Topos of existential graphs over Riemann surfaces

Authors

  • Angie Hugueth Universidade Estadual de Campinas

DOI:

https://doi.org/10.23925/2316-5278.2025v26i1:e70114

Keywords:

Existential Graphs, Logic, Peirce, Sheaves, Topos

Abstract

Peirce’s Existential Graphs provide a geometrical understanding of a variety of logics (classical, intuitionistic, modal, first-order). The geometrical interpretation is given by topological transformations of closed (Jordan) curves on the plane, but it can be extended to other surfaces (sphere, cylinder, torus, etc.) The result provides the appearance of new logics related to the shapes of the surfaces. Going beyond, one can draw existential graphs over general Riemann Surfaces, and, introducing tools from algebraic geometry (Sheaves, Grothendieck Toposes, Elementary Toposes), one can try to capture both the logics and the geometrical shapes through a new Topos of Existential Graphs over Riemann Surfaces, and through the classifier subobject of the topos. We offer new perspectives (concepts, definitions, examples, conjectures) along this road.

References

AHLFORS, L. Complex Analysis. New York: McGraw-Hill, 1953.

ARTIN, M. A. Théorie des Topos et Cohomologie Etale des Schemas. Seminaire de Geometrie Algebrique du Bois-Marie 1963-1964 (SGA 4): Tome 1. Springer Berlin Heidelberg, 1983.

BELTRAMETTI, M. Lectures on Curves, Surfaces and Projective Varieties: A Classical View of Algebraic Geometry. European Mathematical Society, 2009.

CARAMELLO, O. Theories, Sites, Toposes: Relating and Studying Mathematical Theories Through Topos-theoretic ‘bridges’. Oxford University Press, 2018.

GANGLE, G. C. A Generic Figures Reconstruction of Peirce’s Existential Graphs (Alpha). Erkenntnis, v. 87, p. 623-656, 2022. https://doi.org/10.1007/s10670-019-00211-5.

GRIFFITHS, P. A. Principles of Algebraic Geometry. Wiley Classics Library, 2014.

GROTHENDIECK, A. Classes de faisceaux et théorème de Riemann-Roch. Institut des hautes études scientifiques, 1968.

KOEBE, P. Über die Uniformisierung der algebraischen Kurven. Göttinger Nachrichten, p. 191-210, 1907.

KUMARESAN, S. A Course in Differential Geometry and Lie Groups. New Delhi: Hindustan Book Agency, 2002.

LAWVERE, F. W. Functorial Semantics of Algebraic Theories. Phd Thesis, Columbia University, New York, 1963.

MAC LANE, S.; MOERDIJK, I. Sheaves in Geometry and Logic. A First Introduction to Topos Theory. New York: Springer-Verlag, 1992.

MORITA, S. Geometry of Differential Forms. American Mathematical Society, 2001.

NEEDHAM, T. Visual Complex Analysis. London: Clarendon Press, 1997.

OOSTRA, A. Los gráficos alfa de Peirce aplicados a la lógica intuicionista. Cuadernos de Sistemática Peirceana, v. 2, p. 25-60, 2010.

OOSTRA, A. Notas de Lógica Matemática. Ibagué, Tolima: Universidad del Tolima, 2018.

OOSTRA, A. Intuitionistic and Geometrical Extensions of Peirce’s Existential Graphs. In: ZALAMEA, F. (Ed.). Advances in Peirce Mathematics. The Colombian School. Berlin: De Gruyter, 2022.

PEIRCE, C. S. Syllabus: Syllabus of a course of Lectures at the Lowell Institute beginning 1903, Nov. 23. On Some Topics of Logic. MS [R] 478, 1903.

PIETARINEN, A.-V. The Endoporeutic Method. In: PIETARINEN, A. -V.; QUEIROZ, M. B. (Eds.). The Commens Encyclopedia: The Digital Encyclopedia of Peirce Studies. Commens, 2004.

PIETARINEN, A.-V. 2 The 1903 Lowell Lectures (Vol. 2). Berlin, Boston: De Gruyter, 2021.

POINCARÉ, H. Sur l'uniformisation des fonctions analytiques. Acta Mathematica, v. 31, p. 1-63, 1908. https://doi.org/10.1007/BF02415442.

RIEMANN, B. Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen komplexen Größe. Phd thesis, Universität Göttingen, Göttingen, 1851.

ROBERTS, D. D. The Existential Graphs of Charles S. Peirce. Phd Thesis, University of Illinois, Urbana-Champaign, 1963.

ROBERTS, D. D. The Existential Graphs. Computers Math. Applic., v. 23, n. 6-9, p. 639-663, 1992. https://doi.org/10.1016/0898-1221(92)90127-4.

ROCH, G. Ueber die Anzahl der willkürlichen Constanten in algebraischen Functionen. Journal für die reine und angewandte Mathematik, v. 64, p. 372-376, 1865. https://doi.org/10.1515/9783112368527-027.

TARSKI, A. Der Aussagenkalkul und die Topologie. Fundamenta Mathematicae, p. 103-134, 1938. https://doi.org/10.4064/fm-31-1-103-134.

WEGERT, E. Visual Complex Functions: An Introduction with Phase Portraits. Springer Basel, 2012.

ZALAMEA, F. Modelos en haces para el pensamiento matemático. Bogotá: Editorial Universidad Nacional de Colombia, 2022.

ZALAMEA, F. Grothendieck: A Short Guide to His Mathematical and Philosophical Work (1949–1991). In: SRIRAMAN, B (Ed.). Handbook of the History and Philosophy of Mathematical Practice. Springer International Publishing, 2024. p. 1257–1296.

ZEMAN, J. J. The Graphical Logic of C. S. Peirce. Phd Thesis. Chicago: University of Chicago, 1964.

Downloads

Published

2025-02-07

How to Cite

Hugueth, A. (2025). Topos of existential graphs over Riemann surfaces. Cognitio: Revista De Filosofia, 26(1), e70114. https://doi.org/10.23925/2316-5278.2025v26i1:e70114

Issue

Section

Dossier: Peirce and Logics