Study of the prevention and detection of financial fraud through machine learning techniques

Authors

DOI:

https://doi.org/10.23925/cafi.v6i1.58372

Keywords:

Financial fraud, Artificial intelligenge, Supervised techniques, Fraud detection, Data mining

Abstract

Many organizations are currently affected by financial fraud, becoming a current concern for the financial area of ​​any entity, since when it materializes, it directly harms the assets of any public or private company. To do this, and in response to this problem, supervised and unsupervised techniques have been implemented that use artificial intelligence for the prevention and early detection of these frauds and, thus, minimize risks in financial operations. Due to the above, the study analyzes the use of supervised techniques, their referential status through scientometric and bibliometric analysis, determining their importance for the prevention and detection of financial fraud. At the methodological level, it is a documentary, exploratory and analytical study. The results of the study indicate that supervised machine learning techniques are the most accurate when applying experiments for detection and prevention, thus achieving effectiveness results greater than 90% using algorithms such as decision trees, neural networks, Naive Bayes, Support Vector Machine, Random Forest and logistic regression, being notable in the results that the financial frauds, mostly analyzed in these studies, were falsification of financial statements, credit card fraud, fraudulent financial reports and service financial fraud.  On the other hand, it is highlighted that the subject of research is growing thanks to the fact that fraud detection is becoming necessary for organizations and, with greater relevance, for financial institutions, as they are one of the most affected by this scourge of fraud.

Author Biographies

Fernando Gutierrez Portela, Universidad Cooperativa de Colombia

Candidato a Doctor en Ingeniería de la Universidad Autónoma de Bucaramanga. Magíster en Software Libre, Profesor de la facultad de Ingeniería de sistemas de la Universidad. Cooperativa de Colombia Sede Ibagué-Espinal. Integrante del Grupo de Investigación. AQUA de la UCC Ibagué-Espinal

Stefania Rodríguez Cárdenas, Universidad Cooperativa de Colombia

Estudiante de la Universidad Cooperativa de Colombia del programa de Contaduría de la sede Ibagué – Espinal

Laura Paola Patiño Ospina, Universidad Cooperativa de Colombia

Estudiante de la Universidad Cooperativa de Colombia del programa de Contaduría de la sede Ibagué – Espinal.

Ludivia Hernandez Aros, Universidad Cooperativa de Colombia - Sede Ibagué - Espinal

Magister en Auditoría y Gestión Empresarial de la Universidad UNINI – Puerto Rico Especialista en Revisoría Fiscal y Control de Gestión de la Universidad Cooperativa de Colombia. Profesora Investigadora Facultad de Contaduría Pública Universidad Cooperativa de Colombia, Sede Ibagué-Espinal, Colombia, Grupo de investigación PLANAUDI y SINERGIA

References

Anjilla, F. (2021). Learning Outcomes of Classroom Research. Artificial Intelligence. L Ordine Nuovo Publication, pág.64-74. Fonte: researchgate.net: https://www.researchgate.net/publication/358050961_Learning_Outcomes_of_Classroom_Research

Boden, M. (1996). Artificial Intelligence. Elsevier. Fonte: books.google.es: https://books.google.es/books?id=_ixmRlL9jcIC&printsec=frontcover&hl=es#v=onepage&q&f=false

Brammer, R. (1997). Artificial Intelligence for enhancing energy efficiency. Fonte: osti.gov: https://www.osti.gov/etdeweb/biblio/20977605

Calvo, J., Guzmán, M., & Daniel, R. (2018). Machine learning, una pieza clave en la transformación de los modelos de negocio. Management solutions Making things happen. Fonte: managementsolutions.com: https://www.managementsolutions.com/sites/default/files/publicaciones/esp/machine-learning.pdf

Chirinos, Y., Godínez López, R., & Ramírez García, A. (2021). Tendencias Investigación Universitaria Vol. IX.Cáp IV. Fonte: researchgate.net: https://www.researchgate.net/publication/349607908_Tendencias_Investigacion_Universitaria_Vol_IX

Ciobanu, M. (2019). The rise of machine learning and artificial intelligence in fraud detection. Fonte: thepaypers.com: https://thepaypers.com/expert-opinion/the-rise-of-machine-learning-and-artificial-intelligence-in-fraud-detection/779255

Ciro Cardenas, C. (2017). Fraude empresarial. Fonte: repository.unimilitar.edu.co: https://repository.unimilitar.edu.co/bitstream/handle/10654/16667/CesarAug?sequence=1

Cooper, D., Dacin, T., & Palmer, D. (2013). Fraud in accounting, organizations and society: Extending the boundaries of research. Accounting, Organizations and Society, 38, 440–457. Fonte: webofscience.com: https://www.webofscience.com/wos/woscc/full-record/WOS:000329013200003?SID=7F2IsIgNMPe7vfo858n

Fetzer, J. (1990). Artificial Intelligence: Its Scope and Limits. Kluwer Academic Publishers. Fonte: books.google.com.co: https://books.google.com.co/books?id=77SLBQAAQBAJ&printsec=frontcover&hl=es#v=onepage&q&f=false

González, L. (18 de agosto de 2020). Aprendizaje no Supervisado. Fonte: aprendeia.com: https://aprendeia.com/aprendizaje-no-supervisado-machine-learning/

Hernández Sampieri, R. (Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta). 2018. McGraw Hill México.

Hernández Sampieri, R., & Torres, C. (2018). Metodología de la investigación (Vol. 4). México DF: McGraw-Hill Interamericana.

Hidalgo Achig, M. F., Rueda Manzano, M. C., Hidalgo Achig, M. d., Vizuete Achig, M. P., & Hidalgo Achig, M. E. (2017). Fraudes corporativos y su incidencia en auditoría. Un enfoque desde la academia. Fonte: revistas.ult.edu.cu: http://revistas.ult.edu.cu/index.php/didascalia/article/view/651

Hurtado de Barrera, J. (2012). El Proyecto de Investigación. Qué es investigar. El “quiénes” de la investigación (Séptima Edición). Caracas, Venezuela: Ediciones: Quirón (SYPAL).

Langwagen Fripp, L. (octubre de 2019). Aplicación de aprendizaje automático a la detección de fraude en tarjetas de crédito. Fonte: colibri.udelar.edu.uy (Universidad de la república Uruguay): https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/23163/1/Lan19.pdf

Linares Galán, J. E. (2022). Control interno en la prevención y detección de fraude corporativo [Diapositivas]. Fonte: jabrveriana.edu.co: https://www.jabrveriana.edu.co/personales/hbermude/Audire/jelg2.pdf

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Molina, R. (2017). ¿ Formación para la investigación o investigación formativa?. La investigación y la formación como pilar común de desarrollo. Revista Boletín Redipe, 6(1), 84-89.

Rosenblum, H. (01 de enero de 2005). Corporate Scandals: The Many Faces of Greed. Fonte: go.gale.com (Gale Academic OneFile): https://go.gale.com/ps/i.do?p=AONE&u=anon%7Eb6c97118&id=GALE|A129813945&v=2.1&it=r&sid=googleScholar&asid=2ea8b338Mart%EDnez

Published

2023-04-01

How to Cite

Gutierrez Portela, F. ., Rodríguez Cárdenas, S. ., Patiño Ospina, L. P., & Hernandez Aros, L. (2023). Study of the prevention and detection of financial fraud through machine learning techniques. CAFI, 6(1), 77–101. https://doi.org/10.23925/cafi.v6i1.58372