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ABSTRACT 

 
The paper focuses on some logical and epistemological aspects of 
the notion of computation. The first part questions the Church-
Turing thesis as a fundamental principle concerning the limits of 
computation and some of its consequences for Philosophy of Mind 
and Cognitive Science. The second part discusses one of the main 
presumptions of the traditional conception of computability, 
namely, its reliance on the absolute character of classical logic 
which is taken as an underlying framework. 

 

 

 

 The aim of this paper is twofold. First, I shall present some shortcomings of 

the standard conception of computation based on what was termed Church´s 

Thesis, i.e., the claim that the class of functions which can be computed by 

machines is identical to the class of functions that can be computed by Turing 

machines. Second, I shall emphatically point to a further theoretical limitation of 

our current, orthodox conception of computation, namely, its assumption of 

classical logic as the definitive background from which one could decide what 

machines can compute. Finally, I shall briefly examine some of the consequences of 

these two lines of criticism to Philosophy of Mind and to Cognitive Science. The 

inheritance of Church´s Thesis as well as of the assumption of classical logic as an 

absolute constraint to machine computation seem to have originated a myth - the 

myth that Turing´s article of 1936 sets forth once and for all the limits of what any 

machine can compute. Such a mythical interpretation of Turing´s conception of 

computation also gives rise to endless discussions concerning the existence of non-

computable cognitive activities and possible asymmetries between minds and 

machines or human brains and machines. Examples of the inheritance of this 

mythical red herring are the work of John Lucas (1961) and, more recently, of 

Roger Penrose (1989, 1994). Furthermore, I suggest that philosophers of mind and 

cognitive scientists were too hasty in dispensing with the physical-symbol classical 
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cognitivist approach to Artificial Intelligence. As we shall see, the rejection of the 

view that the brain´s cognitive activity can be simulated by a computing machine 

takes for granted the theoretical limitations we refer to, and, without offering a 

supporting argument, shun the possibility that the human brain might be a non-

classical computing machine.  

 

 

 

I 

 

 What reasons can we avail ourselves to question the absolute character of 

Church´s Thesis? Is there computation beyond Turing-machine computation? Or is 

Turing computation the upper bound of our theoretical resources to conceive of 

computation? I shall press the claim that there is more to computation than what 

our classical framework deploys. Moreover, I shall outline what I consider to be 

some serious cracks in the orthodox conception of computation.  

 To begin with, Turing´s view of computation presented in his paper of 1936 

takes for granted that the range of computable functions coincides with what can 

be done by a human being acting in accordance to an algorithm. The algorithm is a 

mimicry of what human beings perform when they realize an effective procedure. 

But no one seems to have ever questioned why the limits of human computation 

and the limits of machine computation are to overlap. ( Wittgenstein in his 

Philosophical Investigations sec. 1096 ascertained that : “Turing Machines: These 

machines are humans who calculate”) Such a mimic conception of computation 

seems to be  implicitly encompassed by Church´s Thesis. The latter ascertains that 

the range of what is computable is identical to the range of what is computable by a 

Turing machine, and, in so doing, it implicitly endorses the view that no physical or 

notional device which could, in principle, compute beyond what human beings can 

compute. But we shall return to this point later on. 

 Turing was aware that his conception of computation quickly led to what 

seemed to be an insurmountable limitation, i.e., the problem of uncomputable 

functions. For example, his conception of computation was restricted to the set of 

the integers; real numbers were to be excluded as uncomputable. Moreover, there 

were uncomputable functions even amongst the integers, namely, his famous 

“halting function” which gave rise to his Halting Theorem. The recognition of such 

constraints seems to be the leitmotiv of Turing´s Ph.D. thesis, published in 1939 

and yet systematically overlooked by contemporary cognitive scientists. In this 

thesis Turing introduced what he called “oracle-machines” or O-Machines, i.e., 
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ordinary Turing Machines augmented with a primitive operation set to return the 

value of uncomputable functions on the integers. Nonetheless, Turing has never 

provided an explanation of how an O-machine was supposed to perform its 

operation: oracles were black boxes. In neither case (1936, 1939) does Turing offer 

a discussion of what mechanisms should occupy these black boxes.  

 Contemporary cognitive scientists would rather not be reminded of the quick 

boundaries of the orthodox conception of computation. They leave this task to the 

apocaliptical knights who wish to proclaim the failure of the mechanical model of 

mentality. Still, many of the theoretical conundrums raised by the issue of the non-

algorithmicality of some human cognitive functions could be avoided if we eschew 

the orthodox interpretation of Church´s Thesis. I believe such a task begins to be 

accomplished, and that, to such a goal, emerging work on alternative conceptions 

of computation is of paramount importance. No less important is the idea that the 

traditional notion of computation starts to be shaken, both by conceptual and 

technological  changes. 

 Let us consider, for instance, some alternatives to discrete, Turing-machine 

computation. In an influential paper, Copeland (1997) calls attention upon the 

recent revival of analog computing machines as well as the role of analogical 

representation. There are analog machines which cannot be modeled as Turing 

Machines. However, such analog machines can perform computations which cannot 

be accomplished by Turing Machines.  

 How do such analog machines work? To begin with, they differ of Turing 

Machines so long as they process analog representations. Analogical is any 

representation whose structure corresponds to that of which it represents. For 

instance, the longer a line on a map, the longer the road line it represents. 

Following the same strand, numerical quantities can be represented by potential 

difference in an electric analog computer. But the importance of analogical 

representation and of analog computers strikes us once they allow us to build 

machines which can perform computations which cannot be carried out by Turing 

machines. Copeland (1997) provides an example of such an analog computer, an 

idealized, notional machine (as are Turing machines) he labels M1.  

 M1 is devised to represent continuously valued physical magnitudes; so, let 

us suppose that M1 represents electrical charges and that any real number can be 

represented by some quantity of charge. M1 is a simple device, with a very simple 

programmable control structure. When the representation of a real number x is 

presented as input, M1 delivers a representation of 3x as output. Since x may be 

either a computable number or an uncomputable number, M1 computes an 

uncomputable function.  
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 The action of M1 can only be approximately simulated by a Turing machine if 

for any real number x and for any integer k, some Turing machine provides the first 

k places of a decimal representation of x and the first k places of 3x. But even the 

possibility of an approximation between M1 and a Turing machine is highly 

questionable, for it presupposes a demonstration that the action of an analogue 

computer can always be described and simulated on a digital machine. Such a 

demonstration, as far as I know, has not been attained so far. So viewed, M1 is a 

typical example that there may exist computations which are not carried out by 

Turing machines. Or, in other words, the notional existence of a machine such as 

M1 is a counterexample to Church´s Thesis. 

 In addition to analogue computers, connectionism can also provide examples 

of computation over real numbers which break away from Church´s Thesis. For 

reasons of space, I shall not revise the available literature on this topic, though it is 

fair at least to mention some who have taken the subject-matter seriously:  

McClelland and Rumelhart (1986), Smolensky (1988), Garzon & Franklin (1989),  

Wolpert & McLennan (1993), Siegelmann & Sontag (1994), and Korb (1996).  

 It would be enough to refer to analogue computation and to connectionism 

as providing vivid examples that machine computation cannot be taken as synonym 

of Turing-machine computation. However, there is another line of attack to 

Church´s Thesis which is worth mentioning. At the outset of this section, I have 

emphasized that one of the main assumptions of Turing´s notion of computation is 

the implicit equation between the limits of human and machine computation. We 

may suppose that such an implicit equation is blurred once we consider quantum 

computation. The speed of quantum computation cannot be attained by any human 

being. In this sense, quantum computation breaks away from orthodox 

computation, but only in this sense: the uncomputability of the halting function 

does remain in quantum computation despite the increase in velocity. The same 

applies to all classical limitations pointed by Turing. 

 

 

 

II 

 

 We shall now turn to a brief examination of one of the main assumptions of 

the orthodox conception of computation, namely, the absolute character of the 

standard recursion theory and of the framework provided by classical logic. Surely 

classical logic was the paradigm of the thirties and the forties, but from that it does 

not follow that classical logic should be taken as an absolute presumption when one 
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conceives of computation nowadays. Why can´t we rethink the orthodox notion of 

computation in the light of non-classical logic? 

 The absolutist character of orthodox computation and of classical logic go 

hand in hand. But once we abandon such an assumption we may also discard some 

classical, orthodox limitations to computation which fill out our traditional, 

cherished textbooks. The most striking result which emerges from the rejection of 

classical logic as an absolutist paradigm is the possibility of devising alternatives to 

the Halting Theorem.  

 In a former paper of mine (Teixeira & Sarmento, 1997) I have shown that 

by using DaCosta´s paraconsistent logic C1+ it is possible to ascertain the 

existence of an algorithm for the problem of non-terminating computations. Our 

claim for the existence of a Halting Algorithm can either be envisaged as an extra 

pattern of reasoning of classical logic allowed by C1+ or as a particular application 

of C1+  - an application which shows that Turing´s Halting Theorem is valid only on 

the assumption that human reasoning can be fully represented by classical logic.  

 Let us recall the statement of the Halting Theorem and its proof : Given an 

arbitrary Turing Machine program P and an arbitrary set of input data set I , there 

does not exist a single Turing Machine program that halts after a finite number of 

steps, and that will tell us if P will ever finish processing the input I . 

 Proof: Once computable sequences are enumerable, consider an as being 

the nth. computable sequence and φn(m) the mth. representation in an . Be β the 

sequence taking  

1-φn(n) as its nth. representation. Once β is computable there does not exist a 

number k such that 1-φn(n)= φ k(n) for every n. If we take n=k it follows that 

1=2φk(k). Absurd. Therefore, computable sequences are not enumerable. 

 A more intuitive understanding of the Halting Theorem and of its proof can 

be given by the following example. Let us consider a computation on a natural 

number n. If we call such a computation C(n) we can conceive it as providing a 

family of computations where there is a separate computation for each natural 

number, 0,1,2,3...i.e., the computations C(0),C(1), C(2),C(3)...C(n) are the action 

of some Turing Machine (TM) on the number n, taken as the machine input. 
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 Suppose  we have some computational procedure A which, when it 

terminates provides a demonstration that a computation such as C(n) does not ever 

stop. If in any particular case A itself ever comes to an end, this would provide us 

with a demonstration that the particular computation that it refers to does not ever 

stop. Furthermore, we say that A is sound if it does not give us wrong answers. For, 

if A were unsound, then it would erroneously assert that the computation C(n) does 

not ever terminate when in fact it does. But if this is the case, the performing of the 

actual computation C(n) would eventually lead to a refutation of A.  

 In order for A to apply to computations generally, we shall need a way of 

coding all the different computations C(n) so that A can use this coding for its 

action. All the possible different computations C can in fact be listed as: 

 C0,C1,C2,C3,C4 ..., 

and we can refer to Cq as the qth.computation. When such a computation is applied 

to a particular number n we shall write: 

 C0(n),C1(n),C2(n),C3(n),C4(n),.... 

 This ordering can be viewed as a numerical ordering of computer programs. 

Moreover, this listing is computable i.e., there is a single computation C• which 

gives us Cq when it is presented with q, or, in other words, the computation C• acts 

on the pair of numbers, q,n (q followed by n) to give Cq(n). 

 The procedure A can now be thought of as a particular computation that, 

when presented with the pair of numbers q,n, tries to ascertain that the 

computation Cq(n) will never  halt. Thus, when the computation A terminates we 

have a demonstration that Cq(n) does not halt. Being dependent on the two 

numbers q and n, the computation that A performs can be written A(q,n), and we 

have: 

 (1) If A(q,n) stops, then Cq(n) does not stop. 

 Now let us consider the particular statements (1) for which q is put equal to 

n. With q equal to n, we now have: 

 (2) If A(n,n) stops, then Cn(n) does not stop. 
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 We notice that A(n,n) depends upon just one number, n, not two, so it must 

be one of the computations C0,C1,C2,C3.. (as applied to n), since this was 

supposed to be a listing of all the computations which can be performed on a single 

natural number n. Let us suppose that it is in fact Ck, so we have: 

 (3) A(n,n)= Ck(n). 

 Now examine the particular value n=k. From (3) we have: 

 (4) A(k,k) = Ck(k). 

and from (2), with n=k 

 (5) If A(k,k) stops, then Ck(k) does not stop. 

 Substituting (4) in (5) we find: 

 (6) If Ck(k) stops, then Ck(k) does not stop. 

 From this we deduce that the computation Ck(k) does not in fact stop, for, if 

it did, then it does not, according to (6). But A(k,k) cannot stop either, since by (4) 

it is the same as Ck(k). Therefore, our procedure A cannot ascertain that this 

particular computation Ck(k) does not stop even though it does not. 

 According to such a presentation the unsolvability of Turing´s Halting 

Problem is derived from the second part of Cantor's diagonal slash: 

 (5) - If A(k,k) stops, then Ck(k) does not stop. 

 Substituting (4) in (5) we find: 

 (6) - If Ck(k) stops, then Ck(k) does not stop. 

 Furthermore, we saw that from this we must deduce that the computation 

Ck(k) does not in fact stop. For if it did then it does not, according to (6). But 

A(k,k) cannot stop either, since by  

 (4) A(k,k)= Ck(k) 

it is the same as Ck(k). Thus our procedure A is incapable of ascertaining that this 

particular computation Ck(k) does not stop even though it does not. The existence 

of A is denied for it implies a contradiction. Since A(k,k)= Ck(k) we can write: 

 (7) If A(k,k) stops, Ck(k) does not stop.  

 (8) If A(k,k) does not stop, Ck(k) does not stop. 
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(7) and (8) can be rewritten in the form: 

 (9) A is sound, 

 and 

 (10) A is not sound. 

 A cannot exist for it encompasses a contradiction. 

 Nevertheless, it is agreed on this formulation of Turing´s Halting Problem 

that 

 (11) If A is sound A(k,k) stops and Ck(k) does not stop; A(k,k)  

 does not stop and Ck(k) stops. 

 Now if we consider such a formulation of Turing´s Halting Problem in the 

light of paraconsistent reasoning (and by contrast to classical logic) one cannot 

infer that 

 (12) If A(k,k) does not stop, Ck(k) does not stop. 

 Since in the light of paraconsistent reasoning one cannot infer the truth of 

(12) from (9) and (10) we can ascertain that the existence of A is possible. Such an 

ontological assertion is supported by paraconsistent reasoning derived from C1+ 

which, by contrast to classical logic, does not lead to trivialization in the presence of 

contradictions.   

 As it is also remarked by Copeland (1997b), the proof of the Halting 

Theorem proceeds by  reductio but, in a paraconsistent setting the derivation of a 

contradiction is insufficient for rejecting the assumption that leads to it, namely, the 

assumption that there may exist  a Turing machine capable of computing the 

halting function. Such a result displays a further horizon for computing theory, i.e., 

the possibility of developing the new emerging field of paraconsistent computability 

theory.  
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III 

 

 Since C1+  is mechanisable (for it is axiomatisable) we can plausibly sustain 

that mental processes involved in solving the problem of terminating/non-

terminating computations may result from algorithmic procedures. Once we can 

represent our own reasoning pointing to the existence of a Halting Algorithm as the 

result of a mechanical process we can shun the alleged impossibility of modeling 

cognition without having to appeal to some piece of “intuitive” understanding which 

would remain inexplicable - a cornerstone assumption which underlies the thesis 

that there are non-computable or non-algorithmic processes in human cognition. 

This mythical red herring marshaled by John Lucas (1961) and by Roger Penrose 

(1989, 1994) as the main plank to criticize the physical-symbol classical cognitivist 

approach to Artificial Intelligence cannot be sustained unless one gullibly ascertain 

its two major assumptions: that human minds (or brains) are classical logical 

machines and that machine computation can be equated to Turing-machine 

computation. Perhaps human minds are very powerful formal systems - systems 

whose strength is likely to be derivable from their intrinsic inconsistency which 

allows them to compute more than the classical systems they construct. Such a 

powerful and inconsistent formal system manifests in what is currently labeled 

common-sense. 
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