Automatizando a descoberta

o que podemos aprender com o estudo do raciocínio abdutivo?

Autores

  • Mariana Vitti Rodrigues Universidade Estadual Paulista "Júlio de Mesquita Filho"
  • Maria Eunice Quilici Gonzalez Universidade Estadual Paulista "Júlio de Mesquita Filho"

DOI:

https://doi.org/10.23925/2316-5278.2024v25i1:e68263

Palavras-chave:

Abdução, AI-Descartes, Automação, Inferência à melhor explicação

Resumo

O objetivo deste artigo é investigar em que medida a inferência abdutiva pode ser automatizada. Para isso, apresentamos a noção peirceana de abdução, segundo a qual a abdução é o processo de geração e seleção de hipóteses explicativas que orientam a investigação científica (CP 5.171; 1903). Em seguida, apresentamos o conceito contemporâneo de abdução, caracterizado como Inferência à Melhor Explicação (IME), cujo objetivo é selecionar uma hipótese, entre um conjunto de hipóteses disponíveis, considerando seu potencial explicativo em termos de probabilidade e uberdade (Lipton, 2004). Subsequentemente, discutimos IME em relação ao Bayesianismo, segundo o qual agentes racionais atualizam seus graus de crença em uma proposição com base em novas evidências e considerações explicativas. Para ilustrar nossa análise, apresentamos o software denominado AI-Descartes, um sistema de Inteligência Artificial de código aberto que combina raciocínio lógico com regressão simbólica, projetado para derivar descobertas científicas a partir de conhecimento axiomático e dados experimentais (Cornelio et al., 2023). Por fim, apresentamos considerações sobre a relevância do estudo da abdução no contexto da Inteligência Artificial.

Metrics

Carregando Métricas ...

Referências

ANDERSON, D.R. The Evolution of Peirce’s Concept of Abduction. Transactions of the Charles S. Peirce Society, v. 22, n. 2, p. 145-164, 1986. http://www.jstor.org/stable/40320131

BAIN, A. Mental and Moral Science, 3rd edn. London: Longmans, Green and Co., 1872. Bk 4, Ch. 8, p. 371-385.

BELLUCCI, F. Eco and Peirce on Abduction. European Journal of Pragmatism and American Philosophy, 2018. https://doi.org/10.4000/ejpap.1122.

BELLUCCI, F.; PIETARINEN, A.-V. Icons, Interrogations, and Graphs: On Peirce’s Integrated Notion of Abduction. Transactions of the Charles S. Peirce Society, v. 56, n. 1, p. 43-61, 2020. https://doi.org/10.2979/trancharpeirsoc.56.1.03

BIRD, A. Eliminative Abduction: examples from medicine. In: Studies in History and Philosophy of Science, Vol. 41, 2010. 345–352. https://doi.org/10.1016/j.shpsa.2010.10.009

BIRD, A. Inference to the Best Explanation, Bayesianism, and Knowledge. In: MCCAIN; POSTON (Eds.). Best Explanations: New Essays on Inference to the Best Explanation, 2017. https://doi.org/10.1093/oso/9780198746904.003.0007, accessed 31 Oct. 2023.

CABRERA, F. Can there be a Bayesian explanationism? On the prospects of a productive partnership. Synthese v. 194, p. 1245–1272, 2017. https://doi.org/10.1007/s11229-015-0990-z

CABRERA, F. Inference to the Best Explanation: an Overview. In: MAGNANI, L. (ed.). Handbook of Abductive Cognition. Springer, Cham., 2022. https://doi.org/10.1007/978-3-030-68436-5_77-1

CAMPOS, D.G. Imagination, Concentration, and Generalization: Peirce on the Reasoning Abilities of the Mathematician. Transactions of the Charles S. Peirce Society, v. 45, n. 2, p. 135-156, 2009. https://doi.org/10.2979/tra.2009.45.2.135.

CAMPOS, D. On the distinction between Peirce’s abduction and Lipton’s inference to the best explanation. Synthese, v. 180, p. 419-442, 2011. https://doi.org/10.1007/s11229-009-9709-3

CORNELIO, C. et al. Combining data and theory for derivable scientific discovery with AI-Descartes. Nat Commun, v. 14, p. 1777, 2023. https://doi.org/10.1038/s41467-023-37236-y

DELLSÉN, F. Explanatory Consolidation: from best to good enough. Philosophy and Phenomenological research, v. 103, p. 157-177, 2021. https://doi.org/10.1111/phpr.12706

DENECKER, M.; KAKAS, A. Abduction in Logic Programming. In: KAKAS, A.C., SADRI, F. (Eds.). Computational Logic: Logic Programming and Beyond. Lecture Notes in Computer Science, vol 2407. Springer, Berlin, Heidelberg, 2002. https://doi.org/10.1007/3-540-45628-7_16

DOUVEN, I.; SCHUPBACH, J. N. Probabilistic alternatives to Bayesianism: the case of explanationism. Frontiers in Psychology, p. 1-9, 2015. https://doi.org/10.3389/fpsyg.2015.00459

DOUVEN, I. The art of abduction. MIT Press Direct, 2022. https://doi.org/10.7551/mitpress/14179.001.0001

FELDBACHER-ESCAMILLA, C.J.; GEBHARTER, A. Modeling creative abduction Bayesian style. Euro Jnl Phil Sci, v. 9, 2019. https://doi.org/10.1007/s13194-018-0234-4

GROOVER, M.P. automation. Encyclopedia Britannica, 22 Oct. 2020, <https://www.britannica.com/technology/automation. Accessed in 2 May 2022.

HARMAN, G.H. The Inference to the Best Explanation. Philosophical Review, v. 74, n. 1, p. 88-95, 1965. https://doi.org/10.2307/2183532

HINTIKKA, J. What Is Abduction? The Fundamental Problem of Contemporary Epistemology. Transactions of the Charles S. Peirce Society, v. 34, n. 3, 1998. http://www.jstor.org/stable/40320712

IBRI, I. The heuristic exclusivity of abduction in Peirce's philosophy. In: LEO, R. F.; MARIETTI, S. (Org.). Semiotics and Philosophy in C. S. Peirce. Cambridge: Cambridge Scholars, 2006. p. 89-111.

JOSEPHSON, J.; JOSEPHSON, S. Abductive Inference. Cambridge University Press, 1994.

LIN, H. Bayesian Epistemology. In: ZALTA, E. N.; NODELMAN, U. (Eds.). The Stanford Encyclopedia of Philosophy. Winter, 2023.URL = <https://plato.stanford.edu/archives/win2023/entries/epistemology-bayesian/>.

LINDSAY, R. K. et al. DENTRAL: a case study of the first expert system for scientific hypothesis formation. In: Artificial Intelligence. Elsevier, Vol. 61, 1993. p. 209-261,

LIPTON, P. Inference to the Best Explanation. New York. Routledge, 1999.

LIPTON, P. Inference to the Best Explanation. 2 ed. Edition: London; New York. Routledge, 2004.

MINNAMEIER. G. Forms of Abduction and an Inferential Taxonomy. In: MAGNANI; BERTOLOTTI (Eds.). Handbook of Model-Based Science. Springer, 2017. p. 175-195.

NIINILUOTO, I. Explicating Inference to the Best Explanation. In: GONZALEZ, W. J. (Ed.). Current Trends in Philosophy of Science. Synthese Library, vol 462. Springer, Cham., 2022 https://doi.org/10.1007/978-3-031-01315-7_11

PAAVOLA, S. Hansonian and Harmanian Abduction as Models of Discovery. International Studies in the Philosophy of Science, v. 20, p. 93-108, 2006. https://doi.org/10.1080/02698590600641065

PAAVOLA, S. On the origin of ideas: an abductivist approach to discovery. Revised and enlarged edition. Saarbrücken: Lap Lambert Academic Publishing, 2012.

PEIRCE, C.S. The Collected Papers of Charles Sanders Peirce. Electronic edition. Vols. I-VI, HARTSHORNE, C., WEISS, P. (Eds.), 1931-1935. Vols. VII-VIII, Burks, A. W. (Ed.). Charlottesville: Intelex Corporation. Cambridge: Harvard University Press, 1958. [Quoted as CP, followed by the volume and paragraph].

PEIRCE, C.S. The New Elements of Mathematics by Charles S. Peirce, Vol. 4., Eisele, C (ed.). Mouton, The Hague, Paris, 1976. [Cited as NEM followed by volume and page number].

PEIRCE, C.S. The Essential Peirce: Selected Philosophical Writings. Vol. 2 (1893-1913). Peirce Edition Project (Eds.). Bloomington & Indianapolis: Indiana University Press, 1998.

PEIRCE, C.S. Writings of Charles S. Peirce: A Chronological Edition: 1886-1890, Vol. 6, Houser, N. et al. (eds). Indiana University Press: Bloomington & Indianapolis, 2000.

PIETARINEN, A.V.; BELLUCCI, F. The Iconic Moment. Towards a Peircean Theory of Diagrammatic Imagination. In: REDMOND J., MARTINS, O. P., FERNÁNDEZ, Á. N. (Eds.). Epistemology, Knowledge and the Impact of Interaction. Logic, Epistemology, and the Unity of Science, vol 38. Springer, Cham., 2016. https://doi.org/10.1007/978-3-319-26506-3_21

SANTAELLA, L. Abduction: the logic of guessing. Semiotica, v. 153, p. 175-198. 2005. https://doi.org/10.1515/semi.2005.2005.153-1-4.175

SCHURZ, G. Theory-Generating Abduction and Its Justification. In: Handbook of Abductive Cognition, Magnani, L. (ed.). Springer, Cham, 2023, p. 181–208. https://doi.org/10.1007/978-3-031-10135-9_4

STJERNFELT, F. Diagrammatology: An investigation on the borderlines of phenomenology, ontology, and semiotics. New York: Springer, 2007.

STJERNFELT, F. Three Tacit Gossipers: A Few Symbol Strings Regarding New ai and Old Philosophy. Danish Yearbook of Philosophy, v. 57, p. 100-115. 2024. https://doi.org/10.1163/24689300-bja10054

SUDMANN, A. et al. Research with Subsymbolic AI. In: Beyond Quantity: research with subsymbolic AI. Sudmann, A. et al. (eds.), Bielefeld: Majuskel Medienproduktion GmbH, Wetzlar. AI Critique. 2023, p. 33-60,

VAN FRAASSEN, B. C. Laws and Symmetries. Oxford: Oxford University Press, 1989.

VEALE, T.; CARDOSO, A.; PEREZ, R.P. Systematizing Creativity: a computational view. In: VEALE & CARDOSO (Eds.). Computational creativity: the philosophy and engineering of autonomously creative systems. chapter 1. Springer Nature Switzerland, 2019. https://doi.org/10.1007/978-3-319-43610-4

Downloads

Publicado

2024-12-05

Como Citar

Rodrigues, M. V. ., & Gonzalez, M. E. Q. (2024). Automatizando a descoberta: o que podemos aprender com o estudo do raciocínio abdutivo?. Cognitio: Revista De Filosofia, 25(1), e68263. https://doi.org/10.23925/2316-5278.2024v25i1:e68263

Edição

Seção

Artigos Cognitio