Risco de crédito em programas de microcrédito: o papel das váriáveis de gênero, idade e escolaridade
DOI:
https://doi.org/10.23925/2446-9513.2025v12id70181Palavras-chave:
Risco de Crédito, Microfinanças, Gênero, Idade, EscolaridadeResumo
O presente estudo teve como objetivo analisar o risco de crédito de uma operação de microcrédito líder no Brasil, tanto em número de clientes atendidos quanto em dimensão da carteira de ativos. O estudo considerou uma amostra de 10 mil operações contratadas no ano de 2022, selecionadas aleatoriamente, e a análise de regressão logística multivariada foi aplicada para investigar como a inadimplência se associa com os dados dos grupos de pessoas. O modelo final selecionado considerou seis variáveis independentes, todas significativas, e os resultados mostram que variáveis demográficas como idade, escolaridade e gênero diferenciam significativamente os grupos de inadimplentes e adimplentes. A quantidade de homens e de analfabetos tiveram coeficientes positivos, o que sugere que um aumento nessas variáveis está associado a um aumento na chance de inadimplência. Já a média de idade teve um coeficiente negativo, sugerindo que um aumento nessa variável está associado a uma redução na probabilidade de inadimplência.
Referências
AGARWAL, Sumit; CHOMSISENGPHET, Souphala; LIU, Chunlin. Consumer bankruptcy and default: The role of individual social capital. Journal of Economic Psychology, v. 32, n. 4, p. 632-650, 2011. doi: 10.1016/j.joep.2010.11.007
AL-AZZAM, Moh’d; PARMETER, Christopher. Competition and microcredit interest rates: international evidence. Empirical economics, v. 60, p. 829-868, 2021. doi: 10.1007/s00181- 019-01766-6.
AMWAYI, Eunice Andeyo; OMETE, Francis Ikapel; ASAKANIA, Francis Mukatia. Analysis of group based loan default in Kenya: The case of Agricultural Finance Corporation of Kenya. IOSR Journal of Economics and Finance, v. 4, n. 2, p. 19-26, 2014. doi: 10.9790/5933-0421926. doi: 10.9790/5933-0421926.
ARMENDÁRIZ DE AGHION, Beatriz; MORDUCH, Jonathan. Microfinance beyond group lending. Economics of transition, v. 8, n. 2, p. 401-420, 2000. doi: 10.1111/1468-0351.00049.
BALAND, Jean-Marie et al. Repayment and exclusion in a microfinance experiment. Journal of Economic Behavior & Organization, v. 137, p. 176-190, 2017. doi: 10.1016/j.jebo.2017.02.007.
BARONE, F. et al. Introdução ao Microcrédito. Brasília: Conselho da Comunidade Solidária. 2002. Recuperado de https://www.bcb.gov.br/content/publicacoes/ outras_pub_alfa/microcredito.pdf
BELLOTTI, Tony; CROOK, Jonathan. Forecasting and stress testing credit card default using dynamic models. International Journal of Forecasting, v. 29, n. 4, p. 563-574, 2013. doi: 10.1016/j.ijforecast.2013.04.003.
BERGER, Allen N.; FRAME, W. Scott; MILLER, Nathan H. Credit scoring and the availability, price, and risk of small business credit. Journal of money, credit and banking, p. 191-222, 2005.. Recuperado de https://www.jstor.org/stable/3838924
BIJAK, Katarzyna; THOMAS, Lyn C. Does segmentation always improve model performance in credit scoring?. Expert Systems with Applications, v. 39, n. 3, p. 2433-2442, 2012. doi: 10.1016/j.eswa.2011.08.093.
CORNÉE, Simon. Internal credit rating in social banking: the role of subjective and experiential factors. In: Congrès AFFI 2009. 2009. p. 28 p.
DAUD, Mohamad Syahmi Mat et al. Determinants of Microenterprise Performance among Microcredit Clients in Urban Areas of Malaysia. Akademika, v. 93, n. 2, p. 103-114, 2023. doi: 10.17576/akad-2023-9302-09.
DELLIEN, H. Credit Scoring in Microfinance: Guidelines Based on Experience with WWB Affiliates in Colombia and the Dominican Republic. Women’s World Banking, v. 1, n. 2, p. 1-15, 2003. Recuperado de https://www.findevgateway.org/sites/ default/files/publications/files/mfg-en-paper-credit-scoring-in-microfinance-guidelines-based-on-experience-with-wwb-affiliates-in- colombia-and-the-dominican-republic-oct-2003.pdf.
FISHELSON-HOLSTEIN, Hollis. Credit scoring role in increasing homeownership for underserved populations. 2005. Recuperado de https://www.jchs.harvard.edu/ sites/default/files/babc_04-12.pdf
FLORES, Silvia Amélia Mendonça; VIEIRA, Kelmara Mendes. Propensity toward indebtedness: An analysis using behavioral factors. Journal of Behavioral and Experimental Finance, v. 3, p. 1-10, 2014. doi: 10.1016/j.jbef.2014.05.001.
GINÉ, Xavier; KARLAN, Dean S. Group versus individual liability: Short and long term evidence from Philippine microcredit lending groups. Journal of development Economics, v. 107, p. 65-83, 2014. doi: 10.1016/j.jdeveco.2013.11.003.
GREIG, Bruce; NUTHALL, Peter; OLD, Kevin. Farmers’ characteristics’ and the propensity to reduce debt: The case for New Zealand (NZ) primary producers. Agricultural Finance Review, v. 79, n. 5, p. 614-632, 2019. doi: 10.1108/AFR-02-2019-0020.
THE ECONOMIST. How microcredit can help poor countries after natural disasters. (2018). Recuperado de https://www.economist.com/finance-and- economics/ 2018/01/25/how-microcredit-can-help-poor-countries-after-natural-disasters
HULL, John. Risk management and financial institutions,+ Web Site. John Wiley & Sons, 2012.
IBTISSEM, Baklouti; BOURI, Abdelfettah. Credit risk management in microfinance: The conceptual framework. ACRN Journal of Finance and Risk Perspectives, v. 2, n. 1, p. 9-24, 2013. Recuperado de https://api.semanticscholar.org/CorpusID:18647272.
IBGE. Instituto Brasileiro de Geografia e Estatística. Estatística dos Cadastros de Microempreendedores Individuais 2021. Recuperado de https://agenciadenoticias. ibge.gov.br.
KEESE, M. Triggers and determinants of severe household indebtedness in Germany. 2009. doi: 10.2139/ssrn.1514363
KIARIE, Francis K.; NZUKI, D. M.; GICHUHI, A. W. Influence of socio-demographic determinants on credit cards default risk in commercial banks in Kenya. International Journal of Science and Research, v. 4, n. 5, p. 1611-1615, 2015. Recuperado de https://business.ku.ac.ke/images/stories/research/influence_of_socio_demographic_deter minants.pdf
KONO, Hisaki; TAKAHASHI, Kazushi. Microfinance revolution: Its effects, innovations, and challenges. The Developing Economies, v. 48, n. 1, p. 15-73, 2010. doi: 10.1111/j.1746- 1049.2010.00098.x.
KUHN, M.; OLSEN, A. B. Credit scoring in microfinance. Opportunity International, v. 9, n. 1, p. 1-14, 2008. Recuperado de https://www.findevgateway.org/sites/ default/files/publications/files/mfg-en-paper-credit-scoring-in-microfinance-sep-2008.pdf
LASSOUED, Naima. What drives credit risk of microfinance institutions? International evidence. International Journal of Managerial Finance, v. 13, n. 5, p. 541-559, 2017. doi: 10.1108/IJMF-03-2017-0042
BRASIL. Lei n. 11.110, de 25 de abril de 2005. Programa Nacional de Microcrédito Produtivo Orientado - PNMPO. Brasília, DF, 2005. Recuperado de https://www.planalto.gov.br/ccivil_03/_ato2004- 2006/2005/lei/l11110.htm
LI, Yingying; LI, Ying; LI, Yan. What factors are influencing credit card customer’s default behavior in China? A study based on survival analysis. Physica A: Statistical Mechanics and its Applications, v. 526, p. 120861, 2019. doi: 10.1016/j.physa.2019.04.097
MAVRI, Maria et al. A two-stage dynamic credit scoring model, based on customers’ profile and time horizon. Journal of Financial Services Marketing, v. 13, p. 17-27, 2008. doi: 10.1057/ fsm.2008.2
MOURÃO, Gustavo Nunes. O modelo original de microcrédito e sua versão brasileira: o que deu errado?. Revista da FAE, v. 22, n. 1, p. 35-50, 2019. Recuperado de https://revistafae.fae.edu/ revistafae/article/view/634
OLADEEBO, J. O.; OLADEEBO, O. E. Determinants of loan repayment among smallholder farmers in Ogbomoso agricultural zone of Oyo State, Nigeria. Journal of Social Sciences, v. 17, n. 1, p. 59-62, 2008.. doi: 10.1080/09718923.2008.11892634
PESARAN, M. Hashem et al. Macroeconomic dynamics and credit risk: a global perspective. Journal of Money, Credit and Banking, p. 1211-1261, 2006. Recuperado de https://www.jstor.org/stable/3839005
PONCHIO, Mateus Canniatti. The influence of materialism on consumption indebtedness in the context of low income consumers from the city of São Paulo. 2006. Tese de Doutorado. Recuperado de: https://repositorio.fgv.br/server/api/core/ bitstreams/68c9fe15-eb2e-4253-aad8- e1466b989ca9/content
PORTO, Nilton; HUANG, Yu; XIAO, Jing Jian. Credit card adoption and usage in china: urban–rural comparisons. The Singapore Economic Review, v. 64, n. 01, p. 41-56, 2019. doi: 10.1142/S021759081743010X
PROVENZANO, Angela Rita et al. Machine learning approach for credit scoring. arXiv preprint arXiv:2008.01687, 2020. doi: 10.48550/arXiv.2008.01687
RIBEIRO, Adauto R. A IMPORTÂNCIA DO MICROCRÉDITO. Revista Análise, v. 3, n. 5, p. 49-56, 2002. Recuperado de https://revistas.anchieta.br/index.php/Revistanalise/ article/view/369/311
SHARMA, Manohar; ZELLER, Manfred. Repayment performance in group-based credit programs in Bangladesh: An empirical analysis. World development, v. 25, n. 10, p. 1731-1742, 1997. doi: 10.1016/S0305-750X(97)00063-6
SCHREINER, Mark. Can credit scoring help attract profit-minded investors to microcredit?. In: New partnerships for innovation in microfinance. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 198-222. doi: 10.1007/978-3-540-76641-4_12
SEVIM, Nurdan; TEMIZEL, Fatih; SAYILIR, Özlem. The effects of financial literacy on the borrowing behaviour of T urkish financial consumers. International Journal of Consumer Studies, v. 36, n. 5, p. 573-579, 2012. doi: 10.1111/j.1470-6431.2012.01123.x
STIGLITZ, Joseph E. Peer monitoring and credit markets. The world bank economic review, v. 4, n. 3, p. 351-366, 1990. Recuperado de https://www.jstor.org/stable/3989881
THE WORLD BANK. Enterprise Surveys - Brazil. 2022. Recuperado de https://www.enterprisesurveys.org/en/enterprisesurveys.
THOMAS, Lyn; CROOK, Jonathan; EDELMAN, David. Credit scoring and its applications. Society for industrial and Applied Mathematics, 2017.
VAN GOOL, Joris et al. Credit scoring for microfinance: is it worth it?. International Journal of Finance & Economics, v. 17, n. 2, p. 103-123, 2012. https://doi.org/10.1002/ijfe.444.
VARIAN, Hal R. Monitoring agents with other agents. Journal of Institutional and Theoretical Economics (JITE)/Zeitschrift für die gesamte Staatswissenschaft, p. 153-174, 1990. Recuperado de https://www.jstor.org/stable/40751313
WANG, Lili; LU, Wei; MALHOTRA, Naresh K. Demographics, attitude, personality and credit card features correlate with credit card debt: A view from China. Journal of economic psychology, v. 32, n. 1, p. 179-193, 2011. doi: 10.1016/j.joep.2010.11.006
WONG, Hwee Bee; LIM, Gek Hsiang. Measures of diagnostic accuracy: sensitivity, specificity, PPV and NPV. Proceedings of Singapore healthcare, v. 20, n. 4, p. 316-318, 2011. doi: 10.1177/201010581102000411
YAP, Bee Wah; ONG, Seng Huat; HUSAIN, Nor Huselina Mohamed. Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Systems with Applications, v. 38, n. 10, p. 13274-13283, 2011. doi: 10.1016/j.eswa.2011.04.147
YUNUS, Muhammad. Expanding microcredit outreach to reach: The millennium development goal–some issues for attention. In: International seminar on attacking poverty with microcredit, Dhaka. 2003. p. 8-9.
ZHAO, Zongyuan et al. Investigation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Systems with Applications, v. 42, n. 7, p. 3508-3516, 2015. doi: 10.1016/j.eswa.2014.12.006.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Antonio Martiningo Filho

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.