Artificial intelligence in the context of self-organization theory (problems of human-machine collaboration)

Authors

DOI:

https://doi.org/10.23925/2179-3565.2025v16i3p05-12

Keywords:

Artificlal Intelligence, Self-organization theory, Complex system, Adaptability, Diachronic emmergence, Law of U. Ashby, Biological-silicon collaboration, Ethical imperatives

Abstract

The focus of the authors is on the AI phenomenon, which can be interpreted by self-organization theory as a complex system. The paper considers key characteristics of AI, ways and possibilities of its development and training, integration into production, computational processes. In the course of the study, the authors identify important patterns of AI as a complex adaptive system: possibility of variable behavior depending on the level and volume of elements, unpredictability of decision-making (property of emergency). The article problematizes ethical issues related to the ability of effective management of complex AI systems, their correct and safe functioning.

Author Biographies

Evgeniya Nikolaeva, Kazan (Volga region) Federal University

Department of General Philosophy

Mikhail Nikolaev, Kazan (Volga region) Federal University

Department of General and Ethnic sociology

Nataliya Soldatova, Kazan (Volga region) Federal University, Kazan National Research Technical University

Department of General Philosophy

References

Abramova, A.V, Ignatiev A.G., Panova M.S (2021). Etika v oblasti iskusstvennogo intellekta - Ot diskussii k nauchnomu obosnovaniyu i prakticheskomu primeneniyu: Analiticheskiy doklad [Ethics in the field of artificial intelligence - From discussion to scientific justification and practical application: Analytical report]. Moscow: MGIMO-University.

Aguirre, A. (2020). When will the first weakly general AI system be devised, tested, and publicly announced? Metaculus. https://www.metaculus.com/questions/3479/date-weakly-general-ai-is-publicly-known/

AI Alliance Russia. (2021). Kodeks etiki v sfere II [Code of ethics in the field of artificial intelligence]. https://ethics.a-ai.ru/

Ashby, R.W. (1962). Konstruktsiya mozga: Proiskhozhdeniye adaptivnogo povedeniya [Brain design: Origin of adaptive behavior]. Moscow: Izd-vo inostrannoy literatury.

Ashby, R.W. (2005). Vvedeniye v kibernetiku [An introduction to cybernetics]. Moscow: URSS; ComBook.

Gershenson, C. (2024). Complexity, artificial life, and artificial intelligence. Artificial Life, 1-15. https://doi.org/10.1162/artl_a_00462

Haken, H. (1988). Information and self-organization: A macroscopic approach to complex systems. Berlin: Springer Series in Synergetics.

Haken, H. (2004). Synergetic computers and cognition: A top-down approach to neural nets. Berlin: Springer & Business Media.

Isackson, P. (2024, October 14). Outside the box: Can AI–human “collaboratories” save the world? Fairobserver.

https://www.fairobserver.com/more/science/outside-the-box-can-ai-human-collaboratories-save-the-world/#

Kurnosova, T., Filippov, A. (2023). Iskusstvennyy intellekt, kak istochnik vozmozhnostey i ugroz ekonomicheskogo razvitiya [Artificial intelligence as a source of opportunities and threats for economic development]. Innovation and investment, 12, 498-503.

Medvedev, Yu. (2023). Iskusstvennyy intellekt vyuchil yazyk, kotoromu yego ne obuchali [Artificial intelligence learned a language it was not taught]. Rossiiskaia Gazeta [Ros. Gaz.] 18.04.2023. https://rg.ru/2023/04/18/iskusstvennyj-intellekt-vyuchil-iazyk-kotoromu-ego-ne-obuchali.html

Morin, E. (1980). La méthode, La vie de la vie. Tome 2: La Vie de la vie. Paris: Seuil.

Morin, E. (2000). Les sept savoirs nécessaires à l'éducation du future. Paris: Seuil.

Morin, E. (2001). L'humanité de l'humanité: l'identité humaine. La méthode - Tome 5. Paris: Seuil.

Morin, E. (2002). Le complexus, ce qui est tissé ensemble. In R. Benkirane (Dir.), La complexité, vertiges et promesses. Dix-huit histoires de sciences. Paris: Poche-Le Pommier.

Nakazaki, T. (2024, July 31). Data protection laws and regulations trends in AI governance in Japan 2024-2025. London: International Comparative Legal Guides. https://iclg.com/practice-areas/data-protection-laws-and-regulations/02-trends-in-ai-governance-in-japan

Pan, X., Dai, J., Fan, Y., Yang, M. (2024). Frontier AI systems have surpassed the self-replicating red line. New York: Ithaca. https://doi.org/10.48550/arXiv.2412.12140

Ping, G., Qian, Y. (2020). Synergetic learning systems: Concept, architecture, and algorithms. Neural and evolutionary computing. New York: Ithaca. http://dx.doi.org/10.48550/arXiv.2006.06367

Prigogine, I., Stengers, I. (1984). Order out of chaos man's new dialogue with nature. London: Heinemann.

Spitale, G., Biller-Andorno, N., Germani, F. (2023). AI model GPT-3 (dis)informs us better than humans. Science Advances, 9(26), eadh1850. https://doi.org/10.1126/sciadv.adh1850

Szczepański, M. (2019). Economic impacts of artificial intelligence (AI). EPRS - European Parliamentary Research Service. https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/637967/EPRS_BRI(2019)637967_EN.pdf

United Nations Educational, Scientific and Cultural Organization [UNESCO]. (2022). Recommendation on the ethics of artificial intelligence. Paris: UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000381137

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E.H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., Fedus, W. (2022). Emergent abilities of large language models. New York: Ithaca. https://doi.org/10.48550/arXiv.2206.07682

Wilson, J.H., Daugherty, P.R. (2018). Collaborative intelligence: Humans and AI are joining forces. Massachusetts: Harvard Business School Publishing. https://hbr.org/2018/07/collaborative-intelligence-humans-and-ai-are-joining-forces

Yi, Z. (2019). Beijing artificial intelligence principles. International Research Center for AI Ethics and Governance. https://ai-ethics-and-governance.institute/beijing-artificial-intelligence-principles/ (accessed on February 15, 2025).

Published

2025-10-22