Precision farming and digital farming

Authors

  • Luís Henrique Bassoi Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil. https://orcid.org/0000-0001-9469-8953
  • Ricardo Yassushi Inamasu Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.
  • Alberto Carlos de Campos Bernardi Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Southeast Livestock, São Carlos, São Paulo, Brazil.
  • Carlos Manoel Pedro Vaz Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.
  • Eduardo Antonio Speranza Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Agriculture Informatics, Campinas, São Paulo, Brazil.
  • Paulo Estevão Cruvinel Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.

DOI:

https://doi.org/10.23925/1984-3585.2019i20p17-36

Keywords:

Tecnologias de Informação e Comunicação, Conectividade, Internet das Coisas, Nuvem, Algoritmo, Aplicativo, Base de Dados

Abstract

This paper presents and discusses the characteristics of precision agriculture (PA) and digital agriculture (DA), pointing out the peculiarities and synergies of each of them. It explains how several countries since the 1990s have used pa in their systems of plant and animal production in with an intensity and extent in relation to the area and types of production systems that has grown over the years. PA includes the use of procedures and equipment, tools, and/or sensors to evaluate the spatial and temporal variability of soil, plants, animals, or weather. The purpose of pa is to supply information to support decision-making in differentiated or flexible ways for planters and other agricultural professionals managing agricultural business. In many pa activities, the collection, storage, analysis, and transmission of soil, plant, animal, or weather data relevant for a specific agricultural production system are performed by hardwares and softwares of DA. Many of these procedures can also be performed with different degrees of automation, either partially or fully. Terms commonly used in plant and animal production, such as information and communication technology, connectivity, internet of things, cloud, algorithm, application, Big Data, among others, can be related to each other as well as to PA and/or DA. In Brazil as well as in other countries, pa and da are in a dynamic process of critical discussion, development, adaptation, validation, and application.

Author Biographies

Luís Henrique Bassoi, Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.

Agronomy Engineer (ESALQ / USP Piracicaba campus - 1985). Master in Agronomy / Irrigation and Drainage (FCA / UNESP campus de Botucatu - 1990). PhD in Sciences / Nuclear Energy in Agriculture (CENA / USP Piracicaba campus - 1994). Post-Doctorate (University of California, Davis, USA - 2000). Between December 1994 and April 2015, he was a researcher at Embrapa Semiarido, in Petrolina - PE. Since May 2015, he is a researcher at Embrapa Instrumentação, in São Carlos - SP. Main research topics: soil physics, irrigation management, fertigation, water use in agriculture and precision agriculture. Member of the faculty and supervisor of master's and doctoral students of the Graduate Program in Agricultural Engineering of the Faculty of Agronomic Sciences (FCA), UNESP, Botucatu campus.

Ricardo Yassushi Inamasu, Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.

He holds an undergraduate degree (1984), a master's degree (1987) and a PhD degree (1995) in Mechanical Engineering from the School of Engineering of São Carlos ? USP and post-doctorate in Biological Systems Engineering at the University of Nebraska ? Lincoln (2002). Since 1989 he has been a researcher at Embrapa Instrumentação. He has experience in Mechanical Engineering and Mechatronics, with emphasis on Instrumentation and Agricultural Automation, working mainly on the following topics: instrumentation for Precision Agriculture, Agricultural Robotics, High Resolution Sensing and Embedded Electronics in Agricultural Machines. He is president of the Management Committee of Embrapa's Automation, Precision Agriculture and Digital Portfolio. He coordinates the ABNT Study Committee that deals with embedded electronics in agricultural machinery, among the standards NBR ISO 11783 or ISOBUS and coordinates Embrapa's Precision Agriculture network.

Alberto Carlos de Campos Bernardi, Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Southeast Livestock, São Carlos, São Paulo, Brazil.

Researcher at Embrapa Southeast Livestock (since 1998), with experience in Soil Fertility and Fertilization, working on the topics of good management practices, fertilizer technologies, fertilizer recommendation, foliar diagnosis, analysis methods, crop-livestock integration, use of minerals in agriculture and precision agriculture. Graduated in Agronomic Engineering from ESALQ / USP (1992), Master in Agronomy (Soil and Plant Nutrition) from ESALQ / USP (1995), PhD in Agronomy (Soil and Plant Nutrition) from ESALQ / USP (1999), and postdoctoral (Nitrogen cycling and management) at USDA - ARS - Pasture System and Watershed Management Research Unit (2013). He has worked on the development, adaptation, validation and evaluation of precision agriculture and cattle ranching technologies and automation (such as sensors, equipment, software and information systems) for data acquisition, transmission, storage, processing and interpretation using geostatistics and geoprocessing techniques in agricultural and livestock production systems. It participates in Embrapa's Precision Agriculture Research Network, as well as in the management of the Automation Portfolio. Works in the development and agronomic evaluation of conventional and alternative sources of fertilizers and in the evaluation of soil quality in pastures and integrated systems (ILPF). Director of Division 3 - Soil Use and Management, of the Brazilian Society of Soil Science, and coordinator of Commission 3.1 of Soil Fertility and Plant Nutrition. Coordinator of the Integrated Crop-Livestock Systems Network (Cropland Research Group - Global Research Alliance - GRA). Member of the Soil Monitoring task force (4 per 1000 initiative) and also the Low-Carbon Livestock Research Network (LCL-RN).

Carlos Manoel Pedro Vaz, Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.

Graduated in Physics (1983-1986) from IFSC/USP, São Carlos-SP, with Master in Agronomy (1987-1989) and PhD in Sciences (1991-1994) both from CENA/USP, Piracicaba-SP. Visiting Scientist at the University of California, Davis, USA (Sep/1998 to Feb/2000) and at the University of Arizona, Tucson, USA (Aug/2009 to Jan/2011). Researcher at Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, in Embrapa Instrumentação Unit in São Carlos-SP, since 1989, working in the area of Soil Science Instrumentation applied to studies of soil management and conservation, compaction and precision agriculture. He has 77 articles published in technical-scientific journals (h=21 index and 1,613 citations in the Web of Knowledgement), 24 chapters and 2 books published, author/co-author of 4 patent applications. He has 60 participations in the evaluation of theses, dissertations, and competitive examinations, among others. He is the advisor of the graduate program in Geotechnics at EESC/USP, São Carlos-SP. He has been the supervisor of 8 PhD and 7 MSc students.

Eduardo Antonio Speranza, Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Agriculture Informatics, Campinas, São Paulo, Brazil.

Bachelor's degree in Computer Science from the Institute of Mathematical and Computer Sciences - ICMC/USP. Master in Electrical Engineering from the Engineering School of São Carlos - EESC/USP. PhD in Computer Science by the Computer Department of the Federal University of São Carlos - DC/UFSCar. Worked in the General Coordination of Information Technology of the Ministry of Agriculture (MAPA), in the management of corporate systems. Currently is a Systems Analyst at Embrapa Informatica Agropecuária, working on the development of geographic information systems, spatial databases and spatial data mining for precision agriculture.

Paulo Estevão Cruvinel, Brazilian Agricultural Research Corporation (Embrapa - Portuguese: Empresa Brasileira de Pesquisa Agropecuária), Embrapa Instrumentation, São Carlos, São Paulo, Brazil.

Researcher at Embrapa, Electrical Engineer graduated in Electrotechnics and Electronics from the Engineering School of the Educational Foundation of Barretos in 1980, having received the Engineering Institute Award as the best student of the class. In his academic and research career he has been dedicated to the study and development of sensors, intelligent systems and automation in agriculture. He earned a Master's degree in Bioengineering from UNICAMP in 1984 and a PhD in Automation, also from UNICAMP in 1987. He developed a post-doctoral program in 1988 at the Centro per l'Ingegneria Biomedica e Cattedra di Fisica, Università degli Studi di Roma 'La Sapienza', Rome, Italy with support of the training program in Italian Laboratories of the Abdus Salam International Center (Trieste). He also developed a second post-doctoral program in 1990 and 1991 at the Department of Land, Air, and Water Resources and Crocker Nuclear Laboratory, University of California at Davis, California, USA, which was supported by CNPq's RHAE program. He participated in the founding group of Embrapa Instrumentação Agropecuária. He is a collaborating professor in graduate programs at the University of São Paulo, São Carlos Campus, in the Physics Department, as well as in the Computer Department of the Federal University of São Carlos. He received the Diplomas for Excellence Award in the technical-scientific category (1997) and Individual Distinction (2005) from the Brazilian Agricultural Research Corporation and in 2000 the Personality of Agriculture Award conferred by the Union of Engineers of the State of São Paulo. From 1998 to January 2002 he was General Head of Embrapa Instrumentação Agropecuária and President of the Technical Committee of the National Program of Agricultural Automation. From September 2012 to May 2014 he was Head of the Secretariat of Strategic Management (SGE) of Embrapa. He was the first Technical Secretary of the Agribusiness Sector Fund with the Center for Strategic Management and Studies (CGEE), work linked to the Ministry of Science and Technology. From September 2015 to September 2017 he served as President of the Brazilian Association of Agricultural Engineering (SBEA). He is a member of the Board of Trustees of the High Technology Park Foundation of São Carlos, is a member of the Technology Council of the Union of Engineers in the State of São Paulo and Visiting Researcher at the Institute for Advanced Studies of the University of São Paulo (USP IEASC). In 2016 he became a Fellow of the International Academy, Research and Industry Association (IARIA).

References

ADAMCHUK, V.I.; HUMMEL, J.W.; MORGAN, M.T.; UPADHYAYA, S.K. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, v.44, p.71-91, 2004.

ANDERSON, D.M.; ESTELL, R.E.; CIBILS, A.F. Spatiotemporal cattle data – a plea for protocol standardization. Positioning, v.4, p.115-136, 2013.

BAZZI, C. L.; SOUZA, E. G.; URIBE-OPAZO, M. A.; NÓBREGA, L. H.; ROCHA, D. M. Management zones definition using soil chemical and physical attributes in a soybean area. Engenharia Agrícola, v. 33, n. 5, p. 952-964, 2013.

BERNARDI, A. C. C.; BETTIOL, G. M.; FERREIRA, R. P.; SANTOS, K. E. L.; RABELLO, L. M.; INAMASU, R. Y. Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision agriculture, v. 17, p. 737-752, 2016.

BERNARDI, A. C. C.; INAMASU, R. Y. Adoção da agricultura de precisão no Brasil. In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 559-577.

BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. Agricultura de precisão: resultados de um novo olhar. 1. ed. Brasília: Embrapa, 2014. 596p

BERNARDI, A. C. C.; BETTIOL, G. M.; GREGO, C. R.; ANDRADE, R. G.; RABELLO, L. M.; INAMASU, R. Y. Ferramentas de agricultura de precisão como auxílio ao manejo da fertilidade do solo. Cadernos de Ciência & Tecnologia, Brasília v. 32, n. 1/2, p. 205-221, 2015.

BERRY, J.K., DELGADO, J.A., KHOSLA, R., PIERCE, F.J. Precision conservation for environmental sustainability. Journal of Soil and Water Conservation, n.58, v.6, p.332-339, 2003.

BERRY, J.K., DELGADO, J.A., PIERCE, F.J., KHOSLA, R. Applying spatial analysis for precision conservation across the landscape. Journal of Soil and Water Conservation, n.60, v.6, p.363-370, 2005.

BREDEMEIER, C.; VARIANI, C.; ALMEIDA, D.; ROSA, A. T. Estimativa do potencial produtivo em trigo utilizando sensor óptico ativo para adubação nitrogenada em taxa variável. Ciência Rural, v.43, n.7, p. 1147-1154, 2013.

BRETTEL, M.; FRIEDERICHSEN, N.; KELLER, M.; ROSENBERG, M. How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. International Journal of Mechanical Engineering and Applications, v.8, n.1, p.37-44, 2014.

CAMBARDELLA, C. A.; KARLEN, D. L. Spatial analysis of soil fertility parameters. Precision Agriculture, v.1, p.5-14, 1999.

CHENG, X., ZHANG, Y., CHEN, Y., WU, Y., & YUE, Y. Pest identification via deep residual learning in complex background. Computers and Electronics in Agriculture, v. 141, p. 351-356, 2017.

COSTA, B. R. S.; OLDONI, H.; ROCHA JUNIOR, R. C.; BASSOI, L. H. Delimitação de zonas homogêneas em vinhedo por meio de análise geoestatística e multivariada de diferentes índices de vegetação. In: Congresso Brasileiro de Agricultura de Precisão, 2018, Curitiba. Construção dos dados na era da digitalização agrícola. Curitiba: AsBraAP, 2018. p. 45-51.

CRUVINEL, P. E.; KARAM, D.; BERALDO, J. M. G. Agricultura, precisão e manejo de plantas invasoras na cultura do milho. In: In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014.,v. 1, p. 135-156.

CRUVINEL, P.E.; KARAM, D.; BERALDO, J.M.G. Method for the precision application of herbicides in the controlling of weed species into a culture of maize. In: VII SINTAG, Simpósio Internacional de Tecnologia de Aplicação, 14 a 16 de setembro – Uberlândia/MG, pp. 4, 2015.

EZENNE, G.I., L. JUPP, S.K. MANTEL, J.L. TANNER. Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agricultural Water Management, 218:158-164, 2019.

DELGADO, J.A., BERRY, J.K. Advances in precision conservation. Advances in Agronomy, n.98, p.1-44, 2008.

FILIPPINI ALBA, J. M. Modelagem SIG em agricultura de precisão: conceitos, revisão e aplicações. In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 84-95.

GEBBERS, R.; ADAMCHUK, V.I. Precision agriculture and food security. Science, v.327, n.5967, p.828-31, 2010.

GREGO, C. R.; OLIVEIRA, A.; NOGUEIRA, S. F.; RODRIGUES, C. A. G.; BRANCALIÃO, S. R.; FURTADO, A.L.S. Estoque de carbono no solo e produtividade da cana-de-açúcar analisados quanto a variabilidade espacial. In: INAMASU, R.Y.; NAIME, J.M.; RESENDE, A.V.; BASSOI, L.H.; BERNARDI, A.C.C. (Ed.). Agricultura de precisão: um novo olhar. São Carlos: Embrapa Instrumentação, 2011, v. 1, p. 240-244.

GREGO, C. R.; OLIVEIRA, R. P. Conceitos básicos da Geoestatística. In: OLIVEIRA, R. P.; GREGO, C.R.; BRANDAO, Z.N. (Ed.). Geoestatística aplicada na agricultura de precisão utilizando o Vesper. Brasília, DF: Embrapa, 2015. p. 41-62.

HAUG, S.; OSTERMANN, J. A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: European Conference on Computer Vision. Springer, Cham, 2014. p. 105-116.

HURTADO, S. M. C.; RESENDE, A. V.; SILVA, C. A.; CORAZZA, E. J.; SHIRATSUCHI, L. S. Variação espacial da resposta do milho à adubação nitrogenada de cobertura em lavoura no cerrado. Pesquisa Agropecuária Brasileira, v.44, n.3, p.300-309, 2009.

IBRAHIM, H. M.; HUGGINS, D. R. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale. Journal of Hydrology, n.404 p. 186-197, 2011.

INAMASU, R. Y.; BELLOTE, A. F. J.; LUCHIARI JUNIOR, A.; SHIRATSUCHI, L. S.; OLIVEIRA, P. A. V. de; BERNARDI, A. C. de C. Portfólio automação agrícola, pecuária e florestal. São Carlos: Embrapa Instrumentação, 2016. 14 p. (Embrapa Instrumentação. Documentos, 60).

INAMASU, R.Y.; BERNARDI, A.C.C. Agricultura de precisão. In: BERNARDI, A.C.C.; NAIME, J.M.; RESENDE, A.V.; BASSOI, L.H.; INAMASU, R.Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p.21-33.

INAMASU, R.Y.; BERNARDI, A.C.C.; VAZ, C.M.P.; NAIME, J.M.; QUEIROS, L.R.; RESENDE, A.V.; VILELA, M.F.; JORGE, L.A.C.; BASSOI, L.H.; PEREZ, N.B.; FRAGALLE, E.P. Agricultura de precisão para a sustentabilidade de sistemas produtivos do agronegócio brasileiro. In: INAMASU, R.Y.; NAIME, J.M.; RESENDE, A.V.; BASSOI, L.H.; BERNARDI, A.C.C. (Ed.). Agricultura de precisão: um novo olhar. São Carlos: Embrapa Instrumentação, 2011. p. 14-26.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo Demográfico 2010. Rio de Janeiro, RJ, Brasil. 2010. Disponível em: https://ww2.ibge.gov.br/home/estatistica/populacao/censo2010/

GOLDSTEIN, A., FINK, L., MEITIN, A., BOHADANA, S., LUTENBERG, O., & RAVID, G. Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Precision agriculture, v. 19, n. 3, p. 421-444, 2018.

GRINBLAT, G. L.; UZAL, L. C., LARESE, M. G.; GRANITTTO, P. M. . Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, v. 127, p. 418-424, 2016.

JORGE, L. A. C.; INAMASU, R. Y. Detecção do greening dos citrus por imagens multiespectrais. In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p.180 – 190.

KALOXYLOS, A.; EIGENMANN, R.; TEYE, F.; POLITOPOULOU, Z.; WOLFERT, S.; SHRANK, C.; DILLINGER, M.; LAMPROPOULOU, I.; ANTONIOU, E.; PESONEN, L.; NICOLE, H.; THOMAS, F.; ALONISTIOTI, N.; KOMENTZAS, G. Farm management systems and the Future Internet era. Computers and Electronics in Agriculture, 89, 130–144, 2012.

KITCHEN, N.R. Emerging technologies for real-time and integrated agriculture decisions. Computers and Electronics in Agriculture, 61: 1-3, 2008.

LEHMANN, R.J.; REICHE, R.; SCHIEFER, G. Future internet and the agri-food sector: state-of-the-art in literature and research. Comput Electron Agric; 89:158-174, 2012.

LIAO, Y.; DESCHAMPS, F.; LOURES, E.D.F.R.; RAMOS, L.F.P. Past, present and future of industry 4.0 - A systematic literature review and research agenda proposal. International Journal of Production Research, v.55, n.12, p.3609-3629, 2017.

LUCHIARI JUNIOR, A.; BORGHI, E.; AVANZI, J. C.; FREITAS, A. A.; BORTOLON, L.; BORTOLON, E. S. O.; INAMASU, R. Y. Zonas de manejo: teoria e prática. In: INAMASU, R. Y.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; BERNARDI, A.C.C. (Ed.). Agricultura de precisão: um novo olhar. São Carlos, SP: Embrapa Instrumentação, 2011. p. 60-64.

MACHADO, P.L.O.A.; BERNARDI, A.C.C.; ALENCIA, L.I.O.; MOLIN, J.P.; GIMENEZ, L.M.; SILVA, C.A.; ANDRADE, A.G.A.; MADARI, B.E.; MEIRELLES, M.S.P.M. Mapeamento da condutividade elétrica e relação com a argila de Latossolo sob plantio direto. Pesquisa Agropecuária Brasileira, Brasília, v.41, p.1023-1031, 2006.

MANYIKA, J.; CHUI, M.; MIREMADI, M.; BUGHIN, J.; GEORGE, K.; WILLMOTT, P.; DEWHURST, M. A future that works: Automation, employment, and productivity. McKinsey Global Institute, New York. 2017. Disponível em: https://www.mckinsey.com/global-themes/digital-disruption/harnessing-automation-for-a-future-that-works

McBRATNEY, A.; ODEH, I.O.A.; BISHOP, T.F.A.; DUNBAR, M.S.; SHATAR, T.M. An overview of pedometric techniques for use in soil survey. Geoderma, v. 97, n. 3-4, p. 293-327, 2000.

McBRATNEY, A.; WHELAN, B.; ANCEV, T.; BOUMA, J. Future directions of Precision Agriculture. Precision Agriculture, v.6, p.7-23, 2005.

MOLIN, J.P. Agricultura de Precisão: números do mercado brasileiro. Agricultura de Precisão - Boletim Técnico 03, ESALQ/USP, Piracicaba, 2017, 7p.

MULLA, D. J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, v 114, p.358-371, 2013.

NASCIMENTO, P. S. ; BASSOI, L. H.; SILVA, J. A.; COSTA, B. R. S. Zonas homogêneas de atributos do solo para o manejo de irrigação em pomar de videira. Revista Brasileira de Ciência do Solo, v. 38, p. 1101-1113, 2014.

NUMATA, I. et al. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sensing of Environment, v. 109, p. 314–327, 2007.

OLDONI, H.; BASSOI, L. H. Delineation of irrigation management zones in a Quartzipsamment of the Brazilian semiarid region. Pesquisa Agropecuaria Brasileira, v. 51, p. 1283-1294, 2016.

OLDONI, H. et al. Apparent soil electrical conductivity as a guidance for canopy management in vineyards. In: 5th Global Workshop on Proximal Soil Sensing, 2019, Columbia. PSS 2019. Columbia: USDA ARS / University of Missouri, 2019. p. 105-110.

OLDONI, H. et al. Delineamento de zonas de manejo de irrigação em vinhedo com base na granulometria do solo. In: Congresso Brasileiro de Agricultura de Precisão, 2018, Curitiba. Construção dos dados na era da digitalização agrícola. Curitiba: AsBraAP, 2018. p. 52-58.

PIVOTO, D. et al. Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, 2017.

QUEIRÓS, L. R. et al. Análise das possibilidades e tendências do uso das tecnologias da informação e comunicação em agricultura de precisão. In: BERNARDI, A. C. C. (Orgs.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 97-108.

RABELLO, L. M.; BERNARDI, A. C. C.; INAMASU, R. Y. Condutividade elétrica aparente do solo. In: BERNARDI, A. C. C. et al. (Orgs.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 48-57.

SANTI, A. L. et al. Distribuição espaço-temporal de lagartas desfolhadoras e sua correlação com o rendimento de grãos na cultura da soja. In: BERNARDI, A.C.C. et al. (Orgs.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 260-266.

SANTOS, K. E. L. et al. Geoestatística e geoprocessamento na tomada de decisão do uso de insumos em uma pastagem. Brazilian Journal of Biosystems Engineering, v. 11, n. 3, p. 294-307, 2017.

SCHRAMMEL, B. M.; GEBLER, L. Utilização de ferramentas do SIG para agricultura de precisão no planejamento ambiental de uma pequena propriedade rural produtora de maçãs. In: INAMASU, R. Y. et al. (Orgs.). Agricultura de Precisão: Um novo olhar. 1 ed. São Carlos: Embrapa Instrumentação, 2011, p. 222-226.

SCULL, P.; FRANKLIN, J.; CHADWICK, O.A.; MCARTHUR, D. Predictive soil mapping: a review. Progress in Physical Geography, v. 27, p. 171-197, 2003.

SHIRATSUCHI, L. S. et al. Sensoriamento Remoto: conceitos básicos e aplicações na Agricultura de Precisão. In: BERNARDI, A. C. C. et al. (Orgs.). Agricultura de precisão: resultados de um novo olhar. Brasília: Embrapa, 2014. p. 58-73.

SØRENSEN, C. G. et al. Conceptual model of a future farm management information system. Comput Electron Agric, 2010; 72(1): p. 37-47

SUNDMAEKER, H. et al. Internet of food and farm 2020. In: VERMESAN, O., FRIESS, P. (Orgs.). Digitising the industry: internet of things connecting physical, digital and virtual worlds. Peter Friess: River Publishers; 2016, p.129-151.

TILMAN, D. et al. Agricultural sustainability and intensive production practices. Nature, 418, 2002.

VERRUMA, A. A. et al. Soil and weed occurrence mapping and estimates of sugarcane production cost. Brazilian Journal of Biosystems Engineering, v. 11, n. 1, p. 68-78, 2017.

WOLFERT, J.; SØRENSEN, C. G.; GOENSE, D. A future internet collaboration platform for safe and healthy food from farm to fork. Annual SRII Global Conference, 2014. Proceedings… San Jose, CA, USA: SRII p. 266-273. 2014.

WOLFERT, S. et al. Big data in smart farming – a review. Agricultural Systems, v. 153, p. 69-80, 2017.