Modeling the occurrence of vehicle claims for the State of Minas Gerais - Brazil via Bayesian inference
DOI:
https://doi.org/10.23925/2446-9513.2022v9id58647Keywords:
Parametric inference, Risk levels, Total lossAbstract
Claims occurrence modeling is commonly done using logistic regression, but this model can present low predictive capacity in situations of unbalanced data. Alternatively, regression models that deal with excess zeros, such as zero-inflated or zero-adjusted distributions, can be used. In this paper, we aim to model the occurrence of claims that resulted in total loss in vehicles in the state of Minas Gerais in 2019. We considered the Zero Adjusted Binomial (ZABI) regression with the Bayesian framework, inserting covariates related to the characteristics of the insured. We noted that risk profiles of policyholders characterized by the variables gender and age were significantly associated with the claim, suggesting a reduction on the probability of occurrence in female policyholders, when compared to male policyholders. Under the Bayesian approach, this model allows the insertion of the actuary's prior knowledge in relation to the analyzed event using informative priors.
References
CHIVERS, Corey. MHadaptive: general markov chain monte carlo for Bayesian inference using adaptive Metropolis-Hastings sampling. [S.l.], 2015. Disponível em: <https://cran.r-project.org/web/packages/MHadaptive/MHadaptive.pdf>. Data do acesso: 20 mai. 2022.
GEWEKE, John F. Evaluating the accuracy of sampling based approaches to the calculation of posterior moments. [S.l.], 1991. Disponível em: <https://ideas.repec.org/p/fip/fedmsr/148.html>. Data do acesso: 20 mai. 2022.
IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Frota de veículos. [s.l.], 2021. Data do acesso: <https://cidades.ibge.gov.br/brasil/mg/pesquisa/22/28120?tipo=ranking&ano=2020&indicador=28120>. Data de acesso: 14 jun. 2022.
MOTA, Arthur Lula; MIQUELLUTI, Daniel Lima; OZAKI, Vitor Augusto. Predição de sinistros agrícolas: uma abordagem comparativa utilizando aprendizagem de máquina. Economia Aplicada, v. 24, n. 4, p. 533-554, 2020.
PALA, Luiz Otávio de Oliveira; CARVALHO, Marcela Marillac; GUIMARÃES, Paulo Henrique Sales; SÁFADI, Thelma. Vehicle claims in the south of Minas Gerais: an approachusing classification models. Semina: Exact and Technological Sciences, v. 41, n. 1, p. 79-86, 2020.
PLUMMER Martyn; BEST Nicky; COWLES Kate; VINES Karen. Coda: Output Analysis and Diagnostics for MCMC.[s.l.], 2020. Disponível em: <https://cran.r-project.org/web/packages/coda/index.html> . Data do acesso: 01 jun. 2022.
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Disponível em: <https://www.R-project.org/>. Data do acesso: 14 jun. 2022.
RAFTERY, Adrian E.; LEWIS, Steven M. The number of iterations, convergence diagnostics and generic metropolis algorithms. Practical Markov Chain Monte Carlo, v. 7, n.98, p. 763–773, 1995. Data do acesso: 20 mai. 2022.
SPEDICATO, Giorgio Alfredo; DUTANG, Christophe; PETRINI, Leonardo. Machine learning methods to perform pricing optimization. A comparison with standard GLMs. Variance, v. 12, n. 1, p. 69-89, 2018.
SOA - SOCIETY OF ACTUARIES. Actual Total Loss. [s.l.], 2022. Disponível em: <https://actuarialtoolkit.soa.org/tool/glossary/actual-total-loss> . ata do acesso: 14 jun. 2022.
SUSEP - SUPERINTENDÊNCIA DE SEGUROS PRIVADOS. Circular SUSEP No 145 de Novembro de 2.000. Dispõe sobre a estruturação mínima das Condições Contratuais e das Notas Técnicas Atuariais dos Contratos exclusivamente de Seguros de Automóvel [. . . ]. Rio de Janeiro: SUSEP, 2000. Disponível em: <http://www2.susep.gov.br/bibliotecaweb/docOriginal.aspx?tipo=1&codigo=9058> . Data do acesso: 18 jan. 2022.
______. Susep simplifica seguro auto a partir de 1º de setembro. [s.l.], 2021. Disponível em: <http://novosite.susep.gov.br/noticias/susep-simplifica-seguro-auto-a-partir-de-1o-de-setembro/> . Data do acesso: 14 jun. 2022.
______. Sistema de Estatísticas da SUSEP. [s.l.], 2022a. Disponível em: <https://www2.susep.gov.br/menuestatistica/SES/premiosesinistros.aspx?id=54> . Data do acesso: 26 jun. 2022.
______. O que é questionário de avaliação do risco?. [s.l.], 2022b. Disponível em: <http://www.susep.gov.br/setores-susep/cgpro/coseb/duvidas-dos-segurados-sobre-seguro-de-automoveis/o-que-e-questionario-de-avaliacao-do-risco> . Data do acesso: 26 jun. 2022.
______. AuToseg: sistema de estatísticas de automóveis da Susep. [s.l.], 2022c. Disponível em: <http://www2.susep.gov.br/menuestatistica/Autoseg/principal.aspx>. Data do acesso: 10 jan. 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luiz Otávio de Oliveira Pala, Daiane Oliveira Gonçalves, Bruna da Costa Silva
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.