Long-latency auditory evoked potentials-verbal and cortical gain in patients with tinnitus

Authors

DOI:

https://doi.org/10.23925/2176-2724.2025v37i2e70256

Keywords:

Tinnitus, Auditory Evoked Potentials, Adult, Central Nervous System, Auditory Cortex

Abstract

Objective: To analyze whether the presence of tinnitus can alter the amplitudes and the P2/P1 wave ratio in the cortical Long-Latency Auditory Evoked Potential (LLAEP) with verbal stimulus in young adults. Methodology: Observational, analytical, cross-sectional study with a convenience sample consisting of educated, right-handed patients without hearing loss and without auditory complaints other than tinnitus. Patients undergoing pharmacological treatment for tinnitus or presenting conditions that could compromise the research were excluded. Twenty individuals participated, divided into two groups: study group (SG) [7 women/5 men aged 19–35 years (mean = 24 years); 11 right ears and 12 left ears were evaluated; 11 cases of bilateral tinnitus and 1 case of unilateral tinnitus in the left ear]; control group (CG) [5 women/3 men aged 19–35 years (mean = 25 years); 8 right ears and 8 left ears were evaluated]. All participants underwent basic audiological assessment, central auditory processing evaluation, neuropsychological assessment, transient otoacoustic emissions, brainstem auditory evoked potential, and the LLAEP as the research procedure. Data analysis was performed using the Mann-Whitney U test, adopting a significance level of p ≤ 0.05. Results: Statistically significant differences were observed only for the P2 component in the left ear, with mean values of 4.42 for the control group and 6.39 for the study group (p = 0.017). Conclusion: The presence of tinnitus in young adults with normal audiometry was associated with higher amplitude of the P2 component in the LLAEP with verbal stimulus, specifically in the left ear. However, no significant changes were observed in the P2/P1 ratio between the groups.

Downloads

Download data is not yet available.

Author Biographies

Hélinton Goulart Moreira, Universidade Federal de Santa Maria

Programa de Pós-Graduação em Distúrbios da Comunicação Humana, Universidade Federal de Santa Maria – UFSM – Santa Maria (RS), Brasil

Larissa Coradini, Universidade Federal de Santa Maria

Curso de Fonoaudiologia, Universidade Federal de Santa Maria - UFSM - Santa Maria (RS), Brasil.

Bruna Ribas Maia, Universidade Federal de Santa Maria

Curso de Fonoaudiologia, Universidade Federal de Santa Maria - UFSM - Santa Maria (RS), Brasil.

Rubens Jonatha dos Santos Ferreira, Universidade de São Paulo

Programa de Pós Graduação em Fonoaudiologia- Faculdade de Odontologia de Bauru da Universidade de São Paulo

Michele Vargas Garcia, Universidade Federal de Santa Maria

Departamento de Fonoaudiologia, Curso de Fonoaudiologia, Universidade Federal de Santa Maria – UFSM - Santa Maria (RS),Brasil.

References

Onishi ET, Coelho CC, Oiticica J, Figueiredo RR, Guimarães RC, Sanchez TG, et al. Tinnitus and sound intolerance: evidence and experience of a Brazilian group. Braz J Otorhinolaryngol. 2018; 84(2): 135-49. https://doi.org/10.1016/j.bjorl.2017.12.002

Sanchez TG, Ferrari GMS. O controle do zumbido por meio de prótese auditiva: sugestões para otimização do uso. Pró-Fono Rev Atual Cient. 2002;14(1):11-8.

Moreira HG, Bruno RS, Oppitz SJ, Sanfins MD, Garcia MV. Zumbido crônico: análise das contribuições clínicas de diferentes avaliações audiológicas. Audiol Commun Res. 2022; 27: e2660. https://doi.org/10.1590/2317-6431-2022-2660pt

Sedley W. Tinnitus: Does Gain Explain? Neuroscience. 2019; 407: 213-28. https://doi.org/10.1016/j.neuroscience.2019.01.027

Sadeghijam M, Moossavi A, Akbari M. Does tinnitus lead to chaos? Braz J Otorhinolaryngol. 2021; 87(2):125-6. https://doi.org/10.1016/j.bjorl.2020.11.022

Azevedo AA, Figueiredo RR, Penido NO. Tinnitus and event related potentials: a systematic review. Braz J Otorhinolaryngol. 2020; 86(1):119-26. https://doi.org/10.1016/j.bjorl.2019.09.005

Lu J, West MB, Du X, Cai Q, Ewert DL, Cheng W, et al. Electrophysiological assessment and pharmacological treatment of blast-induced tinnitus. PLoS One. 2021;16(1): e0243903. https://doi.org/10.1371/journal.pone.0243903

Milloy V, Fournier P, Benoit D, Noreña A, Koravand A. Auditory brainstem responses in tinnitus: a review of who, how, and what? Front Aging Neurosci. 2017; 9: 237. https://doi.org/10.3389/fnagi.2017.00237

Konadath S, Manjula P. Auditory brainstem response and late latency response in individuals with tinnitus having normal hearing. Intractable Rare Dis Res. 2016; 5(4): 262-8. https://doi.org/10.5582/irdr.2016.01053

Matas CG, Silva FBL, Carrico B, Leite RA, Magliaro FCL. Potenciais evocados auditivos de longa latência em campo sonoro em crianças audiologicamente normais. Audiol Commun Res. 2015; 20(4): 305-12. https://doi.org/10.1590/2317-6431-2014-1525

Simões HO, Frizzo ACF, Zanchetta S, Hyppolito MA, Reis ACMB. Variables in P300 recording: task type and electrode position. CoDAS. 2016; 28(4): 355-61 https://doi.org/10.1590/2317-1782/20162015189

Oppitz SJ, Didoné DD, Silva DD, Gois M, Folgearini J, Ferreira GC, et al. Long-latency auditory evoked potentials with verbal and nonverbal stimuli. Braz J Otorhinolaryngol. 2015; 81(6): 647-52. https://doi.org/10.1016/j.bjorl.2014.10.005

Conselho Federal de Fonoaudiologia. Guia de orientação na avaliação audiológica. Brasília: CFFa; 2020 [acesso em 28 abr 2025]. Disponível em: https://www.fonoaudiologia.org.br/wp-content/uploads/2020/09/CFFa_Manual_Audiologia-1.pdf

Fonseca RP, Salles JF, Parente MAP. Instrumento de avaliação neuropsicológica breve NEUPSILIN. São Paulo: Vetor; 2009.

Sanguebuche TR, Peixe BP, Garcia MV. Behavioral tests in adults: reference values and comparison between groups presenting or not central auditory processing disorder. Rev CEFAC. 2020; 22(1): e13718. https://doi.org/10.1590/1982-0216/202022113718

Pereira LD, Schochat E. Testes auditivos comportamentais para avaliação do processamento auditivo central. São Paulo: Pró-Fono; 2011. p. 82.

Braga BHC, Pereira LD, Dias KZ. Normality tests of temporal resolution: random gap detection test and gaps-in-noise. Rev CEFAC. 2015;17(3): 836-46. https://doi.org/10.1590/1982-021620158114

Academia Brasileira de Audiologia. Fórum de diagnóstico audiológico. In: 31º Encontro Internacional de Audiologia; 2016; São Paulo. São Paulo: ABA; 2016 [acesso em 28 abr 2025]. Disponível em: http://www.audiologiabrasil.org.br/31eia/pdf/forum_f.pdf.

Sousa LCAD, Piza MRDT, Alvarenga KDF, Cóser PL. Emissões otoacústicas (EOA). In: Sousa LCAD, Piza MRDT, Alvarenga KDF, Cóser PL, editores. Eletrofisiologia da audição e emissões otoacústicas: princípios e aplicações clínicas. 3. ed. São Paulo: Book Toy; 2008. p. 109-45.

Webster R. The auditory brainstem response (ABR): a normative study using the intelligent hearing system’s smart evoked potential system [tese]. Towson (MD): Towson University; 2017.

Bruno RS, Oppitz SJ, Garcia MV, Biaggio EPV. Potencial evocado auditivo de longa latência: diferenças na forma de contagem do estímulo raro. Rev CEFAC. 2016;18(1):14-26. https://doi.org/10.1590/1982-021620161816415

Frizzo ACF, Advíncula KP. Potenciais evocados auditivos de longa latência. In: Menezes PL, Andrade KCL, Frizzo ACF, Carnaúba ATL, Lins OG, editores. Tratado de eletrofisiologia para audiologia. 1. ed. São Paulo: Book Toy; 2018. p. 139-50.

Ranjbar N, Shahbazi A, Arefi HN, Zade NN, Nazari MA, Jafarzad S. Changes in late-latency auditory evoked potentials after tinnitus suppression using auditory stimulation. Braz J Otorhinolaryngol. 2022; 88(Suppl 3): S130-S8. https://doi.org/10.1016/j.bjorl.2022.09.005

Santos Filha VAV, Gentile C. Potenciais evocados auditivos tardios em indivíduos com queixa de zumbido. Braz J Otorhinolaryngol. 2010; 76(2): 263-70. https://doi.org/10.1590/S1808-86942010000200019

Attias J, Urbach D, Gold S, Shemesh Z. Auditory event-related potentials in chronic tinnitus patients with noise-induced hearing loss. Hear Res. 1993;73(1):106-13. https://doi.org/10.1016/0378-5955(93)90026-w

Alonso-Valerdi LM, et al. Comparative analysis of acoustic therapies for tinnitus treatment based on auditory event-related potentials. Front Neurosci. 2023; 17:1059096. https://doi.org/10.3389/fnins.2023.1059096

Chen YC, et al. Tinnitus and hyperacusis: contributions of paraflocculus, reticular formation and stress. Hear Res. 2017; 349: 208-27. https://doi.org/10.1016/j.heares.2017.03.005

Morse K, Vander Werff KR. Onset-offset cortical auditory evoked potential amplitude differences indicate auditory cortical hyperactivity and reduced inhibition in people with tinnitus. Clin Neurophysiol. 2023; 149: 223-33. https://doi.org/10.1016/j.clinph.2023.02.164

Cardon E, Vermeersch H, Joossen I, Jacquemin L, Mertens G, Vanderveken OM, et al. Cortical auditory evoked potentials, brain signal variability and cognition as biomarkers to detect the presence of chronic tinnitus. Hear Res. 2022; 420: 108489. https://doi.org/10.1016/j.heares.2022.108489

Published

2025-06-26

Issue

Section

Artigos