Automating discovery
what can we learn from the study of abductive reasoning?
DOI:
https://doi.org/10.23925/2316-5278.2024v25i1:e68263Keywords:
Abduction, AI-Descartes, Automation, Inference to the best explanationAbstract
The aim of this paper is to investigate the extent to which abductive inference can be automated. In order to do so, we present the Peircean account of abduction, according to which abduction is the process of generating and selecting an explanatory hypothesis that guides future inquiry (CP 5.171; 1903). Then, we introduce the contemporary concept of abduction characterized as Inference to the Best Explanation (IBE), which aim is to select a hypothesis, among a set of available hypotheses, considering their explanatory potential in terms of likelihood and loveliness (Lipton, 2004). Subsequently, we discuss IBE in relation to Bayesianism, according to which rational agents update their degrees of beliefs in a proposition based on new evidence and explanatory considerations. To illustrate our analysis, we present the software called AI-Descartes, an open-source AI system that combines logical reasoning with symbolic regression, aiming to derive scientific discovery from axiomatic knowledge and experimental data (Cornelio et al., 2023). Finally, we provide considerations about the relevance of studying abduction in the context of Artificial Intelligence.
Metrics
References
ANDERSON, D.R. The Evolution of Peirce’s Concept of Abduction. Transactions of the Charles S. Peirce Society, v. 22, n. 2, p. 145-164, 1986. http://www.jstor.org/stable/40320131
BAIN, A. Mental and Moral Science, 3rd edn. London: Longmans, Green and Co., 1872. Bk 4, Ch. 8, p. 371-385.
BELLUCCI, F. Eco and Peirce on Abduction. European Journal of Pragmatism and American Philosophy, 2018. https://doi.org/10.4000/ejpap.1122.
BELLUCCI, F.; PIETARINEN, A.-V. Icons, Interrogations, and Graphs: On Peirce’s Integrated Notion of Abduction. Transactions of the Charles S. Peirce Society, v. 56, n. 1, p. 43-61, 2020. https://doi.org/10.2979/trancharpeirsoc.56.1.03
BIRD, A. Eliminative Abduction: examples from medicine. In: Studies in History and Philosophy of Science, Vol. 41, 2010. 345–352. https://doi.org/10.1016/j.shpsa.2010.10.009
BIRD, A. Inference to the Best Explanation, Bayesianism, and Knowledge. In: MCCAIN; POSTON (Eds.). Best Explanations: New Essays on Inference to the Best Explanation, 2017. https://doi.org/10.1093/oso/9780198746904.003.0007, accessed 31 Oct. 2023.
CABRERA, F. Can there be a Bayesian explanationism? On the prospects of a productive partnership. Synthese v. 194, p. 1245–1272, 2017. https://doi.org/10.1007/s11229-015-0990-z
CABRERA, F. Inference to the Best Explanation: an Overview. In: MAGNANI, L. (ed.). Handbook of Abductive Cognition. Springer, Cham., 2022. https://doi.org/10.1007/978-3-030-68436-5_77-1
CAMPOS, D.G. Imagination, Concentration, and Generalization: Peirce on the Reasoning Abilities of the Mathematician. Transactions of the Charles S. Peirce Society, v. 45, n. 2, p. 135-156, 2009. https://doi.org/10.2979/tra.2009.45.2.135.
CAMPOS, D. On the distinction between Peirce’s abduction and Lipton’s inference to the best explanation. Synthese, v. 180, p. 419-442, 2011. https://doi.org/10.1007/s11229-009-9709-3
CORNELIO, C. et al. Combining data and theory for derivable scientific discovery with AI-Descartes. Nat Commun, v. 14, p. 1777, 2023. https://doi.org/10.1038/s41467-023-37236-y
DELLSÉN, F. Explanatory Consolidation: from best to good enough. Philosophy and Phenomenological research, v. 103, p. 157-177, 2021. https://doi.org/10.1111/phpr.12706
DENECKER, M.; KAKAS, A. Abduction in Logic Programming. In: KAKAS, A.C., SADRI, F. (Eds.). Computational Logic: Logic Programming and Beyond. Lecture Notes in Computer Science, vol 2407. Springer, Berlin, Heidelberg, 2002. https://doi.org/10.1007/3-540-45628-7_16
DOUVEN, I.; SCHUPBACH, J. N. Probabilistic alternatives to Bayesianism: the case of explanationism. Frontiers in Psychology, p. 1-9, 2015. https://doi.org/10.3389/fpsyg.2015.00459
DOUVEN, I. The art of abduction. MIT Press Direct, 2022. https://doi.org/10.7551/mitpress/14179.001.0001
FELDBACHER-ESCAMILLA, C.J.; GEBHARTER, A. Modeling creative abduction Bayesian style. Euro Jnl Phil Sci, v. 9, 2019. https://doi.org/10.1007/s13194-018-0234-4
GROOVER, M.P. automation. Encyclopedia Britannica, 22 Oct. 2020, <https://www.britannica.com/technology/automation. Accessed in 2 May 2022.
HARMAN, G.H. The Inference to the Best Explanation. Philosophical Review, v. 74, n. 1, p. 88-95, 1965. https://doi.org/10.2307/2183532
HINTIKKA, J. What Is Abduction? The Fundamental Problem of Contemporary Epistemology. Transactions of the Charles S. Peirce Society, v. 34, n. 3, 1998. http://www.jstor.org/stable/40320712
IBRI, I. The heuristic exclusivity of abduction in Peirce's philosophy. In: LEO, R. F.; MARIETTI, S. (Org.). Semiotics and Philosophy in C. S. Peirce. Cambridge: Cambridge Scholars, 2006. p. 89-111.
JOSEPHSON, J.; JOSEPHSON, S. Abductive Inference. Cambridge University Press, 1994.
LIN, H. Bayesian Epistemology. In: ZALTA, E. N.; NODELMAN, U. (Eds.). The Stanford Encyclopedia of Philosophy. Winter, 2023.URL = <https://plato.stanford.edu/archives/win2023/entries/epistemology-bayesian/>.
LINDSAY, R. K. et al. DENTRAL: a case study of the first expert system for scientific hypothesis formation. In: Artificial Intelligence. Elsevier, Vol. 61, 1993. p. 209-261,
LIPTON, P. Inference to the Best Explanation. New York. Routledge, 1999.
LIPTON, P. Inference to the Best Explanation. 2 ed. Edition: London; New York. Routledge, 2004.
MINNAMEIER. G. Forms of Abduction and an Inferential Taxonomy. In: MAGNANI; BERTOLOTTI (Eds.). Handbook of Model-Based Science. Springer, 2017. p. 175-195.
NIINILUOTO, I. Explicating Inference to the Best Explanation. In: GONZALEZ, W. J. (Ed.). Current Trends in Philosophy of Science. Synthese Library, vol 462. Springer, Cham., 2022 https://doi.org/10.1007/978-3-031-01315-7_11
PAAVOLA, S. Hansonian and Harmanian Abduction as Models of Discovery. International Studies in the Philosophy of Science, v. 20, p. 93-108, 2006. https://doi.org/10.1080/02698590600641065
PAAVOLA, S. On the origin of ideas: an abductivist approach to discovery. Revised and enlarged edition. Saarbrücken: Lap Lambert Academic Publishing, 2012.
PEIRCE, C.S. The Collected Papers of Charles Sanders Peirce. Electronic edition. Vols. I-VI, HARTSHORNE, C., WEISS, P. (Eds.), 1931-1935. Vols. VII-VIII, Burks, A. W. (Ed.). Charlottesville: Intelex Corporation. Cambridge: Harvard University Press, 1958. [Quoted as CP, followed by the volume and paragraph].
PEIRCE, C.S. The New Elements of Mathematics by Charles S. Peirce, Vol. 4., Eisele, C (ed.). Mouton, The Hague, Paris, 1976. [Cited as NEM followed by volume and page number].
PEIRCE, C.S. The Essential Peirce: Selected Philosophical Writings. Vol. 2 (1893-1913). Peirce Edition Project (Eds.). Bloomington & Indianapolis: Indiana University Press, 1998.
PEIRCE, C.S. Writings of Charles S. Peirce: A Chronological Edition: 1886-1890, Vol. 6, Houser, N. et al. (eds). Indiana University Press: Bloomington & Indianapolis, 2000.
PIETARINEN, A.V.; BELLUCCI, F. The Iconic Moment. Towards a Peircean Theory of Diagrammatic Imagination. In: REDMOND J., MARTINS, O. P., FERNÁNDEZ, Á. N. (Eds.). Epistemology, Knowledge and the Impact of Interaction. Logic, Epistemology, and the Unity of Science, vol 38. Springer, Cham., 2016. https://doi.org/10.1007/978-3-319-26506-3_21
SANTAELLA, L. Abduction: the logic of guessing. Semiotica, v. 153, p. 175-198. 2005. https://doi.org/10.1515/semi.2005.2005.153-1-4.175
SCHURZ, G. Theory-Generating Abduction and Its Justification. In: Handbook of Abductive Cognition, Magnani, L. (ed.). Springer, Cham, 2023, p. 181–208. https://doi.org/10.1007/978-3-031-10135-9_4
STJERNFELT, F. Diagrammatology: An investigation on the borderlines of phenomenology, ontology, and semiotics. New York: Springer, 2007.
STJERNFELT, F. Three Tacit Gossipers: A Few Symbol Strings Regarding New ai and Old Philosophy. Danish Yearbook of Philosophy, v. 57, p. 100-115. 2024. https://doi.org/10.1163/24689300-bja10054
SUDMANN, A. et al. Research with Subsymbolic AI. In: Beyond Quantity: research with subsymbolic AI. Sudmann, A. et al. (eds.), Bielefeld: Majuskel Medienproduktion GmbH, Wetzlar. AI Critique. 2023, p. 33-60,
VAN FRAASSEN, B. C. Laws and Symmetries. Oxford: Oxford University Press, 1989.
VEALE, T.; CARDOSO, A.; PEREZ, R.P. Systematizing Creativity: a computational view. In: VEALE & CARDOSO (Eds.). Computational creativity: the philosophy and engineering of autonomously creative systems. chapter 1. Springer Nature Switzerland, 2019. https://doi.org/10.1007/978-3-319-43610-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 http://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons Attribution 4.0 International License.