The The CRISPR/Cas9 system and the potential for beta-thalassemia

Authors

  • Beatriz Bonvicini Serpeloni Faculdade de Americana (FAM) – Americana (SP), Brasil.
  • Luíza Nayara Monção de Oliveira Faculdade de Americana (FAM) – Americana (SP), Brasil. https://orcid.org/0000-0002-5118-1935
  • Bruno Damião Faculdade de Americana (FAM) – Americana (SP), Brasil.
  • Luis Antonio Peroni Faculdade de Americana (FAM) – Americana (SP), Brasil. https://orcid.org/0000-0002-3544-8986
  • Patricia Ucelli Simioni Faculdade de Americana (FAM) – Americana (SP), Brasil. https://orcid.org/0000-0002-6951-5040

DOI:

https://doi.org/10.23925/1984-4840.2021v23i1a2

Keywords:

Clustered Regularly Interspaced Short Palindromic Repeats, Genetic Diseases, Inborn, beta-Thalassemia, Genetic Therapy, Hemoglobinopathies

Abstract

Beta-thalassemia major is a hemoglobinopathy characterized by a recessive haplo-insufficient mendelian inheritance, being considered the most severe form of thalassemias. Carriers depend on regular blood transfusions and may develop future problems due to the subsequential iron accumulation. The aim of this study is to present a review and new insights into the CRISPR/Cas9 system in the editing of genetic sequences and its potential application in gene therapy for patients with hemoglobinopathies, especially beta thalassemia, which is characterized by molecular disorders associated with marked deficiency on the hemoglobin beta chain production. This change reflects in a reduced synthesis of hemoglobin that is currently treated with regular blood transfusion. CRISPR associated with Cas9 and guide-RNA form a complex, which is capable of recognizing a specific region of DNA and of removing it from the genome. This system has been modeled by researchers to act on targeted sites in DNA, in order to repair mutated genes. Gene therapy with CRISPR/Cas9 for beta thalassemia is still under study and analysis, consists of silencing the BCL11A gene and stimulating fetal hemoglobin production, resulting in an independence of blood transfusion by its carriers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Zheng YM, Lin FL, Gao H, Zou G, Zhang JW, Wang GK, et al. Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Sci Rep. 2017;7:9250. doi: https://doi.org/10.1038/s41598-017-10052-3

Schwartz C, Frogue K, Ramesh A, Misa J, Wheeldon I. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol Bioeng. 2017;114(12):2896-906. doi: https://doi.org/10.1002/bit.26404

Castrignano SB. Enzimas em biologia molecular. III. Tecnologia CRISPR-Cas9. Núcleo de Doenças Respiratórias - Centro de Virologia - Instituto Adolfo Lutz. Bol Inst Adolfo Lutz. 2017;27(U):art.3.

The Lancet Haematology. CRISPR-Cas9 gene editing for patients with haemoglobinopathies. Lancet Haematol. 2019;6(9):e438. doi: https://doi.org/10.1016/S2352-3026(19)30169-3

Oliveira TC. Metodologias para a geração de mutantes funcionais em Metarhizium anisopliae: CRISPR/Cas9 e RNA [dissertação na Internet]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2016. Disponível em: https://lume.ufrgs.br/bitstream/handle/10183/150695/001008111.pdf?sequence=1&isAllow

Gopal S, Jamieson C. Precision medicine approaches in sickle cell disease. J Precision Med. 2019;5(3):1-7.

Antunes L, Cruz TC. Fisiopatogenia e métodos diagnósticos das anemias hemolíticas: uma revisão integrativa. Rev Saúde Desenv Hum. 2018;6(2):49-61.

Vertex Pharmaceuticals Incorporated. A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent beta-Thalassemia. ClinicalTrials.gov [Internet]. 2018. Disponível em: https://clinicaltrials.gov/ct2/show/record/NCT03655678?view=record

Gonçalves GAR, Paiva RMA. Terapia gênica: avanços, desafios e perspectivas. Rev Ciênc Bás. 2017;15(3):369-75.

Franco HS. CRISPR: applications in human pathologies and future prospects [dissertação na Internet]. Faro: Universidade do Algarve; 2018. Disponível em: https://sapientia.ualg.pt/bitstream/10400.1/12618/1/TESEM-crispr-hannah.pdf

Richter C, Chang JT, Fineran PC. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses. 2012;4(10):2291-311. doi: https://doi.org/10.3390/v4102291

Arend MC, Pereira JOM, Markoski MM. The CRISPR/Cas9 system and the possibility of genomic edition for cardiology. Arq Bras Cardiol. 2017;108(1):81-3. doi: https://doi.org/10.5935/abc.20160200

Freire IA, Deolindo AMR, Sanches MSF, Arcanjo FPN. β-Talassemia major: um relato de caso. Rev Med UFC. 2019;2(59):66-70.

Carvalho LB. Avaliação da expressão da talassemia do tipo beta no Brasil pela co-herança com defeitos de hemocromatose [dissertação na Internet]. São José do Rio Preto: Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas; 2003. Disponível em: http://hdl.handle.net/11449/92518

Verrastro TL, Wendel Neto S. Hematologia e hemoterapia: fundamentos de morfologia, fisiologia, patologia e clínica. São Paulo: Atheneu; 2010.

Begley S, Feuestein A. First CRISPR treatment for blood diseases shows early benefits in two patients. STAT [Internet]. 2019. Disponível em: https://www.statnews.com/2019/11/19/first-crispr-treatment-for-blood-diseases-shows-early-benefits/

Published

2022-10-14

How to Cite

1.
Serpeloni BB, Oliveira LNM de, Damião B, Peroni LA, Simioni PU. The The CRISPR/Cas9 system and the potential for beta-thalassemia. Rev. Fac. Ciênc. Méd. Sorocaba [Internet]. 2022Oct.14 [cited 2024Dec.4];23(1):2-5. Available from: https://revistas.pucsp.br/index.php/RFCMS/article/view/57149

Issue

Section

Update