORK ANALYSIS APPLIED AT UNDERSTANDING COLLABORATION IN SOFTWARE PROJECTS

FABIO R. DE MIRANDA, MARCELO A. V. GRAGLIA

162

RISUS – Journal on Innovation and Sustainability, São Paulo, v. 15, n. 2, p. 152-162, maio/jun. 2024 - ISSN 2179-3565

Riquelme, F., Munoz, R., Mac Lean, R., Villarroel, R., Barcelos, T. S., de Albuquerque, V. H. C. (2019). Using

multimodal learning analytics to study collaboration on discussion groups. Universal Access in the Information

Society, 18(3), 633–643. https://doi.org/10.1007/s10209-019-00683-w

Robles, G., Capiluppi, A., Gonzalez-Barahona, J. M., Lundell, B., Gamalielsson, J. (2022). Development effort

estimation in free/open source software from activity in version control systems. Empirical Software

Engineering, 27(6), Artigo 6. https://doi.org/10.1007/s10664-022-10166-x

Sonnentag, S. (1998). Expertise in professional software design: A process study. The Journal of Applied

Psychology, 83(5), 703–715. https://doi.org/10.1037/0021-9010.83.5.703

Sonnentag, S. (2000). Excellent Performance: The Role of Communication and Cooperation Processes. Applied

Psychology, 49(3), 483–497. https://doi.org/10.1111/1464-0597.00027

Spadini, D., Aniche, M., Bacchelli, A. (2018). PyDriller: Python framework for mining software repositories.

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 908–911. https://doi.org/10.1145/3236024.3264598

Vidoni, M. (2022). A systematic process for Mining Software Repositories: Results from a systematic literature

review. Information and Software Technology, 144, 106791. https://doi.org/10.1016/j.infsof.2021.106791

Weimar, E., Nugroho, A., Visser, J., Plaat, A. (2013). Towards high performance software teamwork.

Proceedings of the 17th International Conference on Evaluation and Assessment in Software Engineering, 212–

215. https://doi.org/10.1145/2460999.2461030

Whitehead, J., Mistrík, I., Grundy, J., van der Hoek, A. (2010). Collaborative Software Engineering: Concepts

and Techniques. Em I. Mistrík, J. Grundy, A. Hoek, J. Whitehead (Orgs.), Collaborative Software Engineering

(p. 1–30). Springer. https://doi.org/10.1007/978-3-642-10294-3_1

World Economic Forum. (2020). The Future of Jobs Report 2020.

http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf

Wu, H., Shi, L., Chen, C., Wang, Q., Boehm, B. (2016). Maintenance Effort Estimation for Open Source

Software: A Systematic Literature Review. 2016 IEEE International Conference on Software Maintenance and

Evolution (ICSME), 32–43. https://doi.org/10.1109/ICSME.2016.87

