A função endócrina do tecido adiposo

Autores

  • Wagner de Jesus Pinto Universidade Federal do Acre (UFAC)

Palavras-chave:

tecido adiposo, adipocinas, sistema endócrino

Resumo

Atualmente considera-se o tecido adiposo como uma estrutura dinâmica, envolvida em muitos processos fisiológicos e metabólicos, que produz e libera uma grande variedade de peptídeos ativos conhecidos pelo nome genérico de adipocinas, que atuam exercendo efeitos endócrinos, parácrinos e autócrinos. Além disso, expressa inúmeros receptores que lhe permite responder a sinais aferentes oriundos de órgãos endócrinos e também do sistema nervoso central. Em 1987, o tecido adiposo foi identificado como o maior sítio de metabolização de hormônios esteroides, subsequentemente, em 1994, reconheceu-se o tecido adiposo como um órgão endócrino, sendo a leptina um de seus primeiros produtos de secreção identificados. Além da leptina, outras substâncias biologicamente ativas foram sendo isoladas, tais como adiponectina, resistina, TNF-a, interleucina-6, dentre outros. As adipocinas oriundas do tecido adiposo modulam diversos parâmetros metabólicos, tais como controle da ingestão alimentar, balanço energético e sensibilidade periférica à insulina, por exemplo. Assim, a secreção alterada de adipocinas por parte do tecido adiposo pode ter efeitos metabólicos complexos, podendo apresentar relações com o processo fisiopatológico da obesidade, disfunções endoteliais, inflamações, aterosclerose e diabetes melito. O entendimento dos processos moleculares que ocorrem no adipócito pode nos prover novas ferramentas para o tratamento de condições fisiopatológicas, como, por exemplo, a síndrome metabólica, obesidade e diabetes melito. 

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Biografia do Autor

Wagner de Jesus Pinto, Universidade Federal do Acre (UFAC)

Professor do Depto. de Ciências da Saúde e Educação Física da Universidade Federal do Acre. Mestrado e Doutorado em Biologia Funcional e Molecular UNICAMP

Referências

Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci. 2009;54:1847-56.

Wajchenberg BL. Tecido Adiposo como Glândula Endócrina. Arq Bras Endocrinol Metab 2000; 44/1: 13-20.

Fonseca-Alaniz MH, Takada J, Alonso-Vale MIC, Lima FB. Adipose tissue as an endocrine organ: from theory to practice. Jornal de Pediatria. 2007;83:5 (Supl) 192-203.

Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548-56.

Vázquez-Vela MEF, Torres N, Tovar AR. White Adipose Tissue as Endocrine Organ and Its Role in Obesity. Archives of Medical Research. 2008; 39: 715-728.

Curi R, Pompéia C, Miyasaka Ck, Procópio J. Entendendo a gordura: os ácidos graxos. São Paulo: Manole, 2002.

Tadashi Kitahara A. Ha-Sheng Li, A. Carey D. Balaban, ABC - Localization of the mitochondrial uncoupling protein family in the rat inner ear. Hearing Research. 2004; 196: 39–48.

Boschini R.P, Garcia Júnior JR. Regulação da expressão gênica das UCP2 e UCP3 pela restrição energética, jejum e exercício físico. Rev. Nutr. 2005; 18(6):753-764.

Stryer L. BIOQUÍMICA. 4º ed, Guanabara Koogan, 2011.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425-32.

Coleman D, Humme KP. The influence of genetic background on the expression of the obese (ob) gene in the mouse. Diabetologia. 1973; 9: 287-29.

Coleman DL. Effects of parabiosis os obese with diabetes and normal mice. Diabetologia. 1973; 9: 294-298.

Cinti S, Frederich RC, Zingaretti MC, De Matteis R, Flier JS, Lowell BB. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tis- sue. Endocrinology 1997;138:797-804.

Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, et al. The stomach is a source of leptin. Nature 1998; 394:790-793.

Hube F, Lietz U, Igel M, Jensen PB, Tornqvist H, Joost HG, et al. Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. Horm Metab Res. 1996; 28: 690-693.

Licinio J, Mantzoros C, Negrao AB, Cizza G, Wong ML, Bongiorno PB, et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat. Med. 1997;3: 575-579.

Banks WA, Lebel CR. Strategies for the delivery of leptin to the CNS. J Drug Target. 2002; 10(4): 297-308.

Trayhurn P, Thomas ME, Duncan JS, Rayner DV. Effects of fasting and refeeding on ob gene expression in white adipose tissue of lean and obese (oblob) mice. FEBS Lett. 1995;368:488-490.

Hermsdorff HHM, Vieira MAQM, Monteiro JBR. Leptina e sua influência na patofisiologia de distúrbios alimentares. Rev Nutr. 2006;19(3):369–79.

Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, et al. Transient increase in obese gene expression after food intake or insulin administration. Nature. 1995; 377:527-529

Hermsdorff, HHM, Vieira MAQM, Monteiro JBR. Leptina e sua influência na patofisiologia de distúrbios alimentares. Rev. Nutr. 2006; 19(3): 369-379.

Kalra SP, Dube MG, Pu OS, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypo- thalamic regulation of body weight. Endocrine Ver. 1999; 20: 68-100.

Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, et al. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest. 2007; 117: 2860 e 2868.

Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell. 2002; 2: 497-503.

Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 2003;14:398 e 403.

Wang ZW, Pan WT, Lee Y, Kakuma T, Zhou YT, Unger RH. The role of leptin resistance in the lipid abnormalities of aging. FASEB J. 2001;15:108-114.

Elissondo N, Gómez Rosso L, Maidana P, Brites F. Adiponectina: una adipocitoquina con múltiples funciones protectoras. Acta Bioquím Clín Latinoam. 2008; 42 (1): 17-33.

Adamckac M, Wiecek A. The adipose tissue as na endocrine organ. Semin Nephrol. 2013; 33:2-13.

Wang Y, Xu A, Knight C, Xu LY, Cooper GL. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin: potential role in the modulation of its insulin-sensitizing activity. J Biol Chem 2002; 277: 19521-19529.

Sargin H, Sargin M, Gozu H, Orcun A, Baloglu G, Ozisik M, et al. Is Adiponectin level a predictor of nonalcoholic fatty liver disease in nondiabetic male patients? World J Gastroenterol 2005; 11: 5874-7.

Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003; 26: 2442-50.

Fisher M, Trujillo ME, Hanif W, Barnett AH, McTernan PG, Scherer PE, et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia. 2005; 48: 1084-1087.

Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nageratani H, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocytederived protein. Diabetes 2002; 51: 2734-41.

Delporte ML, Funahashi T, Takahashi M, Matsuzawa Y, Brichard SM. Pre- and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies. Biochem J. 2002; 367: 677-85.

Gil-Campos M, Cañete R, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. 2004; 23: 963-74.

Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor. Cytokine Growth Factor Rev. 2003; 14: 447–455.

Ruan H, Miles PD, Ladd CM, Ross K, Golub TR, Olefsky JM, Lodish HF. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-:implications for insulin resistance. Diabetes. 2002; 51:3176–3188.

Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003; 27(3):S53–S55.

Erin E. Kershaw and Jeffrey S. Flier. Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism. 2004; 89(6):2548–2556.

Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004; 145:2273–2282

Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovas-cular inflammatory syndrome. Endocr Ver. 2003; 24:278–301.

Chan JL, Heist K, DePaoli A, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to shortterm starvation in healthy men. J Clin Invest. 2003; 111:1409–1421.

Satish L. Deshmane, Sergey Kremlev, Shohreh Amini, Bassel E. Sawaya. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. Journal of Interferon & Cytokine Research. 2009; 29 (6):313-26.

Sartipy P, Loskutoff DJ 2003 Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA. 2003; 100:7265–7270

Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem. 2003; 278:46654–46660

Stout, T.J.; Graham, H.; Buckley, D.I.; Matthews, D.J. Structures of Active and Latent PAI-1: A Possible Stabilizing Role for Chloride Ions. Biochemistry. 2000; 39(29), 8460-8469.

Juhan-Vague I, Alessi MC, Mavri A, Morange PE. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost. 2003; 1:1575–1579.

Mertens I, Van Gaal LF. Obesity, haemostasis and the fibrinolytic system. Obes Ver. 2002; 3: 85–101.

Carvalho MHC, Colaço AL, Fortes ZB. Citocinas, disfunção endotelial e resist~encia à insulina. Arq. Bras. Endocrinol. Metabo. 2006; 50: 304-312.

Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 2004; 53:336–346.

Patel SD, Rajala MW, Rossetti L, Scherer PE, Shapiro L. "Disulfide-dependent multimeric assembly of resistin family hormones". Science. 2004; 5674: 1154–8.

Caroline Bulcão, Sandra Roberta G. Ferreira, Fernando M.A. Giuffrida, Fernando Flexa, Ribeiro-Filho - The New Adipose Tissue and Adipocytokines. Current Diabetes Reviews. 2006; 2(1): 19-28.

Savage DB, Sewter CP, Klenk ES, et al. Resistin/fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 2001; 50: 2199-202.

Banerjee RR, Lazar MA. Resistin: molecular history and prognosis. J Mol Med. 2003; 81:218–226.

Chen CC, Li TC, Li CI, Liu CS, Wang HJ, Lin CC. Serum resistin level among healthy subjects: relationship to anthropometric and metabolic parameters. Metabolism. 2005; 54:471-5.

Pagano C, Marin O, Calcagno A y cols. Increased serum resistin in adults with prader-willi syndrome is related to obesity and not to insulin resistance. J Clin Endocrinol Metab. 2005; 90:4335-40.

Downloads

Publicado

2014-09-24

Como Citar

1.
Pinto W de J. A função endócrina do tecido adiposo. Rev. Fac. Ciênc. Méd. Sorocaba [Internet]. 24º de setembro de 2014 [citado 16º de abril de 2024];16(3):111-20. Disponível em: https://revistas.pucsp.br/index.php/RFCMS/article/view/14868

Edição

Seção

Revisão