How Complex Is It To Understand Complexity?

A systematic study of complexity and decision making

Authors

  • Carolina Schneider Bender Universidade Federal de Santa Maria (UFSM) https://orcid.org/0000-0001-9234-7447
  • Mauri Leodir Lobler Universidade Federal de Santa Maria (UFSM)

DOI:

https://doi.org/10.23925/2178-0080.2023v25i1.56458

Keywords:

Decision-making, Complexity, Complex decision-making

Abstract

Humans face complexity in the most routine decisions, such as choosing the toppings of a pizza, and essential decisions in life, such as choosing the courses offered at graduate school and career decisions. This paper explores the interconnection between complexity and decision-making as scientific knowledge. The researchers used the technique of scientific mapping to achieve the research objective. The results show that research involving complexity and decision making are still necessary. The annual growth rate of scientific production related to these two topics is 12.12%. Career decision-making is a well-developed theme and essential in the research dynamics. Researchers can conduct more studies on the emerging theme of shared decision-making.

Metrics

Metrics Loading ...

References

Adami, C. (2002). What is complexity?. BioEssays, 24(12), 1085-1094. https://doi.org/10.1002/bies.10192

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Bibliomerix. (2021). A brief introduction to bibliometrix [Web page]. Retrieved from https://www.bibliometrix.org/vignettes/Introduction_to_bibliometrix.html

Bossaerts, P., & Murawski, C. (2017). Computational complexity and human decision-making. Trends in Cognitive Sciences, 21(12), 917-929. https://doi.org/10.1016/j.tics.2017.09.005

Caballero, J., Wolowich, W. R., Benavides, S., & Marino, J. (2014). Difficulty and discrimination indices of multiple‐choice examination items in a college of pharmacy therapeutics and pathophysiology course sequence. International Journal of Pharmacy Practice, 22(1), 76-83. https://doi.org/10.1111/ijpp.12022

Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of management review, 13(1), 40-52. https://doi.org/10.2307/258353

Carpenter, S. M., Yates, J. F., Preston, S. D., & Chen, L. (2016). Regulating emotions during difficult multiattribute decision making: The role of pre-decisional coherence shifting. PloS one, 11(3), e0150873. https://doi.org/10.1371/journal.pone.0150873

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of informetrics, 5(1), 146-166. https://doi.org/10.1016/j.joi.2010.10.002

Crowder-Meyer, M., Gadarian, S. K., Trounstine, J., & Vue, K. (2020). A different kind of disadvantage: Candidate race, cognitive complexity, and voter choice. Political Behavior, 42(2), 509-530. https://doi.org/10.1007/s11109-018-9505-1

de Bock, B. A., Willems, D. L., & Weinstein, H. C. (2018). Complexity perspectives on clinical decision making in an intensive care unit. Journal of evaluation in clinical practice, 24(1), 308-313. https://doi.org/10.1111/jep.12794

DeShazo, J. R., & Fermo, G. (2002). Designing choice sets for stated preference methods: the effects of complexity on choice consistency. Journal of Environmental Economics and management, 44(1), 123-143. https://doi.org/10.1006/jeem.2001.1199

Farashahi, S., Rowe, K., Aslami, Z., Gobbini, M. I., & Soltani, A. (2018). Influence of learning strategy on response time during complex value-based learning and choice. PloS one, 13(5), e0197263. https://doi.org/10.1371/journal.pone.0197263

Franco, J. P., Yadav, N., Bossaerts, P., & Murawski, C. (2020). Structural properties of individual instances predict human effort and performance on an NP-Hard problem. bioRxiv, 405449.

Frosch, D. L., May, S. G., Rendle, K. A., Tietbohl, C., & Elwyn, G. (2012). Authoritarian physicians and patients' fear of being labeled 'difficult'among key obstacles to shared decision making. Health affairs, 31(5), 1030-1038. https://doi.org/10.1377/hlthaff.2011.0576

Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of experimental child psychology, 88(2), 121-151. https://doi.org/10.1016/j.jecp.2004.03.002

Glasgow, R. E., Klesges, L. M., Dzewaltowski, D. A., Estabrooks, P. A., & Vogt, T. M. (2006). Evaluating the impact of health promotion programs: using the RE-AIM framework to form summary measures for decision making involving complex issues. Health education research, 21(5), 688-694. https://doi.org/10.1093/her/cyl081

Garg, H., & Rani, D. (2019). Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process. Artificial Intelligence Review, 1-26. https://doi.org/10.1007/s10462-019-09772-x

Hærem, T., Pentland, B. T., & Miller, K. D. (2015). Task complexity: Extending a core concept. Academy of management review, 40(3), 446-460. https://doi.org/10.5465/amr.2013.0350

Holland, J., O'Sullivan, R., & Arnett, R. (2015). Is a picture worth a thousand words: an analysis of the difficulty and discrimination parameters of illustrated vs. text-alone vignettes in histology multiple choice questions. BMC Medical Education, 15, 1-9. https://doi.org/10.1186/s12909-015-0452-9

Iederan, O. C., Curşeu, P. L., & Vermeulen, P. (2009). Effective decision-making: The role of cognitive complexity in strategic decisions. Studia Psychologica, 51(4), 293-304.

Isham, E. A. (2020). Temporal experience modifies future thoughts: Manipulation of Libet's W influences difficulty assessment during a decision-making task. PloS one, 15(11), e0237680. https://doi.org/10.1371/journal.pone.0237680

Landry, C., Garant, D., Duchesne, P., & Bernatchez, L. (2001). 'Good genes as heterozygosity': the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1473), 1279-1285. https://doi.org/10.1098/rspb.2001.1659

Liao, H., Wu, X., Mi, X., & Herrera, F. (2020). An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule. Omega, 93, 102052. https://doi.org/10.1016/j.omega.2019.03.010

Liu, P., & Li, Z. (2012). Task complexity: A review and conceptualization framework. International Journal of Industrial Ergonomics, 42(6), 553-568. https://doi.org/10.1016/j.ergon.2012.09.001

Moore, C., & Tenbrunsel, A. E. (2014). "Just think about it"? Cognitive complexity and moral choice. Organizational Behavior and Human Decision Processes, 123(2), 138-149. https://doi.org/10.1016/j.obhdp.2013.10.006

Omundsen, H. C., Franklin, R. L., Higson, V. L., Omundsen, M. S., & Rossaak, J. I. (2020). Perioperative shared decision-making in the Bay of Plenty, New Zealand: Audit results from a complex decision pathway quality improvement initiative using a structured communication tool. Anaesthesia and Intensive Care, 48(6), 473-476. https://doi.org/10.1177/0310057X20960734

Perez, B., & Liberman, A. (2011). Toward the adoption of complexity science in health care: Implications for risk-taking and decision-making activities. The health care manager, 30(1), 71-85. https://doi.org/10.1097/HCM.0b013e3182078be9

Pham, C. T., Gibb, C. L., Fitridge, R. A., Karnon, J., & Hoon, E. (2019). Supporting surgeons in patient-centred complex decision-making: a qualitative analysis of the impact of a perioperative physician clinic. BMJ open, 9(12), e033277. https://doi.org/10.1136/bmjopen-2019-033277

Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348-349. https://doi.org/10.1108/eb026482

Ramchandran, K., Fiedorowicz, J., Chen, Z., Bu, Y., Bechara, A., & Andreasen, N. C. (2020). Patients on the psychosis spectrum employ an alternate brain network to engage in complex decision-making. PloS one, 15(9), e0238774. https://doi.org/10.1371/journal.pone.0238774

Rescher, N. (1998). Complexity: A philosophical overview. Transaction Publishers.

Simon, H. A. (1955). A behavioral model of rational choice. The quarterly journal of economics, 69(1), 99-118. https://doi.org/10.2307/1884852

Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467-482.

Speier, C., Vessey, I., & Valacich, J. S. (2003). The effects of interruptions, task complexity, and information presentation on computer‐supported decision‐making performance. Decision sciences, 34(4), 771-797. https://doi.org/10.1111/j.1540-5414.2003.02292.x

Stanovich, K. E. (2013). Why humans are (sometimes) less rational than other animals: Cognitive complexity and the axioms of rational choice. Thinking & Reasoning, 19(1), 1-26. https://doi.org/10.1080/13546783.2012.713178

Swait, J., & Adamowicz, W. (2001). The influence of task complexity on consumer choice: A latent class model of decision strategy switching. Journal of Consumer Research, 28(1), 135-148. https://doi.org/10.1086/321952

Snowden, D. J., & Boone, M. E. (2007). A leader's framework for decision making. Harvard business review, 85(11), 68.

Shirey, M. R., Ebright, P. R., & McDaniel, A. M. (2013). Nurse manager cognitive decision‐making amidst stress and work complexity. Journal of Nursing Management, 21(1), 17-30. https://doi.org/10.1111/j.1365-2834.2012.01380.x

Stadelmann, D., & Torgler, B. (2013). Bounded rationality and voting decisions over 160 years: Voter behavior and increasing complexity in decision-making. PloS one, 8(12), e84078. https://doi.org/10.1371/journal.pone.0084078

Taib, F., & Yusoff, M. S. B. (2014). Difficulty index, discrimination index, sensitivity and specificity of long case and multiple choice questions to predict medical students' examination performance. Journal of Taibah University Medical Sciences, 9(2), 110-114. https://doi.org/10.1016/j.jtumed.2013.12.002

Unal, O., & Maleki, E. (2018). Shot peening optimization with complex decision-making tool: Multi criteria decision-making. Measurement, 125, 133-141. https://doi.org/10.1016/j.measurement.2018.04.077

Van Ditzhuijzen, J., Brauer, M., Boeije, H., & van Nijnatten, C. H. (2019). Dimensions of decision difficulty in women's decision-making about abortion: A mixed methods longitudinal study. PloS one, 14(2), e0212611. https://doi.org/10.1371/journal.pone.0212611

Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational behavior and human decision processes, 37(1), 60-82. https://doi.org/10.1016/0749-5978(86)90044-0

Yager, R. R., & Abbasov, A. M. (2013). Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems, 28(5), 436-452. https://doi.org/10.1002/int.21584

Zadeh, L. A. (1971). Similarity relations and fuzzy orderings. Information sciences, 3(2), 177-200. https://doi.org/10.1016/S0020-0255(71)80005-1

Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629

Downloads

Published

2023-01-02

How to Cite

Bender, C. S. ., & Leodir Lobler, M. (2023). How Complex Is It To Understand Complexity? A systematic study of complexity and decision making. Management in Dialogue Review, 25(1), 64–84. https://doi.org/10.23925/2178-0080.2023v25i1.56458