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Abstract 

 

Computational processes in cellular networks are supported by 
complex molecular and ionic mechanisms, composing a 
distributed semi-parallel architecture where each processing unit 
has partial information about the others. How do cognitive 
functions of organisms emerge from this kind of computational 
process? The concept of Cournotian Process characterizes the 
kind of interaction that occurs between multiple independent 
factors eliciting the emergence of a common product. As in the 
classical concept of chance advanced by Cournot (1838), the 
meeting of independent causal lines (i.e. semi-deterministic 
processes) generates a result that cannot be described as a 
function of the factors, but as a relational collective. In this work 
we suggest that the resulting cognitive functions should be 
described by mathematical relations instead of mathematical 
functions, and that the inference from brain structures to mental 
activity is a semantic reasoning based on similarities. 

 

Key Words: emergence, Cournotian processes, cognitive functions, relational 

collectives, similarity. 
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1 - Introduction 

 

 According to Information and Systems Theories, an empirical measurement 

involves an interaction between an observer, in some extent also a receiver of 

information, and a physical system, taken as the source of information. The 

physical system has a temporal dynamics that can be partially captured by means 

of a series of measurements.  

 In order to explain and predict phenomena, the observer elaborates 

mathematical theories, aimed to cover the temporal dynamics. In the classical 

deterministic framework, the dynamics is assumed to be completely described by 

mathematical functions (one-to-one or many-to-one mapping of first-order 

relations), which could in principle be computed by a single Turing machine.  

 In this paper, we argue that biological and cognitive processes occurring in 

systems composed of partially independent units should be conceived as 

mathematical relations (including one-to-many mappings) called Cournotian 

Processes. Initially, we distinguish mathametical relations from functions, in the 

context of their usage in empirical science. 

The classical Newtonian schema of causation inspired the functional concept 

of causality (Mackie, 1972): 

              Effect =  f (Cause 1, Cause 2, Cause 3,....) 

where f specifies how the set of causes relate to the effect. Causes and Effect are 

conceived as physical changes that occur in the system, relative to its initial and 

boundary conditions. 

Mathematical functions describe a univocal relation between the causes and 

the effect. How do the causes relate to each other? There are two possibilities: 

a) they are previously correlated, such that there is a function F that deduces 

f; 

b) they are not previously related, and therefore a function F that deduces f 

does not exist previously; i.e., f comes to existence only at the moment 

when the causes interact. This possibility is illustrated by the concept of 
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“chance” as an absence of previous correlation of causal chains, according to 

the proposal advanced by A. Cournot (1838).  

  Biological processes in a cell (e.g. metabolic networks) or in the whole 

organism (e.g., different tissues and systems working autonomously) are parallel in 

a stronger sense than in classical computation, since they contain simultaneous 

phenomena that cannot be composed or decomposed in sequential processes. This 

aspect has been recognized in several approaches, as probability theory, fuzzy 

logic, and non-linear thermodynamics of dissipative structures.   

Another typical factor present in biological computation is that the mechanisms 

amenable to be described by algorithms have a property of self-organization, 

conferring a spontaneity to their dynamic evolution. A central aspect of such 

processes, is the availability, for each parallel processing unit, of information about 

the states of the other units. However, because of architectural and (possibly) 

general physical constraints (as e.g. the finite velocity of signal transmission), 

information about the system available for each unit is partial. The global, self-

organizing processes that characterize such systems is based on the partial 

information that each processing unit has about the others. In this sense, self-

organization is also an internal learning process by which the parts of the system 

may increase their degree of communication and become more integrated. 

The motivation to develop our approach comes from difficulties in 

understanding cellular information processing in terms of classical Connectionism, 

and, with more reason, in terms of a sequential model. Weng, Bhalla and Ivenger 

(1999) note that, even in an extremely simplified approach, the arrangements of 

signaling molecules are similar to redundant functions, although their kinetic 

properties can be very different. The authors suggest that in the absence of 

complete knowledge of the quantitative parameters of these systems, it is possible 

to reach a rough perspective of their evolution by analyzing the linear pathways.  

A serious difficulty found in this strategy is the interaction of each linear 

pathway with other pathways, sometimes from distant regions of the cell. This 

branching of the pathways into molecular networks is not completely solved in the 

classical Connectionist model, where a network is analyzed into parallel connections 

between a large number of interconnected conventional processors, thus dividing 

the process in several threads (Hillis, 1985). The network then executes a parallel 

algorithm (Cormen, 2002, p. 688ff) that is more complex than the sequential ones, 

but still in the context of a classical Turing machine.  

As biological systems are able to process information independently of an 

external controlling agent, but depending on the capacity of communication 
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between the cells, Cournot's reasoning about the interaction of independent 

deterministic processes to generate a new, partially unpredictable phenomenon, 

seems to be a plausible approach to this biological spontaneity. His intuition was 

that a non-deterministic result could emerge from the interaction of deterministic 

processes that evolve independently of each other until the moment when they 

interact.  

This intuition is formalized here. First, we characterize a spatio-temporal 

process evolving in time, under the constraints of classical physics.  

 

 

 

2- Formalization of Dynamical Processes 

 

Consider a biophysical process P, consisting of sub-processes internal to the 

brain, their mutual interactions, and their interactions with the body and the 

environment. The system where P occurs is named S (it is, of course, larger than 

the brain). Also consider a cognitive process M that emerges from P.  

M strongly emerges from P in S IFF: 

1. There is a constructive method to apply the laws (L1, ..., Ln) that rule 

the evolution of S (i.e., the laws of physics, chemistry and biology), 

when the initial (S(0) = f) and boundary conditions (S(a) = k, S(b) = 

k’, etc.) are known; 

2. If E is a state of P, then the probability of obtaining a complete 

description of E from Li applied to S(t) = f*, keeping the boundary 

conditions constant (or computing all their variations and their 

consequences), is lower or equal to the probability of obtaining E from a 

simple random sampling. 

In other words, M is strongly emergent in S if the laws of the system cannot 

predict a state with more accuracy than by chance. This situation is colloquially 

expressed in the statement: “it was not possible to deduce the states of P based on 

the laws of S”. For instance, the process of memory retrieval possibly is strongly 

emergent relatively to brain activity, because the (complete) knowledge of the laws 

of neuroscience, together with (complete) knowledge of initial and boundary 

conditions, would not be sufficient to predict the memory trace that a subject is 

going to remember.  

Knowing the structural restrictions that rule the evolution of a system may 

help to predict what is going to happen, with a higher probability than by chance. 
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This possibility has been frequently used in scientific research in cognitive 

neurobiology; e.g., when genetically modified mice do not express a protein with a 

specific role in brain processes, it is possible to predict the corresponding deficit in 

mental functioning (see e.g. Mayford et al., 1996). In order to clarify how a 

structuralist view can contribute to the understanding of mental emergence, we 

begin by defining the concept of structure. 

A structure can be conceived as a model-theoretic set subject to some 

restrictions. More precisely, the definition of a structure requires the reference to a 

family of basic sets, possessing the elements under restriction. Such families of sets 

are called universes. The simplest structures, called mono-sorted, are those that 

possess only one universe.  As the universes correspond to classes of objects, it is 

usual to call a structure with n universes a many-sorted structure. For practical 

purposes, in empirical sciences, we use only enumerable structures (including, in 

some cases, infinite structures). 

Consider an enumerable structure A. It is possible to define an infinite 

number of structures having A as their universe. In order to define a specific 

structure E(A), some definitions are needed. For each n, let An denote the n-th 

Cartesian power product of A. P(B) is a set composed by all parts of any power set 

B (for B = A, A2 , ... etc.). Consider, for each h=1, ... n, the union of the sets: 

P(A1)  U ... U P(Ah)  U ... U   P(An)  

The union is indicated by A*. R belongs to A*, and then to one of the 

P(Ah)s, such that R is in Ah and, therefore, it can be identified with a relation with 

weight h. Observe that the union of the P(Ah)s is necessarily a disjunct one. If G 

pertains to Ah and Ak then G is a h-uple and, at the same time, a k-uple, what is 

impossible except if h=k. 

By fixing the condition that R is uniform, we obtain a function f with weight 

h-1. 

Re(E) e Fu(E) are the designed subsets of A*, respectively called the set of 

relations and the set of functions of the structure E(A). The constants of E(A) 

correspond to the case when the weight of the elements in Fu(E) is 0. The 

properties in E(A) correspond to the case when the weight of the elements in 

Re(E) is 1. Also, the Re(E)s with weight 0 are the sentences of E(A) (which are 

identified with probability values, or with truth value in the binary case). 

E(A) is characterized by the sequence (A, Re, Fu). The syntax of E(A) is 

composed by symbols and rules (drawn from set theory) that allow its construction. 

The semantics of E(A) is the set of rules that attribute meaning to elements of A, 
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to relations in Re(E) and to functions in Fu(E), and also attribute a probability 

value to its sentences, when they occur. 

We note that there is a large controversy about the “meaning of meaning” in 

the philosophy of language. In this paper we adopt the Tarskian theory, for which 

the meanings of terms and relations in one structure - the “object language”- are 

the corresponding elements and relations in an isomorphic structure - the “meta-

language”. 

 

 
 

3 - Dynamical Processes, Determinism and Randomness  

 

Consider a process generated by a mechanism d that heats a mercury 

column m in the interval (t0, t1). Among the properties that an observer can 

identify in this process is the temperature of m in t0 and t1, and other state 

variables of m. The elements d and m can be considered as belonging to a set B, 

where R(d,m) is the relation of d heating m, and P(m,t) is the temperature of m 

in the instant t. The structure E = B, R, P represents in a simplified way the state 

of the process of heating in a given instant (Lungarzo, 1970a, 1970b). 

Along time, it is possible for B to change, e.g., by adding a sample m’ of 

another material to the system heated by d. In this case, the set B is modified: 

{d,m}  {d,m,m’}. Analogously, also R is modified, since now d heats both m and 

m’. Therefore, also the structure of the system - besides its states - undergo a 

temporal evolution. In this case, it is necessary to formalize this situation using 

several sets, representing different universes.  

Given a sequence of sets B1, ..., Bn composed of objects, we define a 

many-sorted structure E, with Bi universes, as: 

( ) ( ) n...,1,i

p(i)1,...,j
i
j

n...,1,i

m(i)1,...,j
i
jn1 FRB...,,B

=

=

=

=
;;  

where: 

1. The sets  are finite; 

2. For each i{1, ..., n},  are relations (or properties) in  

3. For each i{1, ..., n},  are functions in a proper Cartesian 

product of sets 

An object   is a dynamical structure IFF:   

 iB
i
m(i)

i
1 R...,,R iB .

i
p(i)

i
1 F...,,F

qi in iB . i B...,,B
1
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1.  is a family of many-sorted structures {Et | tT}, being T a connected set 

of real numbers;  

2. All the Et are of the same kind, . 

3. For each t, the components (relations, functions) of Et are functions 

(eventually, constant functions) of t. 

A process is a ordered pair formed by a dynamical structure  and a closed 

finite interval of T. If P is a process, then  a<b, P = , [a, b]. By P(t) we indicate 

the dynamical structure Et, for the instant t [a,b]. As all the structures composing 

a process are of the same type , it can be called the process type. Such an 

uniformity does not block the possibility that a relation ceases to exist (in this case, 

it may be identified as a null relation , without changing .) 

P(t) denotes the state of the process in the instant t. The structure Et 

represents the configuration of the system in the instant t. Consider the process 

P=(, [a,b]); then, P(a) is the initial state of  P, and P(b) is the final state or 

result of P. 

A knowledge landscape C is the structure P, Ag, S where P is a process, Ag 

is a set of cognitive agents with potentially unlimited logical capabilities, and S is a 

set of sentences that contain sufficient information for the description of P. If P = , 

[a, b], then the process is deterministic IFF (Ag) (If  knows the initial state of 

P(a) with certainty, then the probability that  knows the result P(b) is 1). 

This is a purely epistemological definition of determinism. If the agents know 

the initial state with certainty, they are able to interpret all the sentences that 

describe this state and to deduce all the consequences from them; therefore they 

can calculate the results with maximum probability. As an example of deterministic 

process, let P be the process of feeding a computer with the information necessary 

to factorize the number 2142 into primes, using Euclid algorithm and showing the 

result on the screen. In ideal conditions (without mechanical or electronic failures) 

P is deterministic. Of course, the prediction of the final state depends on the 

information contained in S. This information can change in another landscape. 

A process is not-deterministic or random when there is at least one agent 

for whom the probability of knowing P(b), given P(a) in C, is lower than 1. 

Intuitively, it is possible to quantify randomicity of a process, based on the quantity 

of agents failing to predict P(b) with probability equal to 1, but this aspect is not 

relevant for our present argumentation.  

Consider two simultaneous processes P e Q, such that P = , [a, b] and Q = 

’[a, b], and the landscapes C = P, Ag, S e C’ = Q, Ag, S.  Now assume that: 
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1. (Ag) such that  knows P(a) with certainty, but the probability that  

knows Q(b) é <1, or 

2. (’Ag) such that  knows Q(a) with certainty, but the probability that  

knows P(b) é <1. 

In this case, the agents cannot predict with maximum probability the result 

of a possible interaction of P and Q. When this kind of situation occurs, we can say 

that P and Q are independent (while the dependent processes are those called 

“solidaires” by Cournot, 1838, §30) 

Given two processes P and Q, such that P = , [a, b] and Q = ’, [c, d], P is 

a sub-process of  Q, (P? Q) IFF: 

1. c  a < b  d, and 

2.   is a substructure of  ’ for each t [a, b]. 

When  = ’, the sub-process is normal, and denoted by P ?*Q.  If  P ?*Q  

and 

c = a, then P is an initial sub-process of Q. 

Now consider a finite sequence of deterministic processes, each pair of them 

being mutually independent, all of the same type , but each one defined in a 
different landscape Ci: h1 P...,,P , such that i{1, ..., h}, Pi = i, Ii, being Ii non-

disjunct time intervals. 

If P is the supreme (upper bound) of the relation ? of all Pi, then a process 

Q is generated by Pi processes IFF given t0 for some of the Ii, for all t  t0 the 

structure of Q is an effect of the interaction of the structures i of Pi.  

 

 

 

4 - Cournotian Processes 

 

A Cournotian process Q, generated by the Pis, is a non-deterministic 

process at the union of the landscapes, such that Q ? P. Intuitively speaking, a 

Cournotian process is a non-deterministic process generated by deterministic and 

independent processes, when the result of the interaction of the generating 

processes is not “larger” than the supreme of the sub-processes.  

For instance, first consider a process P in landscape C.  At 0 h of a chosen 

day, from the point x0, y0 of the earth surface, a projectile p with mass m is shot 

with initial velocity v0, forming an angle  with the earth’s tangent. Also assume 

that it moves in a virtual vacuum. If S is the set of sentences that describe the 
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properties of the process, then any agent  who knows with certainty the state P(0) 

can predict the state P(t) in t>0, with probability 1. For t = 40 seconds, the state 

P(40) is totally defined by the mass of p (the same) and the coordinates of p = 

(v0 cos40), (v0 sen40 - 800g), being g the gravity force. Formally, P is the pair 

, [0, 40] where  is the structure containing p, the initial values  and the empty 

space. The relation R(p, t, ...), defining the coordinates of p are time-dependent, 

and therefore the structure  is a dynamical one.  

Also a process P’ occurs, in the landscape C’. At 0 h in the same day, a 

satellite s crosses the point x1, y1 of the earth surface at the height h, with 

dynamical variables known for all Ag’. At the instant t, the agents Ag’ can 

calculate the state s with probability 1.  

Now consider that at the instant t’ the projectile p collides with the satellite 

s. Agents from each landscape can calculate the instant t’ when the collision 

occurs. However, each group does not know the variables of the other process. 

Therefore, the conjoint process Q, beginning at t’ and leading to the separate drift 

p e s after the collision, cannot be predicted with probability 1, for both groups of 

agents. Therefore, in the conjoint landscape D the process Q is not deterministic. 

Cournotian processes can be analyzed in the framework of Dynamical 

Systems Theory, including the informational properties of the systems, as proposed 

by Zadeh and Desoer (1963). 

The model of a physical system M is a dynamical system IFF M = I, O, , , , 

such that: 

1) I, O,  are sets and  e  are functions; 

2) If s  , then s is a state of M; 

3) If fI and hO, then f and h are functions with domain in T (a non-null 

temporal interval); 

4) The range of f is Ra(f), i.e. f:T  Ra(f) and h:T Ra(h); 

5) The I functions are the inputs and O functions are the outputs of M; 

6) The  function is the read-out, which satisfies the properties: 

6.a   ΟΙ)Σ(Τ:ρ ⎯⎯ →⎯××
6.b   t, s, f Ι)Σ(Τ ×× ,  :t, s,  hO, such that  

h(t) =df (t, s(t), f(t)) is the response of M in the instant t, when its 

state is 

s and the feeding input is f; 

We call  the state transition function, such that:  
1) , for  = {t, t’T2 | t  t’} and 0 being the set of 

   all initial states; 

f ⎯⎯ →⎯

ΟΙ)Σ(: ⎯⎯ →⎯××Δ 0σ
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2) t, t’  , s0  0, j I, it follows that :  t, t’, s0, j ⎯⎯ →⎯ s,  such 

   that s(t) =df (t, t’, s0, j) denotes the state produced by the input j at 

the instant t, 

   from the state s0 that occurred at t’. 

The state transition function  must satisfy the following axioms: 

1) Transitivity: for t, t’T, such that t’  t, s0  , and j, j’ I, if j(t)  j’(t)  

    in [t, t’], then (t’, t, 0, j) = (t’, t, 0, j’) 

2) Associativity:  t t’ t” T, 0  , j I,   (t”, t’,  (t’, t, 0, j), j) =  

    (t”, t, 0, j) 

The quantitative changes in a continuous dynamical system are usually 

presented by a system of linear or non-linear differential equations, referring to a 

function  defined in R  D  D, with R being the set of real numbers and D   the set 

representative of the system to be modeled. The standard problem is to solve the 

equations, considering the initial and boundary conditions: 

xD   (0, x) = x 

t, t’S (t, (t’, x)) =  (t+t’, x) 

In the perspective of the axiomatic definition above, the transition function 

guarantees the existence of a solution for this problem. In the above example, the 

evolution of the projectile and the satellite can be represented by this kind of 

differential equations. They can be solved using the transition function ; its results 

can be read by the function  and the set D is R3. However, the Cournotian process 

produced by the collision of the projectile with the satellite cannot be represented 

by a differential equation, because the solution is not a function. If the process is 

studied as deterministic chaos, the deterministic phase leads to a bifurcation with 

an infinite branching of possible states. Therefore a Cournotian process, even in the 

case that the initial conditions are exhaustively known in the instant t = a, may 

become unpredictable in t = b.  

In the study of Cournotian processes, the tools of Dynamical Systems 

Theory are able to exactly describe only the initial deterministic phase, before the 

independent causal lines meet. At this point, a new phenomenon emerges, one that 

cannot be deduced from the previous dynamics of the system.  

After formalizing the Cournotian processes, it is possible to understand how 

to predict the result of this kind of process with a probability greater than chance. 

The agents, having only partial knowledge about what is going to happen after the 

causal lines meet, cannot deduce the outcome, but can make probabilistic 

inferences. 
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It is easy to show that this kind of computing is broader than the classical 

functional (or single deterministic Turing machine) approach. If the properties P are 

deduced from the theory T(N), then, trivially, they can be inferred from the 

Cournotian process, since the deduction is the limit case when the probability value 

equals 1 (i.e., a sentence e is deducible from e* if the probability of e is 1 always 

that the probability of e* is 1). Therefore, our approach can account for both the 

deductive and the non-deductive derivations.  

 

 

 

5 – Structural Reasoning and Emergent Relations 

 

The term structuralism is used in several areas of scientific methodology and 

epistemology, referring to formal procedures used with problems that require the 

consideration of non-trivial structures. In this sense, structuralism has been used to 

refer to theories in Economy, Anthropology, Linguistics and Psychology. In this 

paper, we conceive structures in a pragmatic framework, as theoretical abstractions 

or models used in the context of empirical science, to organize the available data 

and make predictions. 

There are at least three different concepts of structuralism: 

1) in Chomsky´s classical studies of grammar, efforts were directed to find 

combinatorial structures that operate on linguistic elements, following formal 

rules, in order to explain the categories of natural language. These efforts 

concentrated on the syntactic aspects of language, leaving semantics on a 

secondary plane; 

2) in the context of philosophy of mind, structuralism is related to “bottom-up” 

approaches, aiming to explain psychological functions from neuroscientific 

theories and data, in opposition to the “top-down” methodology of cognitive 

science that is focused on psychological functions (see Fodor, 1983); 

3) in the context of the sciences of life, structuralism refers to biological 

structures (macromolecules, cells, tissues, organs, body systems), a case 

when it is not opposed to the consideration of functions (i.e., biological 

functions), since biological structures and functions are complementary 

concepts (structures refer to the components of living systems, and 

functions refer to the activities that such structures display in time). 
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The Chomskyan concept of structuralism (item 1, above) is based on a 

previous distinction between syntactic and semantic aspects of natural language, 

made in the context of Model Theory. The structures used as models also have their 

own syntax; however, their application to theories is not necessarily syntactic. 

There are other aspects of semantic evaluation; for instance, when a statement e is 

satisfied in a model M, this means that e is true in M (in the Tarskian approach, 

“truth” is an isomorphism between structures). 

Eventually, the inferences used in Model Theory may have been considered 

as syntactic by some authors, since for first order logic the syntactic and semantic 

approaches lead to the same results, according to Henkin´s Completeness 

Theorem. However, from a conceptual perspective both are different.  

The complementarity of structural and functional aspects can be achieved by 

considering higher-order systems, as assumed in non-reductive explanatory 

strategies. In first-order systems, functions are internal to one structure (in our 

previous formulation, one Fu(E) for each E). However, for higher-order systems it 

is possible to construct relations that link different and/or hierarchically ascending 

structures. For instance, if E and E’ are first-order structures, it is possible to 

construct a second-order relation r: E Ë E’.  

Consider M to be a set of cognitive properties, and N a neuroscientific theory 

that is true. S is a model of the brain and its interactions with the body and 

environment. Also assume that the standard model of N is isomorphic to S, and 

that there is a set of statements M expressing the properties of mental phenomena 

that cannot be predicted/deduced from N. These are strongly emergent properties, 

according to our previous definition. 

The reason why mental phenomena are not deducible from S can be made 

explicit straightforwardly. Cognitive phenomena are expressed by a class of 

predicates that is semantically separated from the predicates used to express 

biophysical processes; there is no middle term, and therefore these classes of 

predicates – as usually stated – belong to separate semantical categories. 

Therefore, there is not a valid syntactic pathway to deduce statements about 

mental properties from statements about biophysical properties, unless: 

a) bridge principles are formulated, providing a connection between (at least) 

one biophysical predicate and one mental predicate, as proposed by 

Reductionism (Bickle, 2003), or 

b) mental predicates are reformulated using biophysical predicates, as 

proposed by Eliminative Materialism. 
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It is of central importance for our proposal to consider a semantic-structural, 

non-syntactic form of reasoning that is the basis for ascription of probability values: 

the judgment of similarity (see Gärdenfors, 2000). The notion of similarity 

expresses the existence of partial correspondences between structures (see Pereira 

Jr., 1999) and therefore operates in the domain of a second-order relation r. 

Prediction about E’ based on knowledge of E is called reasoning with similarities. 

In the study of the brain/mind system, we consider E as the brain structure 

(with respective internal functions, described by neuroscientific theories) and E’ as 

the mental structure (with respective internal functions, described by psychological 

theories). As we adopt a non-reductive explanatory strategy, we do not identify 

both structures (as in Identity Theories) and we do not try to syntactically deduce 

E’ from E (even with the usual inclusion of bridge principles).  

 We propose the second-order relation r to be conceived as a semantic 

relation based on similarity. At this moment we are not able to formalize this model 

and will limit our exposition to five sketchy examples where the formalization could 

be applied. 

 

 

 

6 - Some Examples from Neuroscience 

 

 Emergent cognitive functions, not deducible from a (hypothetically 

complete) neuroscientific theory, can be predicted by structural similarities between 

brain activities and mental experiences. We give five examples to illustrate how 

reasoning by similarity works in the context of cognitive neurobiology. The 

exemples display similarities between alterations in brain activity and the 

corresponding alterations in mental activity. Such similarities advance one step 

beyond the merely temporal correlations found by current techniques in cognitive 

neuroscience, helping to explain the relative success of biological psychiatry in the 

treatment of several kinds of psychopathology. 

First, animals with a deficit in protein CaMKII (Calmodulin-dependent Protein 

Kinase II) activity display a deficit in memory formation (Wang et al., 2003). Based 

on this experimental finding, it is possible to infer that the lack of a function f in S 

implies the lack of a function f’ in M. This reasoning is induction by vicariance. 

A second example is: a decrease in serotonin levels predicts the onset of 

depression. Once serotonin is a neuromodulator that increases the efficacy of 

 13



 

synapses, a decrease in serotonin levels would also decrease the efficacy of 

synaptic communication. Although we do not know exactly what synaptic 

communication has to do with mood, a mental phenomenon, we can find a 

similarity between serotonin decrease and a decrease in mental disposition. This 

reasoning is induction by similarity. 

The third example is an experiment that produced an increase in molecular 

function. It is well known that the membrane receptor NMDA is involved in the 

capacity of associative learning. Genetically modified mice with over-expression of 

the NMDA receptor are predicted to display improved learning capabilities, since 

this receptor works as a coincidence detector, providing neuronal excitation upon 

receiving two excitatory pulses in a narrow time window. Associative learning is a 

mental function that consists basically of connecting different stimuli. It is not the 

case that the pulses received by the NMDA receptor at each neuron correspond to 

the stimuli to be associated; however, its physiological function has some degree of 

similarity with the mental function. This is also a case of induction by similarity. 

The fourth example is a case when increasing the quantity of one kind of 

molecular component leads to a decrease of mental activity. Also in this case there 

is induction by similarity, but this time with inverse proportionality. It is well known 

that the transmitter GABA and its receptors have a physiological function of 

inhibiting neuronal activity. Substances that perform the same function of GABA 

(binding to the benzodiazepinic receptors) are used in Psychiatry as tranquillizers, 

in the treatment of anxiety and psychoses. Anxiety is a mental phenomenon, 

having properties that cannot be deduced from biophysical processes in the brain. 

However, we can find a similarity between the physiological function of promoting 

neuronal inhibition and the mental function of tranquillizing. 

The last example is the approximation of the dynamics of a signaling ion 

(Ca++) with mental processes as learning, memory formation and consciousness 

(see Koch, 2003, and also Robertson, 2002, for a similar proposal regarding Ca++ 

waves in astrocytes). Koch’s reasoning is based on a timing analogy. The timing of 

Ca++ entry in synaptic ion channels and binding with receptors in the post-synaptic 

density is analog to the timing of such mental processes, so it was inferred to be 

related with them. 

In the five examples, the structural correlations do not follow logical or 

biophysical laws, and could be taken as pieces of scientific fiction, except for the 

fact that all of them have been experimentally demonstrated. The second and 

fourth examples correspond to widely used pharmacological drugs. The first 
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example was extensively reviewed in Bickle (2003). The third example was 

confirmed by the breeding “Smart Mice” (see Tang et al., 1999). 

 

7 - Concluding Remarks 

 

As in the classical concept of chance advanced by Cournot (1838), here we 

considered emergence processes as resulting from the meeting of independent 

causal lines (i.e. semi-deterministic processes) generating a product that cannot be 

described as a function (but as a mere relation) of the multiplicity of factors 

involved in the process. Therefore, biological and cognitive functions would 

correspond to mathematical relations. 

The occurrence of emergence in Cournotian processes is predictable - 

although not deductible - by semantic reasoning based on similarities. If biological 

and mental processes derive from Cournotian processes, we need knowledge about 

structural properties of living bodies and brains to perform such reasoning and 

predict emergent mental properties. When researchers attempt to construct life or 

mentality artificially, the possibility of making these inferences can be lost.  
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