Cogito ergo sum non machina! On the Human Recognition of Truths in Arithmetic and Turing Machines

Authors

  • Ricardo Pereira Tassinari Departamento de Filosofia Universidade Estadual Paulista - UNESP / Campus Marília – SP
  • Itala M. Loffredo D’Ottaviano Grupo de Lógica Teórica e Aplicada Centro de Lógica, Epistemologia e História da Ciência Departamento de Filosofia Universidade Estadual de Campinas – UNICAMP – SP

Keywords:

Formal systems, Algorithms, Gödel’s theorems

Abstract

The objective of this paper is to discuss the existence of limits in thepossibility of modeling human behavior by formal system or computationalalgorisms. More specifically, we will discuss herein the impossibility ofcompletely modeling by algorisms or formal theories the human capability ofestablishing the truth of first order arithmetical formula. The answer exposedhere is based on a new analysis of the consequences of Gödel’s First Incompleteness Theorem and we will show here why and how this Theoremimplies the impossibility of such a modelling.

Metrics

Metrics Loading ...

Author Biography

Itala M. Loffredo D’Ottaviano, Grupo de Lógica Teórica e Aplicada Centro de Lógica, Epistemologia e História da Ciência Departamento de Filosofia Universidade Estadual de Campinas – UNICAMP – SP

 

How to Cite

Tassinari, R. P., & D’Ottaviano, I. M. L. (2013). Cogito ergo sum non machina! On the Human Recognition of Truths in Arithmetic and Turing Machines. Cognitio: Revista De Filosofia, 10(2), 221–230. Retrieved from https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/12871

Issue

Section

Cognitio Papers