Solving Exponential Situations and Conceptualization
Resolução de Situações Exponenciasi e Conceituação

Diana Patricia Sureda Figueroa, María Rita Otero

Resumo


Students have difficulty to use different representational systems. We use the Theory of Conceptual Fields in order to describe and analyze students’ responses to situations in various representational system: numerical, first order algebraic, graphic and verbal written. We conducted the study with 59 students (aged between 15-16 years old) of secondary school. From the analysis we show that students do not "translate" the results of a representational system to another. They can solve exponentially in a representational system (RS) but in a different exponential RS they solve it in a non-exponential way. This indicates that students construct operational invariants for each representational system. That is to say, they build and use different schemes for each one of them.


Palavras-chave


Schemes; Representational Systems; Education; Secondary School

Texto completo:

PDF

Referências


Douady, R. (1986). Juego de Campos y Dialéctica Herramienta–Objeto. Recherches en Didactique des Mathemathiques. V(7) 5-31.

Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La gaceta de la RSME. V 9(1), 143–168.

Duval, R. (1993). Semiosis y noesis. En E. Sánchez y G. Zubieta (Eds.), Lecturas en didáctica de la matemática: Escuela Francesa (pp. 118-144). México: Sección de Matemática Educativa del CINVESTAV-IPN.

García, M. y Llinares, S. (1994). Algunos referentes para analizar tareas matemáticas. Suma 18, 13-23.

Janvier, C. (1978). “The interpretation of complex Cartesian graphs representing situation-studies and teaching experiments”. Tesis Doctoral. Universidad de Notthingam.

Janvier, C. (1993). Les représentations graphiques dans l’enseignement et la formation. Les Sciences de l’education pour l’ère nouvelle. 1 (3), 17-37.

Kaput, J. (1987). Representation systems and mathematics. En C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19-26). Hillsdale, NJ: Lawrence Erlbaum Associated.

Author 1 y Author 2 (Año). Titulo. Revista

Author 1 y Author 2 (Año). Titulo. Revista

Vergnaud, G. (2013). Pourquoi la théorie des champs conceptuels? Infancia y Aprendizaje, 36 (2), 131-161.

Vergnaud, G. (2009). The Theory of Conceptual Fields. Human Development. 52. 83-94. DOI: 10.1159/000202727.

Vergnaud, g. (2007a). ¿En qué sentido la teoría de los campos conceptuales puede ayudarnos para facilitar aprendizaje significativo? Investigações em Ensino de Ciências. V12 (2), 285-302.

Vergnaud, G. (2007b). Forma operatoria y forma predicativa del conocimiento. Actas Primer Encuentro Nacional sobre Enseñanza de la Matemática. ISBN 978-950-658-183-1. Tandil. Argentina.

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10 (23): 133-170. La Pensée Sauvage, Marseille.


Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


INDEXADORES DA REVISTA