Um modelo algébrico para a lógica modal KD

Autores

  • Hércules de Araujo Feitosa UNESP - FC - Bauru
  • Marcelo Reicher Soares UNESP - FC - Bauru
  • Cristiane Alexandra Lázaro UNESP- FC - Bauru

DOI:

https://doi.org/10.23925/2316-5278.2022v23i1:e59916

Resumo

Deontic logic is a branch of symbolic logic interested in notions such as obligatory, permissible, optional, ought, and others similar. There are some equivalent ways to present the Standard Deontic Logic or KD. In this paper, we will mention some of them and highlight one that is of interest. With this presentation we can propose a simple algebraic model for the Standard Deontic Logic.

Metrics

Carregando Métricas ...

Referências

BELL, J. L.; MACHOVER, M. A course in mathematical logic. Amsterdam: North-Holland, 1977. BLACKBURN, P.; RIJKE, M.; VENEMA, Y. Modal logic. Cambridge: Cambridge University

Press, 2001.

CARNIELLI, W. A.; PIZZI, C. Modalità e multimodalità. Milano: Franco Angeli, 2001.

CHAGROV, A.; ZAKHARYASCHEV, M. Modal logic. Oxford: Clarendon Press, 1997.

CHELLAS, B. Modal Logic: an introduction. Cambridge: Cambridge University Press, 1980.

DUNN, J. M.; HARDEGREE, G. M. Algebraic methods in philosophical logic. Oxford: Oxford University Press, 2001.

EBBINGHAUS, H. D.; FLUM, J.; THOMAS, W. Mathematical logic. New York: Springer-Verlag, 1984.

ENDERTON, H. B. A mathematical introduction to logic. San Diego: Academic Press, 1972. FEITOSA, H. A.; SOARES, M. R.; LÁZARO, C. A. Lógica deôntica básica e filtros. Argumentos

Revista de Filosofia, ano 11, n. 22, p. 7-16, 2019. DOI: https://doi.org/10.36517/Argumentos.22.1 FITTING, M.; MENDELSOHN, R. L. First-order modal logic. Dordrecht: Kluwer, 1998.

MENDELSON, E. Introduction to mathematical logic. 3. ed. Monterey, CA: Wadsworth and Brooks / Cole Advanced Books and Software, 1987.

MIRAGLIA, F. Cálculo proposicional: uma interação da álgebra e da lógica. Campinas: UNI- CAMP/CLE, 1987. (Coleção CLE, v. 1).

RASIOWA, H.; SIKORSKI, R. The mathematics of metamathematics. 2. ed. Waszawa: PWN - Pol- ish Scientific Publishers, 1968.

RASIOWA, H. An algebraic approach to non-classical logics. Amsterdam: North-Holland, 1974.

Downloads

Publicado

2022-11-16

Como Citar

Feitosa, H. de A., Soares, M. R., & Lázaro, C. A. (2022). Um modelo algébrico para a lógica modal KD. Cognitio: Revista De Filosofia, 23(1), e59916. https://doi.org/10.23925/2316-5278.2022v23i1:e59916

Edição

Seção

Artigos Cognitio