Vehicle theft prediction in Rio de Janeiro using machine learning algorithms
DOI:
https://doi.org/10.23925/ddem.v.3.n.15.72333Keywords:
neural networks, decision trees, predictive models, Public Security, Vehicle TheftAbstract
Predictions of crime variables are useful for tactical resource deployment, personnel allocation, and strategic planning, increasing the tactical and strategic awareness of police forces. In the United States, predictive methods are widely used to anticipate trends and identify locations and individuals prone to future victimization. However, national literature still lacks models capable of anticipating crime trends, with some exceptions, such as the CrimeVis tool and other studies with more modest prediction techniques. The evolution and popularization of artificial intelligence (AI), especially machine learning, allows for faster, cheaper, and more accurate predictions, helping to solve problems earlier. The application of AI can process and analyze large amounts of information quickly, improving decision-making. The main objective of this work is to evaluate which modeling approach – decision trees or neural networks – offers greater accuracy in predicting vehicle thefts in the city of Rio de Janeiro, contributing to the development of predictive tools that can assist authorities and public security agencies in the efficient allocation of resources and in the strategic planning of prevention policies. The accuracy of the models will be compared using the Mean Squared Error (MSE).
References
AGRAWAL, Ajay. The economics of artificial intelligence. McKinsey Analytics, abril de 2018. Disponível em: https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-economics-of-artificialintelligence. Acesso em 28/11/2025.
ALVES, P. C. P.; PRADO S. C. C. 2022. Estudo Comparativo entre algoritmos de machine learning aplicados à previsão de series temporal do mercado financeiro. In: IX Congresso de trabalhos de graduação faculdade de tecnologia e Mococa, 2022, São Paulo, SP, Brasil. Vol.9 N.1 A.2022.
BREIMAN, L., FRIEDMAN, J., STONE, C. J.; OLSHEN, R. A. (1984). Classification and Regression Trees. CRC Press.
GOODFELLO W, I., BENGIO, Y.; COURVILLE, A. (2016). Deep Learning. MIT Press. Disponível em: https://www.deeplearningbook.org/. Acesso em 28/11/2025.
HAN, J., KAMBER, M.; PEI, J. (2011). Data Mining: Concepts and Techniques. Elsevier.
HYNDMAN, R. J.; ATHANASOPOULOS, G. (2018). Forecasting: principles and practice. OTexts. Disponível em: https://otexts.com/fpp3/. Acesso em 28/11/2025.
Instituto de Segurança Pública. (2023). Relatório Anual de Estatísticas de Segurança Pública no Rio de Janeiro. Acesso em 2023, disponível em: www.isp.rj.gov.br. Acesso em 28/11/2025.
MEIJER, A.; WESSELS, M. Predictive policing: review of benefits and drawbacks. International Journal of Public Administration, v. 42, n. 12, p. 1031-1039, 2019. Disponível em: https://www.tandfonline.com/doi/full/10.1080/01900692.2019.1575664. Acesso em 28/11/2025.
PERRY, W. et al. Predictive policing: the role of crime forecasting in law enforcement operations. [s.l.]: Rand Corporation, 2013. Disponível em: https://www.rand.org/pubs/research_reports/RR233.html. Acesso em 28/11/2025.
PROVENZA, M. M.; COSTA, J. F. da S.; SILVA, L. D. C. Análise e previsão de séries temporais do homicídio doloso no Rio de Janeiro. Revista Cadernos de Estudos Sociais e Políticos, v. 4, n. 7, p. 63-85, 2015. Disponível em: https://www.e-publicacoes.uerj.br/index.php/CESP/article/view/18992/13810. Acesso em 28/11/2025.
ROEDER, O. K. et al. What caused the crime decline? New York: Brennan Center for Justice, 2015. p. 142. Disponível em: https://www.brennancenter.org/sites/default/files/publications/What_Caused_The_Crime_Decline.pdf. Acesso em 28/11/2025.
SILVA, L. J. S. et al. CrimeVis: an interactive visualization system for analyzing crime data in the State of Rio de Janeiro. In: INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, 19., 2017, Porto, Portugal. Proceedings... Porto: Iceis, 2017. p. 193-200. Disponível em: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006258701930200. Acesso em 28/11/2025.
TASHMAN, L. J. Out-of-sample tests of forecasting accuracy: analysis and review. International Journal of Forecasting, v. 16, n. 4, p. 437-450, 2000. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0169207000000650. Acesso em 28/11/2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Democratic Rights & Modern State

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a License Creative Commons Atribuição 4.0 Internacional.
The authors grant the journal all copyrights relating to the published works. The concepts issued in signed articles are the absolute and exclusive responsibility of their authors.
DD&EM Magazine - ISSN 2675-7648













