Instrumentos de autoevaluación para medir el esfuerzo de escucha en usuarios de Implantes Cocleares
revisión del alcance
DOI:
https://doi.org/10.23925/2176-2724.2025v37i4e71308Palabras clave:
Implante Coclear, Esfuerzo de Escucha, Pérdida Auditiva, Medición de Resultados Informados por el Paciente, Cuestionarios, AdultosResumen
Introducción: Escuchar habla en condiciones desafiantes como cuando reverberación y ruído están presentes, aumenta la demanda cognitiva, generando dificultades en usuarios de implante coclear. El esfuerzo auditivo se refiere al esfuerzo mental implicado en escuchar en condiciones desfavorables. Objetivo: Revisar la literatura y reconocer los principales instrumentos de autoinforme utilizados para medir el esfuerzo auditivo en usuarios de implante coclear. Método: Se realizó una revisión bibliográfica de publicaciones entre 2014 y 2024, en inglés, español y portugués, centrada en estuios que aplicaran cuestionarios para evaluar el esfuerzo auditivo en adultos. Se consultaron las bases de datos Cochrane, SciELO, Scopus y BVS (incluyendo LILACS y MEDLINE). El protocolo siguió las directrices PRISMA para Scoping Review. Se seleccionaron estudios mediante análisis de título y resumen, excluyendo aquellos duplicados, no pertinentes o con más de diez años de antigüedad. Resultados: De los 600 artículos identificados, se incluyeron 21 en esta revisión. Conclusión: Se encontraron diez instrumentos para evaluar el esfuerzo auditivo: 4 cuestionarios, 5 escalas y una técnica cualitativa. El LEQ-CI es el primer y único cuestionario diseñado específicamente para medir la percepción del esfuerzo auditivo en situaciones cotidianas de adultos usuarios y candidatos al implante coclear.
Descargas
Citas
1. Goffi-Gomez MVS, Muniz L, Wiemes G, Onuki LC, Calonga L, Osterne FJ, Kós MI, et al. Contribution of noise reduction pre-processing and microphone directionality strategies in the speech recognition in noise in adult cochlear implant users. Eur Arch Otorhinolaryngol. 2021 Aug; 278(8): 2823-8. doi:10.1007/s00405-020-06372-2.
2. Kahneman D. Attention and effort. 1st ed. New Jersey: Prentice-Hall Inc.; 1973. p. 1–12.
3. Gagné JP, Besser J, Lemke U. Behavioral assessment of listening effort using dual-task paradigm. Trends Hear. 2017; 21: 2331216516687287. doi:10.1177/2331216516687287.
4. Pichora-Fuller MK, Kramer SE, Eckert MA, Edwards B, Hornsby BWY, Humes LE, et al. Hearing impairment and cognitive energy: the framework for understanding effortful listening (FUEL). Ear Hear. 2016; 37 Suppl 1: 5S–27S. doi:10.1097/AUD.0000000000000312.
5. Winn MB, Teece KH. Listening Effort Is Not the Same as Speech Intelligibility Score. Trends Hear. 2021 Jan-Dec; 25: 23312165211027688. DOI: 10.1177/23312165211027688. PMID: 34261392; PMCID: PMC8287270.
6. McGarrigle R, Munro KJ, Dawes P, Stewart AJ, Moore DR, Barry JG, et al. Listening effort and fatigue: what exactly are we measuring? A British Society of Audiology Cognition in Hearing Special Interest Group ‘white paper’. Int J Audiol. 2014 Jul; 53(7): 433-40. doi: 10.3109/14992027.2014.890296. Epub 2014 Mar 27. PMID: 24673660.
7. Guijo LM, Cardoso ACV. Métodos fisiológicos como índices de mensuração do esforço auditivo: uma revisão integrativa da literatura. Rev CEFAC. 2018; 20(4): 541–9.
8. Francis AL, Love J. Listening effort: Are we measuring cognition or affect, or both? Wiley Interdiscip Rev Cogn Sci. 2020;11(1): e1514.
9. Kramer SE, Teunissen CE, Zekveld AA. Cortisol, Chromogranin A, and Pupillary Responses Evoked by Speech Recognition Tasks in Normally Hearing and Hard-of-Hearing Listeners: A Pilot Study. Ear Hear. 2016 Jul-Aug; 37 Suppl 1:126S-35S. DOI: 10.1097/AUD.0000000000000311. PMID: 27355762.
10. Seeman S, Sims R. Comparison of psychophysiological and dual-task measures of listening effort. J Speech Lang Hear Res. 2015; 58(6):1781–92.
11. Cruz AD. Esforço auditivo e fadiga em adolescentes com deficiência auditiva: uso do Sistema FM [dissertação]. Bauru: Universidade de Bauru; 2018.
12. Guijo LM, Horiuti MB, Cardoso ACV. Validação de conteúdo de um instrumento para mensuração do esforço auditivo. CoDAS 2020; 32(5): e20180272 DOI: 10.1590/2317-1782/20202018272.
13. Nagaraj MK, Bhaskar A, Prabhu P. Assessment of auditory working memory in normal hearing adults with tinnitus. Eur Arch Otorhinolaryngol. 2020; 277(1): 47-54.
14. Bess FH, Hornsby BW. Commentary: listening can be exhausting--fatigue in children and adults with hearing loss. Ear Hear. 2014 Nov-Dec; 35(6): 592-9. DOI: 10.1097/AUD.0000000000000099. PMID: 25255399; PMCID: PMC5603232.
15. Shields C, Willis H, Nichani J, Sladen M, Kluk-de Kort K. Listening effort: WHAT is it, HOW is it measured and WHY is it important? Cochlear Implants Int. 2022 Mar; 23(2):114-117. DOI: 10.1080/14670100.2021.1992941. Epub 2021 Nov 30. PMID: 34844525.
16. Alhanbali S, Dawes P, Millman RE, Munro KJ. Measures of Listening Effort Are Multidimensional. Ear Hear. 2019 Sep/Oct; 40(5):1084-1097. DOI: 10.1097/AUD.0000000000000697. PMID: 30747742; PMCID: PMC7664710.
17. Hughes SE, Rapport F, Watkins A, Boisvert I, McMahon CM, Hutchings HA. Study protocol for the validation of a new patient-reported outcome measure (PROM) of listening effort in cochlear implantation: the Listening Effort Questionnaire-Cochlear Implant (LEQ-CI). BMJ Open 2019; 9: e028881. DOI:10.1136/ bmjopen-2018-028881.
18. Santos NP, Couto MIV, Martinho-Carvalho AC. Nijmegen Cochlear Implantation Questionnaire (NCIQ): tradução, adaptação cultural e aplicação em adultos usuários de implante coclear. CoDAS 2017; 29(6): e20170007 DOI: 10.1590/2317-1782/20172017007.
19. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. doi:10.1136/bmj.n71.
20. Galvão T, Tiguman GMB. A declaração PRISMA 2020: diretriz atualizada para relatar revisões sistemáticas Epidemiologia e Serviços de Saúde, Brasília, 31(2): e2022107, 2022.
21. Devocht EM, Janssen AM, Chalupper J, Stokroos RJ, George EL. Monaural beamforming in bimodal cochlear implant users: effect of (a)symmetric directivity and noise type. PLoS One. 2016 Aug 18; 11(8): e0160829. doi: 10.1371/journal.pone.0160829. PMID: 27537075; PMCID: PMC4990192.
22. Devocht EMJ, Janssen AML, Chalupper J, Stokroos RJ, George ELJ. The benefits of bimodal aiding on extended dimensions of speech perception: intelligibility, listening effort, and sound quality. Trends Hear. 2017 Jan-Dec; 21: 2331216517727900. doi: 10.1177/2331216517727900. PMID: 28874096; PMCID: PMC5604840.
23. Alhanbali S, Dawes P, Lloyd S, Munro KJ. Self-reported listening-related effort and fatigue in hearing-impaired adults. Ear Hear. 2017 Jan-Feb; 38(1): e39-48. doi: 10.1097/AUD.0000000000000361.
24. Perreau AE, Wu YH, Tatge B, Irwin D, Corts D. Listening effort measured in adults with normal hearing and cochlear implants. J Am Acad Audiol. 2017 Sep; 28(8): 685-97. doi: 10.3766/jaaa.16014. PMID: 28906240; PMCID: PMC6135240.
25. Hughes SE, Hutchings HA, Rapport FL, McMahon CM, Boisvert I. Social connectedness and perceived listening effort in adult cochlear implant users: a grounded theory to establish content validity for a new patient-reported outcome measure. Ear Hear. 2018 Sep-Oct; 39(5): 922-34. doi: 10.1097/AUD.0000000000000553.
26. Sladen DP, Nie Y, Berg K. Investigating speech recognition and listening effort with different device configurations in adult cochlear implant users. Cochlear Implants Int. 2018 May; 19(3): 119-30. doi: 10.1080/14670100.2018.1424513. PMID: 29457564.
27. Büchner A, Schwebs M, Lenarz T. Speech understanding and listening effort in cochlear implant users – microphone beamformers lead to significant improvements in noisy environments. Cochlear Implants Int. 2020; 21(1): 1-8. doi: 10.1080/14670100.2019.1661567.
28. Bräcker T, Hellmiss S, Batsoulis C, Petzold T, Gabel L, Möltner A, et al. Introducing real-life listening features into the clinical test environment: Part II: Measuring the hearing performance and evaluating the listening effort of individuals with a hearing implant. Cochlear Implants Int. 2019 Jul; 20(4):165-75. doi: 10.1080/14670100.2019.1579980. PMID: 30880637.
29. Dwyer RT, Gifford RH, Bess FH, Dorman M, Spahr A, Hornsby BWY. Diurnal cortisol levels and subjective ratings of effort and fatigue in adult cochlear implant users: a pilot study. Am J Audiol. 2019 Sep 13; 28(3): 686-96. doi: 10.1044/2019_AJA-19-0009. PMID: 31430174; PMCID: PMC6808310.
30. Zinfollino M, Cariddi C, Ardito A, Casulli M, Malerba P, Quaranta N. Long-term evolution of the electrical stimulation for cochlear implant adult patients: the role of a progressive adaptation method. Acta Otolaryngol. 2020; 140(2): 122-7. doi: 10.1080/00016489.2019.1700303.
31. Hughes SE, Watkins A, Rapport F, Boisvert I, McMahon CM, Hutchings HA. Rasch analysis of the Listening Effort Questionnaire-Cochlear Implant. Ear Hear. 2021 Nov-Dec; 42(6): 1699-711. doi: 10.1097/AUD.0000000000001059. PMID: 33950866.
32. Lopez EM, Dillon MT, Park LR, Rooth MA, Richter ME, Thompson NJ, et al. Influence of cochlear implant use on perceived listening effort in adult and pediatric cases of unilateral and asymmetric hearing loss. Otol Neurotol. 2021 Oct 1; 42(9): e1234-41. doi: 10.1097/MAO.0000000000003261. PMID: 34224547; PMCID: PMC8448920.
33. Stronks HC, Apperloo E, Koning R, Briaire JJ, Frijns JHM. SoftVoice improves speech recognition and reduces listening effort in cochlear implant users. Ear Hear. 2021 Mar-Apr; 42(2): 381-92. doi: 10.1097/AUD.0000000000000928. PMID: 32796352.
34. Abdel-Latif KHA, Meister H. Speech recognition and listening effort in cochlear implant recipients and normal-hearing listeners. Front Neurosci. 2022; 15: 725412. doi: 10.3389/fnins.2021.725412.
35. Mahalawy T, Emara A, Hussein A, Lasheen R. Listening effort in patients with sensorineural hearing loss using cochlear implant. Egypt J Ear Nose Throat Allied Sci. 2024; 25(25): 1-9. doi: 10.21608/ejentas.2022.140669.1516.
36. Kurz A, Rak K, Hagen R. Improved performance with automatic sound management 3 in the MED-EL SONNET 2 cochlear implant audio processor. PLoS One. 2022 Sep 15; 17(9): e0274446. doi: 10.1371/journal.pone.0274446.
37. Lambriks L, van Hoof M, Debruyne J, Janssen M, Chalupper J, van der Heijden K, et al. Imaging-based frequency mapping for cochlear implants: evaluated using a daily randomized controlled trial. Front Neurosci. 2023; 17: 1119933. doi: 10.3389/fnins.2023.1119933.
38. Hornsby Hornsby BWY, Picou EM, Ricketts TA, Gifford R. Listening-related fatigue in new and experienced adult cochlear implant users. Ear Hear. 2024 Jul-Aug; 45(4): 929-44. doi: 10.1097/AUD.0000000000001488.
39. Wagner TM, Wagner L, Plontke SK, Rahne T. Enhancing cochlear implant outcomes across age groups: the interplay of ForwardFocus and Advanced Combination Encoder coding strategies in noisy conditions. J Clin Med. 2024; 13(5): 1399. doi: 10.3390/jcm13051399.
40. Wesarg T, Wiebe K, Galindo Guerreros JC, Arndt S, Aschendorff A, Voß B. Speech Understanding and Subjective Listening Effort in Noise with Different OTEs and Sound Processing Technologies. Otol Neurotol. 2024 Feb 1; 45(2): e91-e101. doi: 10.1097/MAO.0000000000004091. PMID: 38206063.
41. Krueger M, Schulte M, Brand T, Holube I. Development of an adaptive scaling method for subjective listening effort. J Acoust Soc Am. 2017; 141(6): 4680-93. doi: 10.1121/1.4986938.
42. Likert R. A technique for the measurement of attitudes. Arch Psychol. 1932; 22: 5–55.
43. Gatehouse S, Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int J Audiol. 2004; 43(2): 85-99. doi: 10.1080/14992020400050014.
44. Wewers ME, Lowe NK. A critical review of visual analogue scales in the measurement of clinical phenomena. Res Nurs Health. 1990; 13(4): 227–36. doi: 10.1002/nur.4770130405.
45. Hennink MM. Focus group discussions. Oxford: Oxford University Press; 2013.
46. Kramer SE, Kapteyn TS, Houtgast T. Occupational performance: comparing normally-hearing and hearing-impaired employees using the Amsterdam Checklist for Hearing and Work. Int J Audiol. 2006; 45(9): 503–12. doi: 10.1080/14992020600754583.
47. Rönnberg J, Lunner T, Zekveld A, Sörqvist P, Danielsson H, Lyxell B, et al. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances. Front Syst Neurosci. 2013 Jul 13; 7: 31. doi: 10.3389/fnsys.2013.00031. PMID: 23874273; PMCID: PMC3710434.
48. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67(6):361-70. doi: 10.1111/j.1600-0447. 1983.tb09716.x.
49. Darnton G. Likert scales and questions: uses and abuses. Electron J Bus Res Methods. 2022; 22(1): 1748. doi: 10.34190/ecrm.22.1.1748.
50. Da Costa Júnior JF, Cabral ELS, De Souza RC, Bezerra DMC, Silva PTF. Um estudo sobre o uso da escala de Likert na coleta de dados qualitativos e sua correlação com as ferramentas estatísticas. Contrib Cienc Soc. 2023; 17(1): 021. doi: 10.55905/revconv.17n.1-021.
51. Listening Effort Questionnaire™ - Cochlear Implant: User Manual v3.1. Birmingham: The University of Birmingham; 2022.
52. Aryadoust V, Tan HAH, Ng LY. A scientometric review of Rasch measurement: the rise and progress of a specialty. Front Psychol. 2019; 10: 2197. doi: 10.3389/fpsyg.2019.02197.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Nathalia Porfirio dos Santos, Maria Valéria Schmidt Goffi-Gomez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.






