Credit risk in microcredit programs: the role of gender, age, and education variables

Authors

DOI:

https://doi.org/10.23925/2446-9513.2025v12id70181

Keywords:

credit risk, microfinance, gender, age, education

Abstract

This study aimed to analyze the credit risk of a leading microcredit operation in Brazil, both in terms of the number of clients served and the size of the asset portfolio. The study considered a sample of 10,000 operations contracted in 2022, randomly selected, and multivariate logistic regression analysis was applied to investigate how default is associated with data from groups of people. The final model selected considered six independent variables, all significant, and the results show that demographic variables such as age, education, and gender significantly differentiate the groups of defaulters and compliant borrowers. The number of men and illiterate individuals had positive coefficients, which suggests that an increase in these variables is associated with an increase in the chance of default. The average age had a negative coefficient, suggesting that an increase in this variable is associated with a reduction in the probability of default.

References

AGARWAL, Sumit; CHOMSISENGPHET, Souphala; LIU, Chunlin. Consumer bankruptcy and default: The role of individual social capital. Journal of Economic Psychology, v. 32, n. 4, p. 632-650, 2011. doi: 10.1016/j.joep.2010.11.007

AL-AZZAM, Moh’d; PARMETER, Christopher. Competition and microcredit interest rates: international evidence. Empirical economics, v. 60, p. 829-868, 2021. doi: 10.1007/s00181- 019-01766-6.

AMWAYI, Eunice Andeyo; OMETE, Francis Ikapel; ASAKANIA, Francis Mukatia. Analysis of group based loan default in Kenya: The case of Agricultural Finance Corporation of Kenya. IOSR Journal of Economics and Finance, v. 4, n. 2, p. 19-26, 2014. doi: 10.9790/5933-0421926. doi: 10.9790/5933-0421926.

ARMENDÁRIZ DE AGHION, Beatriz; MORDUCH, Jonathan. Microfinance beyond group lending. Economics of transition, v. 8, n. 2, p. 401-420, 2000. doi: 10.1111/1468-0351.00049.

BALAND, Jean-Marie et al. Repayment and exclusion in a microfinance experiment. Journal of Economic Behavior & Organization, v. 137, p. 176-190, 2017. doi: 10.1016/j.jebo.2017.02.007.

BARONE, F. et al. Introdução ao Microcrédito. Brasília: Conselho da Comunidade Solidária. 2002. Recuperado de https://www.bcb.gov.br/content/publicacoes/ outras_pub_alfa/microcredito.pdf

BELLOTTI, Tony; CROOK, Jonathan. Forecasting and stress testing credit card default using dynamic models. International Journal of Forecasting, v. 29, n. 4, p. 563-574, 2013. doi: 10.1016/j.ijforecast.2013.04.003.

BERGER, Allen N.; FRAME, W. Scott; MILLER, Nathan H. Credit scoring and the availability, price, and risk of small business credit. Journal of money, credit and banking, p. 191-222, 2005.. Recuperado de https://www.jstor.org/stable/3838924

BIJAK, Katarzyna; THOMAS, Lyn C. Does segmentation always improve model performance in credit scoring?. Expert Systems with Applications, v. 39, n. 3, p. 2433-2442, 2012. doi: 10.1016/j.eswa.2011.08.093.

CORNÉE, Simon. Internal credit rating in social banking: the role of subjective and experiential factors. In: Congrès AFFI 2009. 2009. p. 28 p.

DAUD, Mohamad Syahmi Mat et al. Determinants of Microenterprise Performance among Microcredit Clients in Urban Areas of Malaysia. Akademika, v. 93, n. 2, p. 103-114, 2023. doi: 10.17576/akad-2023-9302-09.

DELLIEN, H. Credit Scoring in Microfinance: Guidelines Based on Experience with WWB Affiliates in Colombia and the Dominican Republic. Women’s World Banking, v. 1, n. 2, p. 1-15, 2003. Recuperado de https://www.findevgateway.org/sites/ default/files/publications/files/mfg-en-paper-credit-scoring-in-microfinance-guidelines-based-on-experience-with-wwb-affiliates-in- colombia-and-the-dominican-republic-oct-2003.pdf.

FISHELSON-HOLSTEIN, Hollis. Credit scoring role in increasing homeownership for underserved populations. 2005. Recuperado de https://www.jchs.harvard.edu/ sites/default/files/babc_04-12.pdf

FLORES, Silvia Amélia Mendonça; VIEIRA, Kelmara Mendes. Propensity toward indebtedness: An analysis using behavioral factors. Journal of Behavioral and Experimental Finance, v. 3, p. 1-10, 2014. doi: 10.1016/j.jbef.2014.05.001.

GINÉ, Xavier; KARLAN, Dean S. Group versus individual liability: Short and long term evidence from Philippine microcredit lending groups. Journal of development Economics, v. 107, p. 65-83, 2014. doi: 10.1016/j.jdeveco.2013.11.003.

GREIG, Bruce; NUTHALL, Peter; OLD, Kevin. Farmers’ characteristics’ and the propensity to reduce debt: The case for New Zealand (NZ) primary producers. Agricultural Finance Review, v. 79, n. 5, p. 614-632, 2019. doi: 10.1108/AFR-02-2019-0020.

THE ECONOMIST. How microcredit can help poor countries after natural disasters. (2018). Recuperado de https://www.economist.com/finance-and- economics/ 2018/01/25/how-microcredit-can-help-poor-countries-after-natural-disasters

HULL, John. Risk management and financial institutions,+ Web Site. John Wiley & Sons, 2012.

IBTISSEM, Baklouti; BOURI, Abdelfettah. Credit risk management in microfinance: The conceptual framework. ACRN Journal of Finance and Risk Perspectives, v. 2, n. 1, p. 9-24, 2013. Recuperado de https://api.semanticscholar.org/CorpusID:18647272.

IBGE. Instituto Brasileiro de Geografia e Estatística. Estatística dos Cadastros de Microempreendedores Individuais 2021. Recuperado de https://agenciadenoticias. ibge.gov.br.

KEESE, M. Triggers and determinants of severe household indebtedness in Germany. 2009. doi: 10.2139/ssrn.1514363

KIARIE, Francis K.; NZUKI, D. M.; GICHUHI, A. W. Influence of socio-demographic determinants on credit cards default risk in commercial banks in Kenya. International Journal of Science and Research, v. 4, n. 5, p. 1611-1615, 2015. Recuperado de https://business.ku.ac.ke/images/stories/research/influence_of_socio_demographic_deter minants.pdf

KONO, Hisaki; TAKAHASHI, Kazushi. Microfinance revolution: Its effects, innovations, and challenges. The Developing Economies, v. 48, n. 1, p. 15-73, 2010. doi: 10.1111/j.1746- 1049.2010.00098.x.

KUHN, M.; OLSEN, A. B. Credit scoring in microfinance. Opportunity International, v. 9, n. 1, p. 1-14, 2008. Recuperado de https://www.findevgateway.org/sites/ default/files/publications/files/mfg-en-paper-credit-scoring-in-microfinance-sep-2008.pdf

LASSOUED, Naima. What drives credit risk of microfinance institutions? International evidence. International Journal of Managerial Finance, v. 13, n. 5, p. 541-559, 2017. doi: 10.1108/IJMF-03-2017-0042

BRASIL. Lei n. 11.110, de 25 de abril de 2005. Programa Nacional de Microcrédito Produtivo Orientado - PNMPO. Brasília, DF, 2005. Recuperado de https://www.planalto.gov.br/ccivil_03/_ato2004- 2006/2005/lei/l11110.htm

LI, Yingying; LI, Ying; LI, Yan. What factors are influencing credit card customer’s default behavior in China? A study based on survival analysis. Physica A: Statistical Mechanics and its Applications, v. 526, p. 120861, 2019. doi: 10.1016/j.physa.2019.04.097

MAVRI, Maria et al. A two-stage dynamic credit scoring model, based on customers’ profile and time horizon. Journal of Financial Services Marketing, v. 13, p. 17-27, 2008. doi: 10.1057/ fsm.2008.2

MOURÃO, Gustavo Nunes. O modelo original de microcrédito e sua versão brasileira: o que deu errado?. Revista da FAE, v. 22, n. 1, p. 35-50, 2019. Recuperado de https://revistafae.fae.edu/ revistafae/article/view/634

OLADEEBO, J. O.; OLADEEBO, O. E. Determinants of loan repayment among smallholder farmers in Ogbomoso agricultural zone of Oyo State, Nigeria. Journal of Social Sciences, v. 17, n. 1, p. 59-62, 2008.. doi: 10.1080/09718923.2008.11892634

PESARAN, M. Hashem et al. Macroeconomic dynamics and credit risk: a global perspective. Journal of Money, Credit and Banking, p. 1211-1261, 2006. Recuperado de https://www.jstor.org/stable/3839005

PONCHIO, Mateus Canniatti. The influence of materialism on consumption indebtedness in the context of low income consumers from the city of São Paulo. 2006. Tese de Doutorado. Recuperado de: https://repositorio.fgv.br/server/api/core/ bitstreams/68c9fe15-eb2e-4253-aad8- e1466b989ca9/content

PORTO, Nilton; HUANG, Yu; XIAO, Jing Jian. Credit card adoption and usage in china: urban–rural comparisons. The Singapore Economic Review, v. 64, n. 01, p. 41-56, 2019. doi: 10.1142/S021759081743010X

PROVENZANO, Angela Rita et al. Machine learning approach for credit scoring. arXiv preprint arXiv:2008.01687, 2020. doi: 10.48550/arXiv.2008.01687

RIBEIRO, Adauto R. A IMPORTÂNCIA DO MICROCRÉDITO. Revista Análise, v. 3, n. 5, p. 49-56, 2002. Recuperado de https://revistas.anchieta.br/index.php/Revistanalise/ article/view/369/311

SHARMA, Manohar; ZELLER, Manfred. Repayment performance in group-based credit programs in Bangladesh: An empirical analysis. World development, v. 25, n. 10, p. 1731-1742, 1997. doi: 10.1016/S0305-750X(97)00063-6

SCHREINER, Mark. Can credit scoring help attract profit-minded investors to microcredit?. In: New partnerships for innovation in microfinance. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 198-222. doi: 10.1007/978-3-540-76641-4_12

SEVIM, Nurdan; TEMIZEL, Fatih; SAYILIR, Özlem. The effects of financial literacy on the borrowing behaviour of T urkish financial consumers. International Journal of Consumer Studies, v. 36, n. 5, p. 573-579, 2012. doi: 10.1111/j.1470-6431.2012.01123.x

STIGLITZ, Joseph E. Peer monitoring and credit markets. The world bank economic review, v. 4, n. 3, p. 351-366, 1990. Recuperado de https://www.jstor.org/stable/3989881

THE WORLD BANK. Enterprise Surveys - Brazil. 2022. Recuperado de https://www.enterprisesurveys.org/en/enterprisesurveys.

THOMAS, Lyn; CROOK, Jonathan; EDELMAN, David. Credit scoring and its applications. Society for industrial and Applied Mathematics, 2017.

VAN GOOL, Joris et al. Credit scoring for microfinance: is it worth it?. International Journal of Finance & Economics, v. 17, n. 2, p. 103-123, 2012. https://doi.org/10.1002/ijfe.444.

VARIAN, Hal R. Monitoring agents with other agents. Journal of Institutional and Theoretical Economics (JITE)/Zeitschrift für die gesamte Staatswissenschaft, p. 153-174, 1990. Recuperado de https://www.jstor.org/stable/40751313

WANG, Lili; LU, Wei; MALHOTRA, Naresh K. Demographics, attitude, personality and credit card features correlate with credit card debt: A view from China. Journal of economic psychology, v. 32, n. 1, p. 179-193, 2011. doi: 10.1016/j.joep.2010.11.006

WONG, Hwee Bee; LIM, Gek Hsiang. Measures of diagnostic accuracy: sensitivity, specificity, PPV and NPV. Proceedings of Singapore healthcare, v. 20, n. 4, p. 316-318, 2011. doi: 10.1177/201010581102000411

YAP, Bee Wah; ONG, Seng Huat; HUSAIN, Nor Huselina Mohamed. Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Systems with Applications, v. 38, n. 10, p. 13274-13283, 2011. doi: 10.1016/j.eswa.2011.04.147

YUNUS, Muhammad. Expanding microcredit outreach to reach: The millennium development goal–some issues for attention. In: International seminar on attacking poverty with microcredit, Dhaka. 2003. p. 8-9.

ZHAO, Zongyuan et al. Investigation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Systems with Applications, v. 42, n. 7, p. 3508-3516, 2015. doi: 10.1016/j.eswa.2014.12.006.

Published

2025-04-02

How to Cite

Martiningo Filho, A. (2025). Credit risk in microcredit programs: the role of gender, age, and education variables. Redeca, Revista Eletrônica Do Departamento De Ciências Contábeis & Departamento De Atuária E Métodos Quantitativos, 12, e70181. https://doi.org/10.23925/2446-9513.2025v12id70181

Issue

Section

Artigos