Circular economy in sewage treatment stations

mapping in the scientific literature, research in the context of PCJ basins and a decision-making tool

Authors

DOI:

https://doi.org/10.23925/2179-3565.2022v13i4p83-102

Keywords:

circular economy, wastewater treatment plants, resource recovery, PCJ basins, decision making

Abstract

The recovery of resources from Wastewater Treatment Plants (WWTPs), mainly from sludge, biogas and treated effluent, places these systems in the context of circular economy. Circularity is a concept that comprises alternatives that, in opposition to the current linear model of economy on which society is based, promotes the maximum use of the value of resources, the reduction of waste generation and waste. In this sense, this paper presents and discusses initial results of the construction of a decision-making tool that will allow the evaluation, in a menu of several technological routes, of the best options for processing the waste obtained in the sewage treatment processes within a circular perspective, from evaluations that consider sustainability indicators in the environmental, economic and social dimensions. This tool aims to facilitate and accelerate the transition to a circular economy in sanitation systems, favoring greater access to available technologies, visualization of impacts, and viability of return on investments. As a case study, the tool is being developed with greater adherence for application in the PCJ Basins region. In the final results, we present: a mapping of circular economy strategies in wastewater treatment plants found in the scientific literature; a mapping of this same type of strategy inserted in the context of the PCJ watersheds; a preliminary example of the computationally built tool, whose development is still in progress.

References

Agência das Bacias PCJ & Comitês PCJ. (2021). Relatório de situação dos recursos hídricos 2021 (Ano base 2020)—UGRHI 05 – bacias hidrográficas dos rio piracicaba, Capivari e Jundiaí - versão simplificada. https://agencia.baciaspcj.org.br/wp-content/uploads/Relatorio-de-Situacao-dos-Recursos-Hidricos-nas-Bacias-PCJ-2021-Ano-Base-2020.pdf

Ammenberg, J., Anderberg, S., Lönnqvist, T., Grönkvist, S., & Sandberg, T. (2018). Biogas in the transport sec-tor—Actor and policy analysis focusing on the demand side in the Stockholm region. Resources, Conservation and Recycling, 129, 70–80. https://doi.org/10.1016/j.resconrec.2017.10.010

Amorim Júnior, S. S. de, Pereira, M. A. de S., Lima, P. de M., Marishigue, M., Guilherme, D. de O., & Magalhães Filho, F. J. C. (2021). Evidences on the application of biosolids and the effects on chemical characteristics in infertile tropical sandy soils. Cleaner Engineering and Technology, 4, 100245. https://doi.org/10.1016/j.clet.2021.100245

Botelho, R. G., & Oliveira, C. da C. de. (2015). Literaturas branca e cinzenta: Uma revisão conceitual. Ciência da Informação, 44(3), Art. 3.

Brasil. (2015). Guia técnico de aproveitamento energético de biogás em estações de tratamento de esgoto. Probi-ogás, Ministério das Cidades, Deutsche Gesellschaf für Internationale ZUSAmmenarbeit GmbH (Org.).

Brasil. (2020). Conselho Nacional do Meio Ambiente (CONAMA). Resolução no 498, de 19 de agosto de 2020: “Define critérios e procedimentos para produção e aplicação de biossólido em solos, e dá outras providências.”

Bringhenti, J. R., Boscov, M. E. G., Piveli, R. P., & Günther, W. M. R. (2018). Codisposição de lodos de trata-mento de esgotos em aterros sanitários brasileiros: Aspectos técnicos e critérios mínimos de aplicação. Engenharia Sanitaria e Ambiental, 23(5), Art. 5. https://doi.org/10.1590/s1413-41522018124980

COMITÊS PCJ, C. D. B. H. D. R. P., Capivari E. Jundiaí Fundação Agência das Bacias PCJ Hidrográficas dos rios Piracicaba, Capivari E. Jundiaí. (2020). Relatório Final—Plano de Recursos Hídricos das Bacias Hidrográfi-cas dos Rios Piracicaba, Capivari e Jundiaí, 2020 a 2035.

Czuba, K., Bastrzyk, A., Rogowska, A., Janiak, K., Pacyna, K., Kossińska, N., Kita, M., Chrobot, P., & Podstaw-czyk, D. (2021). Towards the circular economy—A pilot-scale membrane technology for the recovery of water and nutrients from secondary effluent. Science of The Total Environment, 791, 148266. https://doi.org/10.1016/j.scitotenv.2021.148266

Deutz, P. (2020). Circular Economy. Em International Encyclopedia of Human Geography (p. 193–201). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10630-4

ELLEN MACARTHUR FOUNDATION. (2020). Circular economy introduction. https://ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview

EUROPEAN PARLIAMENT. (2022). Circular economy: Definition, importance and benefits. https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits

GOVERNO DO ESTADO de São Paulo. (2021). População do Estado. http://www.ppa.sp.gov.br/Audiencias/Estado

IBGE, I. B. de G. e E. (2017). PNSB - Pesquisa Nacional de Saneamento Básico—Tabelas. https://www.ibge.gov.br/estatisticas/multidominio/meio-ambiente/9073-pesquisa-nacional-de-saneamento-basico.html?edicao=28244&t=resultados

IPCC, I. P. on C. C. (2021). Climate Change 2021: The Physical Science Basis—Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press.

López, A., Rodríguez-Chueca, J., Mosteo, R., Gómez, J., & Ormad, M. P. (2020). Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. Journal of Cleaner Production, 254, 120101. https://doi.org/10.1016/j.jclepro.2020.120101

Mainardis, M., Cecconet, D., Moretti, A., Callegari, A., Goi, D., Freguia, S., & Capodaglio, A. G. (2022). Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environmental Pollution, 296, 118755. https://doi.org/10.1016/j.envpol.2021.118755

Moraes, T. N., Guilherme, D. O., Cavalheri, P. S., & Filho, F. J. C. M. (2022). Recovery of nutritional resources of urban sewage sludge in lettuce production. Em Circular Economy and Sustainability (p. 113–127). Elsevier. https://doi.org/10.1016/B978-0-12-821664-4.00012-1

Neczaj, E., & Grosser, A. (2018). Circular Economy in Wastewater Treatment Plant–Challenges and Barriers. EWaS3 2018, 614. https://doi.org/10.3390/proceedings2110614

PROFILL - RHAMA. (2018). Primeira Revisão do Plano das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí 2010 a 2020—RELATÓRIO FINAL- Revisão 05—Tomo I - Diagnóstico. https://drive.google.com/file/d/1jSxP939Grb9qIzxlj_uu4tDMiqmzdSKU/view

Santos, A. F., Vaz, T. E., Lopes, D. V., Cardoso, O., & Quina, M. J. (2021). Beneficial use of lime mud from kraft pulp industry for drying and microbiological decontamination of sewage sludge. Journal of Environmental Management, 296, 113255. https://doi.org/10.1016/j.jenvman.2021.113255

Schauenberg, T., & Christofaro, B. (2022). Crise hídrica atinge a Europa. DW - Made for minds. https://www.dw.com/pt-br/crise-h%C3%ADdrica-atinge-a-europa/a-62369850

Sharma, G. K., Khan, S. A., Shrivastava, M., Bhattacharyya, R., Sharma, A., Gupta, D. K., Kishore, P., & Gupta, N. (2021). Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production. Journal of Environmental Management, 287, 112295. https://doi.org/10.1016/j.jenvman.2021.112295

Tassinari, G., Boccaletti, S., & Soregaroli, C. (2020). D8.8: Report on case study “The Bioeconomy Pilot from the Vanguard Initiative”. 29.

Watson, M. (2020). Waste Management. Em International Encyclopedia of Human Geography (p. 225–231). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10761-9

Published

2022-12-27