Clustering of risk factors with the macrossomia fetal in participants of the Viver Project

Authors

  • Gabriela Oliveira Universidade Federal do Espírito Santo (UFES)
  • Fernanda Garcia Gabira Miguez Universidade Federal do Espírito Santo (UFES)
  • Elizabete Regina Araújo de Oliveira Universidade Federal do Espírito Santo (UFES)

DOI:

https://doi.org/10.23925/1984-4840.2024v26a22

Keywords:

Fetal Macrosomia, Risk Factors, Newborn, Pregnant

Abstract

Objective: This study aimed to analyze the aggregation of risk factors (multiparity, advanced maternal age, overweight and gestational diabetes) for fetal macrosomia in women participating in “Projeto Viver”. Methods: This is a cross-sectional study with a convenience sample conducted using the study's database “Projeto Viver”, carried out between August 2019 and March 2020. The aggregation of risk factors was evaluated based on the ratio of the prevalence of observed factors in relation to the expected prevalence. There is aggregation when the observed combination (O) of factors exceeds the expected prevalence (E) of the combination, and the prevalence odds ratio was calculated to identify the aggregation of two behaviors. Results: The sample consisted of 2,488 postpartum women. There is aggregation of the four analyzed factors (O/E = 3.9). In the aggregation of the three risk factors, the most frequent was advanced age, gestational diabetes and overweight (O/E = 1.7). Regarding the aggregation of two factors, the aggregation between advanced age and gestational diabetes stands out (O/E = 2.9). As for the prevalence odds ratio, it was higher among gestational diabetes and advanced age (ORP = 2.76). Conclusions: It is important to verify how the risk factors related to fetal macrosomia are found, how they act and interact with each other, since their presence can lead to consequences for the newborn not only during childhood, but also in adult life. Knowing the real situation of this population can serve as a warning for the formulation of health policies and educational actions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sociedade Brasileira de Pediatria. Sociedade Brasileira de Genética Médica. Federação Brasileira de Associações de Ginecologia e Obstetrícia. Projeto Diretrizes: Recém-nascido macrossômico. Brasília (DF): Associação Médica Brasileira; Conselho Federal de Medicina; 2011 [acesso em 14 nov. 2023]. Disponível em: https://amb.org.br/files/_BibliotecaAntiga/recem_nascido_macrossomico.pdf

Brasil. Ministério da Saúde. Sistema de Informações sobre Nascidos Vivos SINASC [Internet]. 2019 [acesso em 10 nov. 2023]. Disponível em: http://sinasc.saude.gov.br/default.asp

Koyanagi A, Zhang J, Dagvadorj A, Hirayama F, Shibuya K, Souza JP, et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet. 2013;381(9865):476-83. doi: 10.1016/S0140-6736(12)61605-5.

Wang D, Hong Y, Zhu L, Wang X, Lev Q, Zhou Q, et al. Risk factors and outcomes of macrosomia in China: a multicentric survey based on birth data. J Matern Fetal Neonatal Med. 2016;30(5):623–627. doi: 10.1080/14767058.2016.1252746.

Salas MSP, Cobalea, ME, González, EL. Macrosomía fetal: factores de riesgo y resultados perinatales. Clín Invest Ginecol Obstet. 2021;48(3):100637. doi: 10.1016/j.gine.2020.09.003.

Fang F, Zhang QY, Zhang J, Lei XP, Lou ZC, Cheng H. Risk factors for recurrent macrosomia and child outcomes. World J Pediatr. 2019;15:289-96. doi: 10.1007/s12519-019-00249-z.

Pereda J, Bove I, Pineyro MM. Excessive maternal weight and diabetes are risk factors for macrosomia: a cross-sectional study of 42,663 pregnancies in Uruguay. Front Endocrinol (Lausanne). 2020;11:588443. doi: 10.3389/fendo.2020.588443.

Wang YW, Chen Y, Zhang YJ. Risk factors combine in a complex manner in assessment for macrosomia. BMC Public Health. 2023;23(1):271. doi: 10.1186/s12889-023-15195-9

Brasil. Instituto Brasileiro de Geografia e Estatística (IBGE). Panorama do estado do Espírito Santo, 2023 [Internet]. [acesso em 12 nov. 2023]. Disponível em: https://cidades.ibge.gov.br/brasil/es/panorama

Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Ações Programáticas Estratégicas. Gestação de alto risco: manual técnico. 5ª ed. Brasília (DF): Editora do Ministério da Saúde; 2012.

Araujo Júnior E, Peixoto AB, Zamarian ACP, Elito Júnior J, Tonni G. Macrosomia. Best Pract Res Clin Obstet Gynaecol. 2017;38:83–96. doi: 10.1016/j.bpobgyn.2016.08.003.

Poton W, Santos A, Bubach S, Cypreste A, Souza C, Oliveira AC, et al. Aspectos metodológicos do Projeto VIVER: um estudo longitudinal no Espírito Santo (Brasil). Cad Saúde Coletiva. Accepted (CADSC-2021-0443.R1, 12-May-2022).

Associação Brasileira de Empresas de Pesquisa (ABEP). Critério Brasil 2022 [Internet]. São Paulo: ABEP; 2022 [acesso em 25 abr. 2022]. Disponível em: https://abep.org/criterio-brasil/

Oliveira G, Silva TLND, Silva IBD, Coutinho ESF, Bloch KV, Oliveira ERAD. Agregação dos fatores de risco cardiovascular: álcool, fumo, excesso de peso e sono de curta duração em adolescentes do estudo ERICA. Cad Saude Publica 2019;35(12): e00223318. doi: 10.1590/0102-311X00223318.

Schuit AJ, Van Loon AJ, Tijhuis M, Ocké M. Clustering of lifestyle risk factors in a general adult population. Prev Med. 2002;35:219-24. doi: 10.1006/pmed.2002.1064.

Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa Nacional de Saúde 2013: indicadores de saúde e mercado de trabalho [Internet]. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2016. p. 66.

Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa Nacional de Saúde 2019: atenção primária à saúde e informações antropométricas. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2020.

Strauss A, Rochow N, Kunze M, Hesse V, Dudenhausen JW, Voigt M. Obesity in pregnant women: a 20-year analysis of the German experience. Eur J Clin Nutr. 2021;75:1757–76. doi: 10.1038/s41430-021-00981-8.

Juan J, Wei Y, Song G, Su R, Chen X, Shan R, et al. Risk factors for macrosomia in multipara: a multi-center retrospective study. Children (Basel). 2022;9(7):935. doi: 10.3390/children9070935.

Li G, Xing Y, Wang G, Zhang J, Wu Q, Ni W, et al. Differential effect of pre-pregnancy low BMI on fetal macrosomia: a population-based cohort study. BMC Med. 2021;19(1):175. doi: 10.1186/s12916-021-02046.

He XJ, Qin FY, Hu CL, Zhu M, Tian CQ, Li L. Is gestational diabetes mellitus an independent risk factor for macrosomia: a meta-analysis? Arch Gynecol Obstet. 2015;291(4):729-35. doi: 10.1007/s00404-014-3545-5.

Feig DS, Hwee J, Shah BR, Booth GL, Bierman AS, Lipscombe LL. Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: a large, population-based study in Ontario, Canada, 1996-2010. Diabetes Care. 2014;37(6):1590-6. doi: 10.2337/dc13-2717.

Lamminpää R, Vehviläinen-Julkunen K, Gissler M, Selander T, Heinonen S. Pregnancy outcomes of overweight and obese women aged 35 years or older - A registry-based study in Finland. Obes Res Clin Pr. 2016;10:133–42. doi: 10.1016/j.orcp.2015.05.008.

Maier JT, Schalinski E, Gauger U, Hellmeyer L. Antenatal body mass index (BMI) and weight gain in pregnancy - its association with pregnancy and birthing complications. J Perinat Med. 2016;44:397–404. doi: 10.1515/jpm-2015-0172.

Jolly MC, Sebire NJ, Harris JP, Regan L, Robinson S. Risk factors for macrosomia and its clinical consequences: a study of 350,311 pregnancies. Eur J Obstet Gynecol Reprod Biol. 2003;111(1):9-14. doi: 10.1016/s0301-2115(03)00154-4.

Belay DM, Bayih WA, Alemu AY, Sinshaw AE, Mekonen DK, Ayele AS, et al. Macrosomia and its predictors in pregnant women with diabetes in Ethiopia. Trop Med Int Health. 2021;26(12):1539-52. doi: 10.1111/tmi.13684.

Said AS, Manji KP. Risk factors and outcomes of fetal macrosomia in a tertiary centre in Tanzania: a case-control study. BMC Pregnancy Childbirth. 2016;16(1):243. doi: 10.1186/s12884-016-1044-3.

Pan XF, Tang L, Lee AH, Binns C, Yang CX, Xu ZP, et al. Association between fetal macrosomia and risk of obesity in children under 3 years in Western China: a cohort study. World J Pediatr. 2019;15(2):153-60. doi: 10.1007/s12519-018-0218-7.

Published

2024-11-13

How to Cite

1.
Oliveira G, Miguez FGG, Oliveira ERA de. Clustering of risk factors with the macrossomia fetal in participants of the Viver Project. Rev. Fac. Ciênc. Méd. Sorocaba [Internet]. 2024Nov.13 [cited 2024Nov.19];26(Fluxo contínuo):e64497. Available from: https://revistas.pucsp.br/index.php/RFCMS/article/view/64497

Issue

Section

Original Article