Three-valued logic and paraconsistency in Peirce

Authors

  • José Renato Salatiel Universidade Federal do Espírito Santo

DOI:

https://doi.org/10.23925/2316-5278.2025v26i1:e57507

Keywords:

Charles S. Peirce, Logic, Non-classical logics, Paraconsistency, Sequents, Three-valued logics

Abstract

Peirce is now recognized as one of the pioneers of mathematical and algebraic logic, but his original work on non-classical logic still receives little attention outside the narrow circle of Peirce scholars. This is particularly evident in his development of the three-valued propositional calculus, recorded in Peirce’s Logic Notebook more than a decade before the rise of many-valued logics. The triadic logic, as named by Peirce, was formalized by Turquette in the late 1960s. Turquette presented an axiomatic interpretation of the three-valued tables in a series of articles that have since become a cornerstone in such studies. Recently, I have proposed a new approach, emphasizing a non-explosive fragment of triadic logic. This paper aims to expand the research in the following points: (i) a critical analysis of Turquette’s works, including the discussion of the Rosser-Turquette method of axiomatization; and (ii) the reconstruction of a fragment of the triadic logic in a system based on Sobociński’s material implication, formalized in sequent calculus. I conclude that Peirce’s three-valued matrix induces a paraconsistent, relevant, and substructural logic with investigative potential for contemporary research in non-classical logics.

References

ARIELI, O.; AVRON, A. Three-valued paraconsistent propositional logics. In: BEZIAU, J-Y et al. (eds.). New directions in paraconsistent logic. New Delhi, India: Springer, 2015. p. 91-129.

AVRON, A. Natural 3-valued logics: characterization and proof theory. The Journal of Symbolic Logic, v. 56, n. 1, p. 276-294, Mar., 1991. https://doi.org/10.2307/2274919.

AVRON, A. Classical Gentzen-type methods in propositional many-valued logics. In: FITTING, M.; ORŁOWSKA, E. (eds). Beyond two: theory and applications of multiple-valued logic. Springer-Verlag: Heidelberg, 2003. p. 117-155.

BELIKOV, A. Peirce’s triadic logic and its (overlooked) connexive expansion. Logic and Logical Philosophy, 2021 (online first articles). Available at: https://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2021.007. Accessed 16 June 2021.

BELNAP, N. D. Conditional assertion and restricted quantification. Noûs, v. 4, n. 1, p. 1-12, 1970. https://doi.org/10.2307/2214285.

BOCHVAR, D. A; BERGMANN, M On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus. History and Philosophy of Logic, v. 2, n. 1-2, p. 87-112, 1981. https://doi.org/10.1080/01445348108837023.

BRADY, G. From Peirce to Skolem: a neglected chapter in the History of Logic. Amsterdam: Elsevier, 2000.

CARNIELLI, W., MARCOS, J., DE AMO, S. Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, v. 8, n. 8, p. 115-152, 2000. https://doi.org/10.12775/LLP.2000.008.

CARNIELLI, W., MARCOS, J. A taxonomy of C-systems. In: CARNIELLI, W., CONIGLIO, M. E., D’OTTAVIANO, I. M. L. (eds.). Paraconsistency: the logical way to the inconsistent. Boca Raton: CRC Press, 2002. p. 01-94.

CARNIELLI, W., CONIGLIO, M. E. Paraconsistent logic: consistent, contradiction and negation. Dordrecht: Springer, 2016.

CARUS, P. The nature of logical and mathematical thought. The Monist, v. 20, n. 1, p. 33-75, Jan. 1910. https://doi.org/10.5840/monist191020120.

CHANG, C. C. Algebraic analysis of many valued logics. Transactions of the American Mathematical Society, v. 88, n. 2, p. 467-490, Jul. 1958. https://doi.org/10.1090/S0002-9947-1958-0094302-9.

COOPER, W. S. The propositional logic of ordinary discourse. Inquiry: An Interdisciplinary Journal of Philosophy, v. 11, n. 1-4, p. 295-320, 1968. https://doi.org/10.1080/00201746808601531.

COSTA, N. C. da. Sistemas formais inconsistentes. Curitiba: UFPR, 1993.

BELIKOV, A. Peirce’s triadic logic and its (overlooked) connexive expansion. Logic and Logical Philosophy, 2021 (online first articles). Available at: https://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2021.007. Accessed 16 June 2021.

FISCH, M. e TURQUETTE, A. Peirce’s triadic logic. Transactions of the Charles S. Peirce Society, v. II, n. 2, p. 71-85, 1966.

KLEENE, S. On notation for ordinal numbers. Journal of Symbolic Logic, v. 3, n. 4, p.150-155, 1938. https://doi.org/10.2307/2267778.

KLEENE, S. Introduction to metamathematics. Amsterdam/ Oxford: North-Holland Publishing Company, 1971.

LANE, R. Peirce’s triadic logic revisited. Transactions of the Charles S. Peirce Society, v. 35, n. 2, p. 284-311, 1999.

LANE, R. Triadic logic. In: BERGMAN, M.; QUEIROZ, J. (eds.). The Commens Encyclopedia: The Digital Encyclopedia of Peirce Studies. New Edition, 2001. Available at: http://www.commens.org/encyclopedia/article/lane-robert-triadic-logic. Acessed: 12 February 2021.

ŁUKASIEWICZ, J. [1920]. On three-valued logic. In: BORKOWSKI, L. (ed.). Selected works. Amsterdam: North-Holland, 1970. p. 87-88.

MA, M.; PIETARINEN, A-V. Peirce’s calculi for classical propositional logic. The Review of Symbolic Logic, v. 13, n. 3, p. 509-540, 2020. https://doi.org/10.1017/S1755020318000187.

MALINOWSKI, G. Many-valued logics. Oxford: Oxford University Press, 1993.

MEYER, R. K.; PARKS, Z. Independent axioms for the implicational fragment of Sobociński’s three‐valued logic. Mathematical Logic Quarterly, v. 18 (19-20), p. 291-295, 1972. https://doi.org/10.1002/malq.19720181903.

ODLAND, B. C. Peirce’s triadic logic: continuity, modality, and L. Unpublished master’s thesis. University of Calgary: Calgary, AB, 2020. Available at: http://hdl.handle.net/1880/112238. Accessed 10 April 2021.

ODLAND, B. C. Peirce’s triadic logic: modality and continuity. Transactions of the Charles S. Peirce Society, v. 57, n. 2, p. 149-171.2021. https://doi.org/10.2979/trancharpeirsoc.57.2.01.

PARKS, R. Z. The mystery of Phi and Psi. Transactions of the Charles S. Peirce Society, v. 7, n. 3, p. 176–177, 1971.

PARKS, R. Z. A note on R-mingle and Sobociński’s three-valued logic. Notre Dame Journal of Formal Logic, v. 13, n. 2, p. 227-228, 1972. https://doi.org/10.1305/ndjfl/1093894720.

PEIRCE, C. S. On the algebra of logic: a contribution to the philosophy of notation. American Journal of Mathematics, v. 7, n. 2, p. 180-196, 1885. https://doi.org/10.2307/2369451.

PEIRCE, C. S. Collected Papers. 8 vols. HARTSHORNE, Charles; HEISS, Paul and BURKS, Arthur (eds.). Cambridge: Harvard University Press, 1931-1958.

PEIRCE, C. S. The new elements of mathematics. The Hague: Mouton Publishers, 1976.

PEIRCE, C. S. The essential Peirce: selected philosophical writings, v. 1 (1867-1893). HOUSER, N. and KLOESEL, C. (eds.). Indiana University Press: Bloomington and Indianapolis, 1992.

PEIRCE, C. S. The Essential Peirce: selected philosophical writings, v. 2 (1893-1913). The Peirce Edition Project (ed.). Indiana University Press: Bloomington and Indianapolis, 1998.

PEIRCE, C. S. Philosophy of mathematics: selected writings. MOORE, M. E. (ed.). Indiana University Press: Bloomington and Indianapolis, 2010.

PEIRCE, C. S. Peirce logic notebook, Charles Sanders Peirce Papers MS Am 1632 (339). Houghton Library, Harvard University, Cambridge, Mass. Available at: https://nrs.harvard.edu/urn-3:FHCL.Hough:3686182. Accessed 10 April 2021.

PEIRCE, C.S. Writings of Charles S. Peirce: a chronological edition, v. I-VIII. PEIRCE EDITION PROJECT (ed.). Indiana University Press: Bloomington, Indiana, 1982-2010.

PEIRCE, C. S. Descriptions of a notation for the logic of relatives, resulting from an amplification of Boole’s calculus of logic. In: MOORE, E, C. et al (ed.). Writings of Charles S. Peirce: a chronological edition, v. II Indiana University Press: Bloomington, Indiana, 1984.

PEIRCE, C. S. On the algebra of logic. In: KLOESEL, J. W. et al (ed.). Writings of Charles S. Peirce: a chronological edition, v. IV. Indiana University Press: Bloomington, Indiana, 1989.

PEIRCE, C. S. On the algebra of logic: a contribution to the philosophy of notation. In: KLOESEL, J. W. et al (ed.). Writings of Charles S. Peirce: a chronological edition, v. V. Indiana University Press: Bloomington, Indiana, 1993.

POST, E. Introduction to a general theory of elementary propositions. American Journal of Mathematics, v. 43, n. 3, p. 163-185, 1921. https://doi.org/10.2307/2370324.

RADZKI, M. On the Rosser-Turquette method of constructing axiom systems for many-valued propositional logics of Łukasiewicz. Journal of Applied Non-classical Logics, v. 27, n. 1-2, p. 27-32, 2017. https://doi.org/10.1080/11663081.2017.1311147.

RADZKI, M. Some problems concerning axiom systems for finitely many-valued propositional logics. In: DRABAREK, A. et al. (eds.). Interdisciplinary Investigations into the Lvov-Warsaw School. Palgrave Macmillan: Cham, 2019. p. 205-216.

RADZKI, M. On the methods of constructing Hilbert-type axiom systems for finite-valued propositional logics of Łukasiewicz. History and Philosophy of Logic, v. 43, n. 1, p. 70-79, 2022. https://doi.org/10.1080/01445340.2021.1899475.

RASIOWA, H. An algebraic approach to non-classical logics. Amsterdam: Polish Scientific Publishers, 1974.

RESCHER, N. Many-valued logic. New York: McGraw Hill, 1968.

ROBERTS, D. The existential graphs of Charles S. Peirce. The Hague: Mouton, 2009.

RODRIGUES, C. Squaring the unknown: the generalization of logic according to G. Boole, A. De Morgan, and C. S. Peirce. South American Journal of Logic, v. 3, n. 2, p. 415-481, 2017.

RODRIGUES, C. About a most subtle and disputed question: whether C. S. Peirce invented truth-tables, and why it does not matter. Version 4. 8/11/2021.

ROSE, A. An alternative formalization of Sobociński's three-valued implicational propositional calculus. Mathematical Logic Quarterly, v. 2, p. 166-172, 1956. https://doi.org/10.1002/malq.19560021003.

ROSSER, J. B.; TURQUETTE, A. R. Axiom schemes for m-valued propositional calculi. The Journal of Symbolic Logic, v. 10, n. 3, 1945, p. 61-82. https://doi.org/10.2307/2267026.

ROSSER, J. B.; TURQUETTE, A. R. Many-valued logics. Amsterdam: North-Holland Publishing Company, 1952.

SALATIEL, J.R. On a new approach to Peirce’s three-value propositional logic. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 45, n. 4, p. 79-106, 2023. Accessed 28 jun. 2024. https://doi.org/10.1590/0100-6045.2022.v45n4.js.

SALATIEL J.R. Tableau method of proof for Peirce’s three-valued propositional logic.

Unisinos Journal of Philosophy, v. 23, n. 1, p. 1-10, 2022. Accessed 28 jun. 2024. https://doi.org/10.4013/fsu.2022.231.05.

SOBOCIŃSKI, B. Axiomatization of a partial system of three-valued calculus of propositions. The Journal of Computing Systems, vo. I, p. 23-55, 1952.

SOBOCIŃSKI, B. Review: J. B. Rosser, A. R. Turquette, Many-Valued Logics. Journal of Symbolic Logic, v. 20, n. 1, p. 45-50, 1955. https://doi.org/10.2307/2268043.

SOBOCIŃSKI, B. A note concerning the many-valued propositional calculi. Notre Dame Journal of Formal Logic, v. 2, n. 2, p. 127-128, 1961. https://doi.org/10.1305/ndjfl/1093956835.

TARSKI, A. Introduction to logic and the methodology of deductive sciences. Oxford: Oxford University Press, 1994.

TURQUETTE, A. R. Review: Bolesław Sobociński, A note concerning the many-valued propositional calculi. Journal of Symbolic Logic, v. 31, n. 1, p. 117. 1966. https://doi.org/10.2307/2270643.

TURQUETTE, A. R. Peirce’s Phi and Psi operators for triadic logic. Transactions of the Charles S. Peirce Society, v. 3, n, 2, p. 66-73, 1967.

TURQUETTE, A. R. Peirce’s complete systems of triadic logic. Transactions of the Charles S. Peirce Society, v. 5, n. 4, p. 199-210, 1969.

TURQUETTE, A. R. Dualism and trimorphism in Peirce’s triadic logic. Transactions of the Charles S. Peirce Society, v. 8, n. 3, p. 131-140, 1972.

TURQUETTE, A. R. Implication for Peirce’s triadic logic. Proceedings of the XVth World Congress of Philosophy, v. 3, p. 399-401, 1974. https://doi.org/10.5840/wcp151974387.

TURQUETTE, A. R. Minimal axioms for Peirce’s triadic logic. Zeitschrift für mathe- matische Loßik und Grundlagen der Mathematik, v. 22, p. 169-176, 1976. https://doi.org/10.1002/malq.19760220123.

TURQUETTE, A. R. Alternative axioms for Peirce’s triadic logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, v. 24, p. 443-444, 1978. https://doi.org/10.1002/malq.19780242510.

TURQUETTE, A. R. Quantification for Peirce’s preferred system of triadic logic. Studia Logica, v. 40, p. 373-382, 1981. https://doi.org/10.1007/BF00401655.

TURQUETTE, A. R. Defining Peirce’s verum. Philosophie et Culture: Actes du XVIIe congrès mondial de philosophie, v. 2, p. 842-845, 1988. https://doi.org/10.5840/wcp1719882694.

Downloads

Published

2025-01-31

How to Cite

Salatiel, J. R. (2025). Three-valued logic and paraconsistency in Peirce. Cognitio: Revista De Filosofia, 26(1), e57507. https://doi.org/10.23925/2316-5278.2025v26i1:e57507

Issue

Section

Dossier: Peirce and Logics