Inibição da proteína PD-1 pelo método CRISPR-Cas9 como terapia antitumoral para tumores de pulmão de não pequenas células

Alison Felipe Bordini Biggi, Patricia Ucelli Simioni

Resumo


O carcinoma de pulmão é o segundo tipo de tumor de maior incidência em todo o mundo, sendo 85% deles carcinomas de pulmão de não pequenas células (CPNPC). As células tumorais do CPNPC proliferam em razão de um bloqueio da resposta de linfócitos T citotóxicos. Na resposta imune a tumores, a interação do ligante-1 do receptor de morte celular programada (PD-L1), expresso em células tumorais com a proteína de morte celular programada 1 (PD-1), expressa em linfócitos T citotóxicos, promove a supressão da resposta imune, levando à inibição da ativação de linfócitos T citotóxicos. Apesar de as terapias biológicas mostrarem-se eficazes para o tratamento de tumores pulmonares, estudos buscam uma opção de tratamento genético, como o método CRISPR/Cas9. O objetivo desta revisão é fornecer uma atualização do método CRISPR-Cas9 e a aplicação dele como ferramenta terapêutica buscando desativar o gene que codifica a proteína PD-1 em casos de CPNPC. A alteração genética da proteína PD-1 pelo CRISPR-Cas9 pode interromper a interação entre receptor e ligante, permitindo que linfócitos T citotóxicos reconheçam e exerçam uma resposta antitumoral contra tumores de CPNPC.

Palavras-chave


carcinoma broncogênico; sistemas CRISPR-Cas; terapia genética

Texto completo:

PDF (English)

Referências


Nakamura H, Saji H. A worldwide trend of increasing primary adenocarcinoma of the lung. Surg Today. 2014;44(6):1004-12. https://doi.org/10.1007/s00595-013-0636-z

Garon EB. Current perspectives in immunotherapy for non-small cell lung cancer. Semin Oncol. 2015;42 Suppl 2:S11-8. https://doi.org/10.1053/j.seminoncol.2015.09.019

Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367-80. https://doi.org/10.1056/NEJMra0802714

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11-30. https://doi.org/10.3322/caac.21166

Zer A, Leighl N. Promising targets and current clinical trials in metastatic non-squamous NSCLC. Front Oncol. 2014;4:329. https://doi.org/10.3389/fonc.2014.00329

Kim JW, Eder JP. Prospects for targeting PD-1 and PD‑L1 in various tumor types. Oncology (Williston Park). 2014;28 Suppl 3:15-28.

Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32-8. https://doi.org/10.1016/j.coph.2015.05.011

Silva APS, Coelho PV, Anazetti M, Simioni PU. Targeted therapies for the treatment of non-small-cell lung cancer: monoclonal antibodies and biological inhibitors. Hum Vaccin Immunother. 2017;13(4):843‑53. https://doi.org/10.1080/21645515.2016.1249551

Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single‑agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167-75. https://doi.org/10.1200/JCO.2009.26.7609

Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3(12):1355-63. https://doi.org/10.1158/2159-8290.CD-13-0310

Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27(8):1492-504. https://doi.org/10.1093/annonc/mdw217

Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467-77. https://doi.org/10.1038/nrmicro2577

Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature. 2015;526:136-9. https://doi.org/10.1038/nature15254

Richter C, Chang JT, Fineran PC. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses. 2012;4(10):2291-311. https://doi.org/10.3390/v4102291

Cohen MH, Johnson JR, Chattopadhyay S, Tang S, Justice R, Sridhara R, et al. Approval summary: erlotinib maintenance therapy of advanced/metastatic non-small cell lung cancer (NSCLC). Oncologist. 2010;15(12):1344‑51. https://doi.org/10.1634/theoncologist.2010-0257

Carvalho L. Reclassifying bronchial-pulmonary carcinoma: differentiating histological type in biopsies by immunohistochemistry. Rev Port Pneumol. 2009;15(6):1101-19. https://doi.org/10.1016/S0873-2159(15)30195-1

Scagliotti GV, Hirsh V, Siena S, Henry DH, Woll PJ, Manegold C, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J Thorac Oncol. 2012;7(12):1823-9. https://doi.org/10.1097/JTO.0b013e31826aec2b

Rossi A, Maione P, Bareschino MA, Schettino C, Sacco PC, Ferrara ML, et al. The emerging role of histology in the choice of first-line treatment of advanced non-small cell lung cancer: implication in the clinical decisionmaking. Curr Med Chem. 2010;17(11):1030-8. https://doi.org/10.2174/092986710790820589

Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications. Clin Chest Med. 2011;32(4):703-40.

Jančík S, Drábek J, Radzioch D, Hajdúch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010; Article ID 150960:1-13. https://doi.org/10.1155/2010/150960

Duarte RLM, Paschoal MEM. Molecular markers in lung cancer: prognosis role and relationship to smoking. J Bras Pneumol. 2005;32(1):56-65. https://doi.org/10.1590/S1806-37132006000100012

Doebele RC, Oton AB, Peled N, Camidge DR, Bunn PA Jr. New strategies to overcome limitations of reversible EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer. Lung Cancer. 2010;69(1):1-12. https://doi.org/10.1016/j.lungcan.2009.12.009

Reungwetwattana T, Dy GK. Targeted therapiesin development for non-small cell lung cancer. J Carcinog. 2013;12:22. https://doi.org/10.4103/1477-3163.123972.eCollection 2013

Scaltriti M, Baselga J. The epidermal growth fator receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268-72. https://doi.org/10.1158/1078-0432.CCR-05-1554

Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit t cell responses. Immunity. 2007;27(1):111-22. https://doi.org/10.1016/j.immuni.2007.05.016

Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239-45. https://doi.org/10.1038/ni1443

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42. https://doi.org/10.1111/j.1600-065X.2010.00923.x.

Jin HT, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol. 2011;350:17-37. https://doi.org/10.1007/82_2010_116

Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21(1):24-33. https://doi.org/10.1016/j.molmed.2014.10.009

Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207-12. https://doi.org/10.1016/j.coi.2011.12.009

Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. https://doi.org/10.1016/j.tibtech.2013.04.004

Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014;124(10):4154-61. https://doi.org/10.1172/JCI72992

Terns MP, Terns RM. CRISPR-based adaptive imune systems. Curr Opin Microbiol. 2011;14(3):321-7. https://doi.org/10.1016/j.mib.2011.03.005

Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54(2):234-44. https://doi.org/10.1016/j.molcel.2014.03.011

Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci. 2011;108(25):10098-103. https://doi.org/10.1073/pnas.1104144108

Reis A, Hornblower B; New England Biolabs. CRISPR/Cas9 and targeted genome editing: a new era in molecular biology. New Engl BioLabs [Internet]. 2014;1 [acessado em 07 mai. 2019]. Disponível em: https://www.neb.com/tools-and-resources/featurearticles/crispr-cas9-and-targetedgenome-editing-anew-era-in-molecular-biology

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829

Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766. https://doi.org/10.7554/eLife.04766

Dance A. Core Concept: CRISPR gene editing. Proc Natl Acad Sci. 2015;112(20):6245-6. https://doi.org/10.1073/pnas.1503840112

Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, et al. CRISPR/Cas9 systems have off‑target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42(11):7473-85. https://doi.org/10.1093/nar/gku402

Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. Digenome-seq: Genome-wide profiling of CRISPRCas9 off-target effects in human cells. Nat Methods. 2015;12(3):237-43. https://doi.org/10.1038/nmeth.3284

Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9: a revolutionary tool for cancer modelling. Int J Mol Sci. 2015;16(9):22151-68. https://doi.org/10.3390/ijms160922151

Kannan R, Ventura A. The CRISPR revolution and its impact on cancer research. Swiss Med Wkly. 2015;145:w14230. https://doi.org/10.4414/smw.2015.14230. eCollection 2015

Jena B, Dotti G, Cooper LJN. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116(7):1035-44. https://doi.org/10.1182/blood-2010-01-043737

Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388-98. https://doi.org/10.1158/2159-8290.CD-12-0548

Ren J, Zhao Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell. 2017;8(9):634-43. https://doi.org/10.1007/s13238-017-0410-x

Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070. https://doi.org/10.1038/srep20070

Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-Tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7(1):737. https://doi.org/10.1038/s41598-017-00462-8.

Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;539(7630):479. https://doi.org/10.1038/nature.2016.20988




DOI: https://doi.org/10.23925/1984-4840.2019v21i1a2

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM

Apontamentos

  • Não há apontamentos.




Direitos autorais 2019 Revista da Faculdade de Ciências Médicas de Sorocaba

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

Apoio: ..............................................................................................................................................

    

Fundação São Paulo - Hospital universitário

 



 

Rev. Fac. Ciênc. Méd. Sorocaba, Sorocaba, SP, Brasil, e-ISSN 1984-4840

A Revista da Faculdade de Ciências Médicas de Sorocaba está licenciada com uma Licença Creative Commons - Atribuição 4.0 Internacional.