

SOME REMARKS ON THE LOGIC AND EPISTEMOLOGY

OF COMPUTATION

João de Fernandes Teixeira

Universidade Federal de São Carlos, Brazil
jteixe@terra.com.br

ABSTRACT

The paper focuses on some logical and epistemological aspects of
the notion of computation. The first part questions the Church-
Turing thesis as a fundamental principle concerning the limits of
computation and some of its consequences for Philosophy of Mind
and Cognitive Science. The second part discusses one of the main
presumptions of the traditional conception of computability,
namely, its reliance on the absolute character of classical logic
which is taken as an underlying framework.

 The aim of this paper is twofold. First, I shall present some shortcomings of

the standard conception of computation based on what was termed Church´s

Thesis, i.e., the claim that the class of functions which can be computed by

machines is identical to the class of functions that can be computed by Turing

machines. Second, I shall emphatically point to a further theoretical limitation of

our current, orthodox conception of computation, namely, its assumption of

classical logic as the definitive background from which one could decide what

machines can compute. Finally, I shall briefly examine some of the consequences of

these two lines of criticism to Philosophy of Mind and to Cognitive Science. The

inheritance of Church´s Thesis as well as of the assumption of classical logic as an

absolute constraint to machine computation seem to have originated a myth - the

myth that Turing´s article of 1936 sets forth once and for all the limits of what any

machine can compute. Such a mythical interpretation of Turing´s conception of

computation also gives rise to endless discussions concerning the existence of non-

computable cognitive activities and possible asymmetries between minds and

machines or human brains and machines. Examples of the inheritance of this

mythical red herring are the work of John Lucas (1961) and, more recently, of

Roger Penrose (1989, 1994). Furthermore, I suggest that philosophers of mind and

cognitive scientists were too hasty in dispensing with the physical-symbol classical

1

cognitivist approach to Artificial Intelligence. As we shall see, the rejection of the

view that the brain´s cognitive activity can be simulated by a computing machine

takes for granted the theoretical limitations we refer to, and, without offering a

supporting argument, shun the possibility that the human brain might be a non-

classical computing machine.

I

 What reasons can we avail ourselves to question the absolute character of

Church´s Thesis? Is there computation beyond Turing-machine computation? Or is

Turing computation the upper bound of our theoretical resources to conceive of

computation? I shall press the claim that there is more to computation than what

our classical framework deploys. Moreover, I shall outline what I consider to be

some serious cracks in the orthodox conception of computation.

 To begin with, Turing´s view of computation presented in his paper of 1936

takes for granted that the range of computable functions coincides with what can

be done by a human being acting in accordance to an algorithm. The algorithm is a

mimicry of what human beings perform when they realize an effective procedure.

But no one seems to have ever questioned why the limits of human computation

and the limits of machine computation are to overlap. (Wittgenstein in his

Philosophical Investigations sec. 1096 ascertained that : “Turing Machines: These

machines are humans who calculate”) Such a mimic conception of computation

seems to be implicitly encompassed by Church´s Thesis. The latter ascertains that

the range of what is computable is identical to the range of what is computable by a

Turing machine, and, in so doing, it implicitly endorses the view that no physical or

notional device which could, in principle, compute beyond what human beings can

compute. But we shall return to this point later on.

 Turing was aware that his conception of computation quickly led to what

seemed to be an insurmountable limitation, i.e., the problem of uncomputable

functions. For example, his conception of computation was restricted to the set of

the integers; real numbers were to be excluded as uncomputable. Moreover, there

were uncomputable functions even amongst the integers, namely, his famous

“halting function” which gave rise to his Halting Theorem. The recognition of such

constraints seems to be the leitmotiv of Turing´s Ph.D. thesis, published in 1939

and yet systematically overlooked by contemporary cognitive scientists. In this

thesis Turing introduced what he called “oracle-machines” or O-Machines, i.e.,

2

ordinary Turing Machines augmented with a primitive operation set to return the

value of uncomputable functions on the integers. Nonetheless, Turing has never

provided an explanation of how an O-machine was supposed to perform its

operation: oracles were black boxes. In neither case (1936, 1939) does Turing offer

a discussion of what mechanisms should occupy these black boxes.

 Contemporary cognitive scientists would rather not be reminded of the quick

boundaries of the orthodox conception of computation. They leave this task to the

apocaliptical knights who wish to proclaim the failure of the mechanical model of

mentality. Still, many of the theoretical conundrums raised by the issue of the non-

algorithmicality of some human cognitive functions could be avoided if we eschew

the orthodox interpretation of Church´s Thesis. I believe such a task begins to be

accomplished, and that, to such a goal, emerging work on alternative conceptions

of computation is of paramount importance. No less important is the idea that the

traditional notion of computation starts to be shaken, both by conceptual and

technological changes.

 Let us consider, for instance, some alternatives to discrete, Turing-machine

computation. In an influential paper, Copeland (1997) calls attention upon the

recent revival of analog computing machines as well as the role of analogical

representation. There are analog machines which cannot be modeled as Turing

Machines. However, such analog machines can perform computations which cannot

be accomplished by Turing Machines.

 How do such analog machines work? To begin with, they differ of Turing

Machines so long as they process analog representations. Analogical is any

representation whose structure corresponds to that of which it represents. For

instance, the longer a line on a map, the longer the road line it represents.

Following the same strand, numerical quantities can be represented by potential

difference in an electric analog computer. But the importance of analogical

representation and of analog computers strikes us once they allow us to build

machines which can perform computations which cannot be carried out by Turing

machines. Copeland (1997) provides an example of such an analog computer, an

idealized, notional machine (as are Turing machines) he labels M1.

 M1 is devised to represent continuously valued physical magnitudes; so, let

us suppose that M1 represents electrical charges and that any real number can be

represented by some quantity of charge. M1 is a simple device, with a very simple

programmable control structure. When the representation of a real number x is

presented as input, M1 delivers a representation of 3x as output. Since x may be

either a computable number or an uncomputable number, M1 computes an

uncomputable function.

3

 The action of M1 can only be approximately simulated by a Turing machine if

for any real number x and for any integer k, some Turing machine provides the first

k places of a decimal representation of x and the first k places of 3x. But even the

possibility of an approximation between M1 and a Turing machine is highly

questionable, for it presupposes a demonstration that the action of an analogue

computer can always be described and simulated on a digital machine. Such a

demonstration, as far as I know, has not been attained so far. So viewed, M1 is a

typical example that there may exist computations which are not carried out by

Turing machines. Or, in other words, the notional existence of a machine such as

M1 is a counterexample to Church´s Thesis.

 In addition to analogue computers, connectionism can also provide examples

of computation over real numbers which break away from Church´s Thesis. For

reasons of space, I shall not revise the available literature on this topic, though it is

fair at least to mention some who have taken the subject-matter seriously:

McClelland and Rumelhart (1986), Smolensky (1988), Garzon & Franklin (1989),

Wolpert & McLennan (1993), Siegelmann & Sontag (1994), and Korb (1996).

 It would be enough to refer to analogue computation and to connectionism

as providing vivid examples that machine computation cannot be taken as synonym

of Turing-machine computation. However, there is another line of attack to

Church´s Thesis which is worth mentioning. At the outset of this section, I have

emphasized that one of the main assumptions of Turing´s notion of computation is

the implicit equation between the limits of human and machine computation. We

may suppose that such an implicit equation is blurred once we consider quantum

computation. The speed of quantum computation cannot be attained by any human

being. In this sense, quantum computation breaks away from orthodox

computation, but only in this sense: the uncomputability of the halting function

does remain in quantum computation despite the increase in velocity. The same

applies to all classical limitations pointed by Turing.

II

 We shall now turn to a brief examination of one of the main assumptions of

the orthodox conception of computation, namely, the absolute character of the

standard recursion theory and of the framework provided by classical logic. Surely

classical logic was the paradigm of the thirties and the forties, but from that it does

not follow that classical logic should be taken as an absolute presumption when one

4

conceives of computation nowadays. Why can´t we rethink the orthodox notion of

computation in the light of non-classical logic?

 The absolutist character of orthodox computation and of classical logic go

hand in hand. But once we abandon such an assumption we may also discard some

classical, orthodox limitations to computation which fill out our traditional,

cherished textbooks. The most striking result which emerges from the rejection of

classical logic as an absolutist paradigm is the possibility of devising alternatives to

the Halting Theorem.

 In a former paper of mine (Teixeira & Sarmento, 1997) I have shown that

by using DaCosta´s paraconsistent logic C1+ it is possible to ascertain the

existence of an algorithm for the problem of non-terminating computations. Our

claim for the existence of a Halting Algorithm can either be envisaged as an extra

pattern of reasoning of classical logic allowed by C1+ or as a particular application

of C1+ - an application which shows that Turing´s Halting Theorem is valid only on

the assumption that human reasoning can be fully represented by classical logic.

 Let us recall the statement of the Halting Theorem and its proof : Given an

arbitrary Turing Machine program P and an arbitrary set of input data set I , there

does not exist a single Turing Machine program that halts after a finite number of

steps, and that will tell us if P will ever finish processing the input I .

 Proof: Once computable sequences are enumerable, consider an as being

the nth. computable sequence and φn(m) the mth. representation in an . Be β the

sequence taking

1-φn(n) as its nth. representation. Once β is computable there does not exist a

number k such that 1-φn(n)= φ k(n) for every n. If we take n=k it follows that

1=2φk(k). Absurd. Therefore, computable sequences are not enumerable.

 A more intuitive understanding of the Halting Theorem and of its proof can

be given by the following example. Let us consider a computation on a natural

number n. If we call such a computation C(n) we can conceive it as providing a

family of computations where there is a separate computation for each natural

number, 0,1,2,3...i.e., the computations C(0),C(1), C(2),C(3)...C(n) are the action

of some Turing Machine (TM) on the number n, taken as the machine input.

5

 Suppose we have some computational procedure A which, when it

terminates provides a demonstration that a computation such as C(n) does not ever

stop. If in any particular case A itself ever comes to an end, this would provide us

with a demonstration that the particular computation that it refers to does not ever

stop. Furthermore, we say that A is sound if it does not give us wrong answers. For,

if A were unsound, then it would erroneously assert that the computation C(n) does

not ever terminate when in fact it does. But if this is the case, the performing of the

actual computation C(n) would eventually lead to a refutation of A.

 In order for A to apply to computations generally, we shall need a way of

coding all the different computations C(n) so that A can use this coding for its

action. All the possible different computations C can in fact be listed as:

 C0,C1,C2,C3,C4 ...,

and we can refer to Cq as the qth.computation. When such a computation is applied

to a particular number n we shall write:

 C0(n),C1(n),C2(n),C3(n),C4(n),....

 This ordering can be viewed as a numerical ordering of computer programs.

Moreover, this listing is computable i.e., there is a single computation C• which

gives us Cq when it is presented with q, or, in other words, the computation C• acts

on the pair of numbers, q,n (q followed by n) to give Cq(n).

 The procedure A can now be thought of as a particular computation that,

when presented with the pair of numbers q,n, tries to ascertain that the

computation Cq(n) will never halt. Thus, when the computation A terminates we

have a demonstration that Cq(n) does not halt. Being dependent on the two

numbers q and n, the computation that A performs can be written A(q,n), and we

have:

 (1) If A(q,n) stops, then Cq(n) does not stop.

 Now let us consider the particular statements (1) for which q is put equal to

n. With q equal to n, we now have:

 (2) If A(n,n) stops, then Cn(n) does not stop.

6

 We notice that A(n,n) depends upon just one number, n, not two, so it must

be one of the computations C0,C1,C2,C3.. (as applied to n), since this was

supposed to be a listing of all the computations which can be performed on a single

natural number n. Let us suppose that it is in fact Ck, so we have:

 (3) A(n,n)= Ck(n).

 Now examine the particular value n=k. From (3) we have:

 (4) A(k,k) = Ck(k).

and from (2), with n=k

 (5) If A(k,k) stops, then Ck(k) does not stop.

 Substituting (4) in (5) we find:

 (6) If Ck(k) stops, then Ck(k) does not stop.

 From this we deduce that the computation Ck(k) does not in fact stop, for, if

it did, then it does not, according to (6). But A(k,k) cannot stop either, since by (4)

it is the same as Ck(k). Therefore, our procedure A cannot ascertain that this

particular computation Ck(k) does not stop even though it does not.

 According to such a presentation the unsolvability of Turing´s Halting

Problem is derived from the second part of Cantor's diagonal slash:

 (5) - If A(k,k) stops, then Ck(k) does not stop.

 Substituting (4) in (5) we find:

 (6) - If Ck(k) stops, then Ck(k) does not stop.

 Furthermore, we saw that from this we must deduce that the computation

Ck(k) does not in fact stop. For if it did then it does not, according to (6). But

A(k,k) cannot stop either, since by

 (4) A(k,k)= Ck(k)

it is the same as Ck(k). Thus our procedure A is incapable of ascertaining that this

particular computation Ck(k) does not stop even though it does not. The existence

of A is denied for it implies a contradiction. Since A(k,k)= Ck(k) we can write:

 (7) If A(k,k) stops, Ck(k) does not stop.

 (8) If A(k,k) does not stop, Ck(k) does not stop.

7

(7) and (8) can be rewritten in the form:

 (9) A is sound,

 and

 (10) A is not sound.

 A cannot exist for it encompasses a contradiction.

 Nevertheless, it is agreed on this formulation of Turing´s Halting Problem

that

 (11) If A is sound A(k,k) stops and Ck(k) does not stop; A(k,k)

 does not stop and Ck(k) stops.

 Now if we consider such a formulation of Turing´s Halting Problem in the

light of paraconsistent reasoning (and by contrast to classical logic) one cannot

infer that

 (12) If A(k,k) does not stop, Ck(k) does not stop.

 Since in the light of paraconsistent reasoning one cannot infer the truth of

(12) from (9) and (10) we can ascertain that the existence of A is possible. Such an

ontological assertion is supported by paraconsistent reasoning derived from C1+

which, by contrast to classical logic, does not lead to trivialization in the presence of

contradictions.

 As it is also remarked by Copeland (1997b), the proof of the Halting

Theorem proceeds by reductio but, in a paraconsistent setting the derivation of a

contradiction is insufficient for rejecting the assumption that leads to it, namely, the

assumption that there may exist a Turing machine capable of computing the

halting function. Such a result displays a further horizon for computing theory, i.e.,

the possibility of developing the new emerging field of paraconsistent computability

theory.

8

III

 Since C1+ is mechanisable (for it is axiomatisable) we can plausibly sustain

that mental processes involved in solving the problem of terminating/non-

terminating computations may result from algorithmic procedures. Once we can

represent our own reasoning pointing to the existence of a Halting Algorithm as the

result of a mechanical process we can shun the alleged impossibility of modeling

cognition without having to appeal to some piece of “intuitive” understanding which

would remain inexplicable - a cornerstone assumption which underlies the thesis

that there are non-computable or non-algorithmic processes in human cognition.

This mythical red herring marshaled by John Lucas (1961) and by Roger Penrose

(1989, 1994) as the main plank to criticize the physical-symbol classical cognitivist

approach to Artificial Intelligence cannot be sustained unless one gullibly ascertain

its two major assumptions: that human minds (or brains) are classical logical

machines and that machine computation can be equated to Turing-machine

computation. Perhaps human minds are very powerful formal systems - systems

whose strength is likely to be derivable from their intrinsic inconsistency which

allows them to compute more than the classical systems they construct. Such a

powerful and inconsistent formal system manifests in what is currently labeled

common-sense.

9

10

REFERENCES

Copeland, B.J. (1997) - “The broad conception of Computation” - American
Behavioral Scientist, 40: 6 pp.690-716.

Copeland, B.J. (1997b) - “On the relativity of computability” (forthcoming).

Garzon, M. & Franklin, S. (1989) - “Neural computability: II. Abstract” -
Proceedings of the IJCNN - International Joint Conference on Neural Networks,
I, pp.631-637.

Korb,K.B. (1996)- “Symbolicism and connectionism: AI back at a joint point”
In D.L. Dowe, K.B. Korb & J.J. Oliver (eds) - Information, statistic and induction
in science, Singapore: World Scientific pp.247-257

Lucas, J.R. (1961) - “Minds, machines and Gödel” Philosophy 36, pp.120-124.

Penrose, R.(1989) - The Emperor´s New Mind , Oxford U.K., Oxford U.P.

Penrose, R. (1994) - Shadows of the mind: A search for the missing science
of consciousness, Oxford U.K., Oxford U.P.

Rumelhart, D.E., McClelland, J.L. & the PDP Research Group (1986) - Parallel
distributed processing: Explorations in the microstructure of cognition,
Vol. I, Foundations. Cambridge: The MIT Press.

Siegelmann, H.T. & Sontag, E.D. (1994) - “Analog computation via neural
networks” - Theoretical Computer Science, 131 pp. 331-360.

Smolensky, P. (1988) - “On the proper treatment of connectionism” -
Behavioral and Brain Sciences, 11 pp. 1-23.

Teixeira, J.de F. & Sarmento, G. - “Solving Turing´s Halting Problem?”
(forthcoming)

Turing, A. M. (1936) - “On computable numbers, with an application to the
Entscheidungsproblem” - Proceedings of the London Mathematical Society,
42, pp.230-65.

Turing, A.M. (1939) - Systems of Logic Based on Ordinals. Proceedings of the
London Mathematical Society, 45, pp.161-228.

Wolpert, D.H. & McLennan, B.J. (1993) - A computationally universal field
computer that is purely linear - (Technical Report 93-09-056) Santa Fe,
NM: Santa Fe Institute.

